
Resolving Schematic Discrepancy in the Integration of
Entity-Relationship Schemas

Qi He Tok Wang Ling

School of Computing, National University of Singapore
{heqi,lingtw}@comp.nus.edu.sg

Abstract. In schema integration, schematic discrepancies occur when data in
one database correspond to metadata in another. We define this kind of
semantic heterogeneity in general using the paradigm of context that is the meta
information relating to the source, classification, property etc of entities,
relationships or attribute values in entity-relationship (ER) schemas. We present
algorithms to resolve schematic discrepancies by transforming metadata into
entities, keeping the information and constraints of original schemas. Although
focusing on the resolution of schematic discrepancies, our technique works
seamlessly with existing techniques resolving other semantic heterogeneities in
schema integration.

1 Introduction

Schema integration involves merging several schemas into an integrated schema.
More precisely, [4] defines schema integration as “the activity of integrating the
schemas of existing or proposed databases into a global, unified schema”. It is
regarded as an important work to build a heterogeneous database system [6, 22] (also
called multidatabase system or federated database system), to integrate data in a data
warehouse, or to integrate user views in database design. In schema integration,
people have identified different kinds of semantic heterogeneities among component
schemas: naming conflict (homonyms and synonyms), key conflict, structural conflict
[3, 15], and constraint conflict [14, 21].

A less touched problem is schematic discrepancy, i.e., the same information is
modeled as data in one database, but metadata in another. This conflict arises
frequently in practice [11, 19]. We adopt a semantic approach to solve this issue. One
of the outstanding features of our proposal is that we preserve the cardinality
constraints in the transformation/integration of ER schemas. Cardinality constraints,
in particular, functional dependencies (FDs) and multivalued dependencies (MVDs),
are useful in verifying lossless schema transformation [10], schema normalization and
semantic query optimization [9, 21] in multidatabase systems. The following example
illustrates schematic discrepancy in ER schemas. To focus our contribution and
simplify the presentation, in the example below, schematic discrepancy is the only
kind of conflicts among schemas.

Example 1. Suppose we want to integrate supply information of products from

several databases (Fig. 1). These databases record the same information, i.e., product
numbers, product names, suppliers and supplying prices in each month, but have
discrepant schemas. In DB1, suppliers and months are modeled as entity types. In
DB2, months are modeled as meta-data of entity types, i.e., each entity type models
the products supplied in one month, and suppliers are modeled as meta-data of
attributes, e.g., the attribute S1_PRICE records the supplying prices by supplier s1.1
In DB3, months are modeled as meta-data of relationship types, i.e., each relationship
type models the supply relation in one month. We propose (in Section 4) to resolve
the discrepancies by transforming the metadata into entities, i.e., transforming DB2
and DB3 into a form of DB1. The statements on the right side of Fig. 1 provide the
semantics of the constructs of these schemas using ontology, which will be explained
in Section 3.□

PROD

P#

MONTH

MONTH

SUP
m m

PRICE

SUPPLIERS#
m

DB1:

JAN_PROD

P# S1_PRICE

DB2:

SN_PRICE

PROD

P#

PRICE

SUPPLIER

S#JAN_SUP

DEC_SUP

PRICE

m

mm

m

DB3:



PNAME

PNAME

PNAME



JAN_PROD = product[month='jan'] ...
 {P# = p#, PNAME = pname,
 S1_PRICE = price[supplier='s1', inherit ALL],

...}

JAN_SUP = supply[month='jan'] ...
 {PRICE = price[inherit ALL]}

DEC_PROD

P# S1_PRICE

SN_PRICE

PNAME



PROD = product
 {P# = p#, PNAME = pname}
SUPPLIER = supplier

{S# = s#}
MONTH = month

{MONTH = month}
SUP = supply

{PRICE = price}

. . .

Fig. 1. Schematic discrepancy: months and suppliers modeled differently in DB1, DB2 and DB3

Paper organization. The rest of the paper is organized as follows. Section 2 is an
introduction to the ER approach. Section 3 and 4 are the main contributions of this

1 Without causing confusion, we blur the difference on entities and identifiers of entities. E.g.,

we use supplier number s1 to refer to a supplier with identifier S# = s1, i.e., s1 plays both the
roles of an attribute value of S# and an entity of supplier.

paper. In Section 3, we first introduce the concepts of ontology and context, and the
mappings from schema constructs of ER schemas onto types of ontology. Then we
define schematic discrepancy in general using the paradigm of context. In Section 4,
we present algorithms to resolve schematic discrepancies in schema integration,
without any loss of information and cardinality constraints. In Section 5, we compare
our work with related work. Section 6 concludes the whole paper.

2 ER Approach

In the ER model, an entity is an object in the real world and can be distinctly
identified. An entity type is a collection of similar entities that have the same set of
predefined common attributes. Attributes can be single-valued, i.e., 1:1 (one-to-one)
or m:1 (many-to-one), or multivalued, i.e., 1:m (one-to-many) or m:m (many-to-
many). A minimal set of attributes of an entity type E which uniquely identifies E is
called a key of E. An entity type may have more than one key and we designate one of
them as the identifier of the entity type. A relationship is an association among two or
more entities. A relationship type is a collection of similar relationships that satisfy a
set of predefined common attributes. A minimal set of attributes (including the
identifiers of participating entity types) in a relationship type R that uniquely
identifies R is called a key of R. A relationship set may have more than one key and
we designate one of them as the identifier of the relationship type.

The cardinality constraints of ER schemas incorporate FDs and MVDs. For
example, given an ER schema below, let K1, K2 and K3 be the identifiers of E1, E2
and E3, we have:
K1→A1 and A1→K1, as A1 is a 1:1 attribute of E1;
K2→A2, as A2 is a m:1 attribute of E2;
K3 A3, as A3 is a m:m attribute of E3;
{K1, K2}→K3, as the cardinality of E3 is 1 in R;
{K1, K2}→B, as B is a m:1 attribute of R.

3 Ontology and Context
In this section, we first represent the constructs of ER schemas using ontology, then
define schematic discrepancy in general based on the schemas represented using
ontology. In this paper, we treat ontology as the specification of a representational
vocabulary for a shared domain of discourse which includes the definitions of types
(representing classes, relations, and properties) and their values. We present ontology
at a conceptual level, which could be implemented by an ontology language, e.g.,
OWL [20].

For example, suppose ontology SupOnto describes the concepts in the universe of
product supply. It includes the following types: product, month, supplier, supply (i.e.,
the supply relations among products, months and suppliers), price (i.e. the supplying
prices of products), p#, pname, s#, etc. It also includes the values of these types, e.g.
jan, …, dec for month, and s1, …, sn for supplier. Note we use lower case italic words

E1

K1

E2

K2

E3

R

A3

m m

1

A1 B A2

K3

to represent types and values of ontology, in contrast to capitals for schema constructs
of an ER schema. By use of OWL expression, product, month, supplier and supply
would be declared as classes, p# and pname as properties of product, s# as a property
of supplier, and price as a property of supply.

Conceptual modeling is always done within a particular context. In particular, the
context of an entity type, relationship type or attribute is the meta-information relating
to its source, classification, property etc. Contexts are usually at four levels: database,
object class, relationship type and attribute. An entity type may "inherit" a context
from a database (i.e., the context of a database applies to the entities), and so on. In
general, the inheritance hierarchy of contexts at different levels is:

We’ll give a formal representation of context below. Note as the context of a

database would be handled in the object classes which inherit it, we will not care
database level contexts any more in the rest of the paper.

Definition 1. Given an ontology, we represent an entity type (relationship type, or
attribute) E as:

E = T [C1=c1, …, Cm=cm, inherit Cm+1, …, Cn]
where T, C1, …, Cn are types in the ontology, and each ci is a value of Ci for i ∈
{1, …, m}. Cm+1, …, Cn respectively have a value of cm+1, …, cn which are not
explicitly given. This representation means that each instance of E is a value of T,
and satisfies the conditions Ci = ci for each i ∈ {1, …, n}. C1, …, Cn with the
values constitute the context within which E is defined; we call them meta-
attributes, and their values metadata of E. Furthermore, Cm+1, …, Cn with the
values are from the context at a higher level (i.e. the context of a database if E is
an entity type, the contexts of entity types if E is a relationship type, or the context
of an entity type/relationship type if E is an attribute). We call E inherits the meta-
attributes Cm+1, …, Cn with the values. If E inherits all the meta-attributes with
values of the higher level context, we simply represent it as:

E = T [C1=c1, …, Cm=cm, inherit ALL].
For easy reference, we call the set {C1=c1, …, Cm=cm} the self context, and
{Cm+1=cm+1, …, Cn=cn} the inherited context of E. □
In the above representation of E, either self or inherited context could be empty.

Specifically, when the context of E is empty, we have E = T.
In the example below, we represent the entity types, relationship types and

attributes in Fig. 1 using the ontology SupOnto.

Example 2. In Fig. 1, using the ontology SupOnto, the entity type JAN_PROD of
DB2 is represented as:

JAN_PROD = product[month = ‘jan’].
That is, the context of JAN_PROD is month=‘jan’. This means that each entity of
JAN_PROD is a product supplied in Jan.

Database Entity type
Relationship type Attribute of

relationship type

Attribute of entity type

Also in DB2, given an attribute S1_PRICE of the entity type JAN_PROD, we
represent it as:

S1_PRICE = price[supplier=’s1’, inherit ALL].
That is, the self context of S1_PRICE is supplier=’s1’, and the inherited context
(from the entity type) is month=’jan’. This means that each value of S1_PRICE of the
entity type JAN_PROD is a price of a product supplied by supplier s1 in the month of
Jan.

In DB3, given a relationship type JAN_SUP, we represent it as:
JAN_SUP = supply[month = ‘jan’].

This means that each relationship of JAN_SUP is a supply relationship in the month
of Jan.

Also in DB3, given an attribute PRICE of the relationship type JAN_SUP, we
represent it as:

PRICE = price[inherit ALL].
PRICE inherits the context month=’jan’ from the relationship type. This means that
each value of PRICE of the relationship type JAN_SUP is a supplying price in Jan.□

In contrast to original ER schemas, we call an ER schema whose schema
constructs are represented using ontology symbols elevated schema, as the ER
schemas with the statements given in Fig. 1. The mapping from an ER schema onto
an elevated schema should be specified by users. Our work is based on elevated
schemas. Now we can define schematic discrepancy in general as follows.

Definition 2. Two elevated schemas are schematic discrepant, if metadata in one
database correspond to attribute values or entities in the other. We call meta-
attributes whose values correspond to attribute values or entities in other databases
discrepant meta-attributes.□
For example, in Fig. 1, in DB2, month and supplier are discrepant meta-attributes

as their values correspond to entities in DB1, so is the meta-attribute month in DB3.
Before ending this section, we define the global identifier of a set of entity types.

In general, two entity types (or relationship types) E1 and E2 are similar, if
E1=T[Cnt1] and E2=T[Cnt2] with T an ontology type, and Cnt1 and Cnt2 two sets
(possibly empty sets) of meta-attributes with values. Intuitively, a global identifier
identifies the entities of similar entity types, independent of context.

Definition 3. Given a set of similar entity types E, let K be an identifier of each entity
type in E. We call K a global identifier of the entity types of E, provided that if two
entities of the entity types of E refer to the same real world object, then the values of
K of the two entities are the same, and vice versa. □
For example, in Fig. 1, the PROD entity types of DB1 and DB3, and the entity

types JAN_PROD, …, DEC_PROD of DB2 are similar entity types, for they all
correspond to the ontology type product without or with a context. Suppose P# is a
global identifier of these entity types, i.e., P# uniquely identifies products from all the
three databases. Similarly, we suppose S# is a global identifier of the SUPPLIER
entity types of DB1 and DB3.

In [13], Lee et al proposes an ER based federated database system where local
schemas modeled in the relational, object-relational, network or hierarchical models
are first translated into the corresponding ER export schemas before they are

integrated. Our approach is an extension to theirs by using ontology to provide
semantics necessary for schema integration. In general, local schemas could be in
different data models. We first translate them into ER or ORASS schemas (ORASS is
an ER-like model for semi-structured data [25]). Then map the schema constructs of
ER schemas onto the types of ontology and get elevated schemas with the help of
semi-automatic tools. Finally, integrate the elevated schemas using the semantics of
ontology; semantic heterogeneities among elevated schemas are resolved in this step.
Integrity constraints on the integrated schema are derived from the constraints on the
elevated schemas at the same time.

4 Resolving Schematic Discrepancies in the Integration of ER
Schemas

In this section, we resolve schematic discrepancies in schema integration. In
particular, we present four algorithms to resolve schematic discrepancies for entity
types, relationship types, attributes of entity types and attributes of relationship types
respectively. This is done by transforming discrepant meta-attributes into entity types.
The transformations keep the cardinalities of attributes and entity types, and therefore
preserve the FDs and MVDs. Note in the presence of context, the values of an
attribute depend on not only the identifier of an entity type/relationship type, but also
the metadata of the attribute. To simplify the presentation, we only consider the
discrepant meta-attributes of entity types, relationship types and attributes, leaving the
other meta-attributes out as they will not change in schema transformation.

In the rest of this section, we first present Algorithm TRANS_ENT and
TRANS_REL, the resolutions of discrepancies for entity types and relationship types
in Section 4.1, and then TRANS_ENT_ATTR and TRANS_REL_ATTR, the
resolutions for attributes of entity types and attributes of relationship types in Section
4.2. Examples are provided to understand each algorithm.

4.1 Resolving Schematic Discrepancies for Entity types/Relationship types

In this sub-section, we first show how to resolve discrepancies for entity types using
the schema of Fig. 1, then present Algorithm TRANS_ENT in general. Finally, we
describe the resolution of discrepancies for relationship types by an example, omitting
the general algorithm which is similar to TRANS_ENT.

As an example to remove discrepancies for entity types, we transform the schema
of DB2 in Fig. 1 below.

Example 3 (Fig. 2). In Step 1, for each entity type of DB2, say JAN_PROD, we
represent the meta-attribute month as an entity type MONTH consisting of the only
entity jan that is the metadata of JAN_PROD. We change the entity type JAN_PROD
into PROD after removing the context, and construct a relationship type R to
associate the entities of PROD and the entity of MONTH. Then we handle the
attributes of JAN_PROD. As PNAME has nothing to do with the context month =
‘jan’ of the entity type, it becomes an attribute of PROD. However, S1_PRICE, …,

SN_PRICE inherit the context of month; they become the attributes of the
relationship type R. Then in Step 2, the corresponding entity types, relationship types
and attributes are merged respectively. The merged entity type of MONTH consists of
all the entities {jan, …, dec} of the original MONTH entity types, so do the entity
type PROD, relationship type R and their attributes.□

JAN_PROD

P#
S1_PRICE

DB2:

SN_PRICE

PNAME



DEC_PROD

P#
S1_PRICE

SN_PRICE

PNAME



PROD
Rm m

SN_PRICE

MONTH

S1_PRICE

dom(MONTH) = {jan}

P# PNAME MONTH

PROD
Rm m

SN_PRICE

MONTH

S1_PRICE

dom(MONTH) = {dec}

P# PNAME MONTH

PROD
Rm m

SN_PRICE

MONTH

S1_PRICE

dom(MONTH)
= {jan, ..., dec}

P# PNAME MONTH

. . .

. . .

. . .


Step 1

Step 2
JAN_PROD = product[month='jan']
 {P# = p#, PNAME = pname,
 S1_PRICE = price[supplier='s1', inherit ALL],

...}

PROD = product S1_PRICE = price[supplier='s1']
 MONTH = month ...





Fig. 2. Resolve schematic discrepancies for entity types

Then we give the general algorithm below.

Algorithm TRANS_ENT
Input: an elevated schema DB.

Output: a schema DB’ transformed from DB such that all the discrepant meta-
attributes of entity types are transformed into entity types.

Step 1: Resolve the discrepant meta-attributes of an entity type.
Let E = Eont[C1=c1, …, Cm=cm] be an entity type of DB, for Eont a type in the
ontology and discrepant meta-attributes C1, …, Cm with the values c1, …, cm.
Let K be the global identifier of E.
Step 1.1: Transform discrepant meta-attributes C1, … , Cm into entity types.

Construct an entity type E’ = Eont with the global identifier K. E’ consists
of the entities of E without any context.

Construct entity types
iCE = Ci with identifier

iCK = Ci for each meta-
attribute Ci ∈ {C1, …, Cm}. Each

iCE contains one entity ci.
//Construct a relationship type to represent the associations among the
entities of E and the values of C1,…, Cm.
Construct a relationship type R connecting the entity types E’ and

1CE , …,

mCE .
Step 1.2: Handle the attributes of E.

Let A be an attribute (not part of the identifier) of E, and selfCnt, a set of
meta-attributes with values, be the self context of A.
If A is a m:1 or m:m attribute, then

Case 1: attribute A has nothing to do with the context of E. Then A
becomes an attribute of E’.

Case 2: attribute A = Aont[selfCnt, inherit ALL] inherits all the context
{C1=c1, …, Cm=cm} from E. Then A’ = Aont[selfCnt] becomes an
attribute of R.

Case 3: attribute A = Aont[selfCnt, inherit S] inherits some discrepant
meta-attributes S ⊂ {C1, …, Cm} with the values from E, S ≠ ∅. Then
construct a relationship type RA connecting E’ and those

iCE for each
meta-attribute Ci ∈ S. Attribute A’= Aont[selfCnt] becomes an attribute
of RA.

Else // A is a 1:1 or 1:m attribute, i.e., the values of A determine the
entities of E in the context. In this case, A should be modeled as an entity
type to preserve the cardinality constraint. We keep the discrepant meta-
attributes of A, and delay the resolution in Alg. TRANS_ENT_ATTR, the
resolution for attributes of entity types.

Construct an attribute A’ = Aont[Cnt] of E’, with Cnt the (self and
inherited) context of A as the (self) context of A’.

Step 1.3: Handle relationship types involving entity type E in DB.
Let R1 be a relationship type involving E in DB.
Case 1: R1 has nothing to do with the context of E. Then replace E with

E’ in R1.
Case 2: R1 inherits all the context {C1=c1, …, Cm=cm} from E. Then

replace E with R (i.e., treat R as a high level entity type) in R1.
Case 3: R1 inherits some discrepant meta-attributes S ⊂ {C1, …, Cm}

with the values from E, S ≠ ∅. Then construct a relationship type R2
connecting E’ and those

iCE for each meta-attribute Ci ∈ S. Replace E
with R2 in R1.

Step 2: Merge the entity types, relationship types and attributes respectively
which correspond to the same ontology type with the same context, and union
their domains.□

In the resolution of schematic discrepancies for relationship types, we should deal

with a set of entity types (participating in a relationship type) instead of individual
ones. The steps are similar to those of Algorithm TRANS_ENT, but without Step 1.3.

We omit the resolution algorithm TRANS_REL for lack of space, but explain it by
any example below, i.e., transforming the schema of DB3 in Fig. 1.

Example 4 (Fig. 3). In Step 1, for each relationship type of DB3, say JAN_SUP, we
represent the meta-attribute month as an entity type MONTH consisting of the only
entity jan that is the metadata of JAN_SUP. We change JAN_SUP into the
relationship type SUP after removing the context, and relate the entity type MONTH
to SUP. Attribute PRICE of JAN_SUP inherits the context month=’jan’ from the
relationship type, and therefore it becomes an attribute of SUP in the transformed
schema. Then in Step 2, the MONTH entity types are merged into one consisting of
all the entities {jan, …, dec}; the SUP relationship types are also merged, and get the
schema of DB1 in Fig. 1.□

PROD

P#

PRICE

SUPPLIER

S#JAN_SUP

DEC_SUP

PRICE

m

mm

m

DB3:



PNAME

PROD

P#

SUPPLIER

PNAME S#

MONTH MONTH

dom(MONTH) = {jan}

MONTH
MONTH

dom(MONTH) = {dec}

SUP

SUP



PRICE

PRICE

m

m

m

m

m

m

Step 1

JAN_SUP = supply[month='jan']
 {PRICE = price[inherit ALL]}

MONTH = month
SUP = supply

{PRICE = price}

Step 2

PROD

P#

MONTH

MONTH

SUP
m m

PRICE

SUPPLIERS#
m

PNAME

dom(MONTH)
= {jan, ..., dec}

Fig. 3. Resolve schematic discrepancies for relationship types

4.2 Resolving Schematic Discrepancies for Attributes

In this sub-section, we first show how to resolve discrepancies for attributes of entity
types using an example, then present Algorithm TRANS_ENT_ATTR in general.
Finally, we describe the resolution of discrepancies for attributes of relationship types
by an example, omitting the general algorithm which is similar to
TRANS_ENT_ATTR.

The following example shows how to resolve discrepancies for attributes of entity
types. Note the discrepancies of entity types should be resolved before this step.

Example 5 (Fig. 4). Suppose we have another database DB4 recording the supplying
information, in which all the suppliers and months are modeled as contexts of the
attributes in an entity type PROD. The transformation is given in Fig. 4. In Step 1, for
each attribute with discrepant meta-attributes, say S1_JAN_PRICE, the meta-
attributes supplier and month are represented as entity types SUPPLIER and MONTH
consisting of one entity s1 and jan respectively. A relationship type SUP is

constructed to connect PROD, MONTH and SUPPLIER. After removing the context,
we change S1_JAN_PRICE into PRICE, an attribute of the relationship type SUP.
Then in Step 2, we merge all the corresponding entity types, relationship types and
attributes, and get the schema of DB1 in Fig. 1. □

PROD

P# S1_JAN_PRICE

SN_DEC_PRICE

PNAME



PROD

P# SUPPLIER
PNAME S#

MONTH MONTHdom(MONTH)={jan}

MONTH MONTH

dom(MONTH)={dec}

SUP

SUP



SUPPLIER S#

dom(SUPPLIER)={s1}

dom(SUPPLIER)={sn}PRICE

PRICE

m

m

m

m

m

m
Step 1

DB4

S1_JAN_PRICE = price[supplier='s1', month='jan']
 ...

MONTH = month PRICE = price
SUPPLIER = supplier

PROD

P#

MONTH

MONTH

SUP
m m

PRICE

SUPPLIER S#

m

PNAME Step 2

dom(MONTH)
= {jan, ..., dec}

dom(SUPPLIER)
={s1, ..., sn}

Fig. 4. Resolve schematic discrepancies for attributes of entity types

Then we give the general algorithm below.

Algorithm TRANS_ENT_ATTR
Input: an elevated schema DB.

Output: a schema DB’ transformed from DB such that all the discrepant meta-
attributes of attributes of entity types are transformed into entity types.

Step 1: Resolve the discrepant meta-attributes of an attribute in an entity type.
Given an entity type E of DB, let A = Aont[C1=c1, …, Cm=cm] be an attribute
(not part of the identifier) of E, for Aont a type in the ontology, and C1, …, Cm
the discrepant meta-attributes with the values c1, …, cm. // Note A has no
inherited context which has been removed in Algorithm TRANS_ENT if any.
// Represent the discrepant meta-attributes as entity types.
Construct entity types

iCE = Ci with identifiers
iCK = Ci for each meta-

attribute Ci ∈ {C1, …, Cm}. Each
iCE contains one entity ci.

If A is a m:1 or m:m attribute, then
//Construct a relationship type to represent the associations among the
entities of E and the values of C1,…, Cm.
Construct a relationship type R connecting the entity types E and

1CE , …,
mCE .

Attribute A’ = Aont becomes an attribute of R.
Else // A is a 1:1 or 1:m attribute, i.e., the values of A determines the entities

of E in the context. A should be modeled as an entity type to preserve
the cardinality constraint.

Construct EA’ = Aont with the identifier A’ = Aont.
Construct a relationship type R connecting the entity types E, EA’, and

1CE , …,
mCE .

Represent the FD {A’, C1, …, Cm}→K as the cardinality constraint on
R.
If A is a 1:1 attribute, also represent the FD {K, C1, …, Cm}→A’ on R.

Step 2: Merge the entity types, relationship types and attributes respectively
which correspond to the same ontology type with the same context, and union
their domains.□

The resolution of schematic discrepancies for the attributes of relationship types is

similar to that for the attributes of entity types, as a relationship type could be treated as
a high level entity type. We omit the resolution algorithm TRANS_REL_ATTR for lack
of space, but explain it by an example below.

Example 6 (Fig. 5). Given the transformed schema of Fig. 2, we transform the attributes
of the relationship type R as follows. In Step 1, for each attribute of R, say S1_PRICE,
we represent the meta-attribute supplier as an entity type SUPPLIER with one entity s1,
and construct a relationship type SUP to connect the relationship type R and entity type
SUPPLIER. After removing the context, we change S1_PRICE into PRICE, an attribute
of SUP. Then in Step 2, we merge the SUPPLIER entity types and SUP relationship

PROD
Rm m

SN_PRICE

MONTH

S1_PRICE

P# PNAME MONTH. . .

Step 1
PROD

P#

MONTH

PNAME MONTH

R

SUP
PRICE

SUPPLIER

S#

dom(SUPPLIER)={s1}

SUPPLIER

S#

dom(SUPPLIER)={sn}

SUP

PRICE

PROD

P#

MONTH

PNAME MONTH

R

SUPPRICE

SUPPLIERS#

dom(SUPPLIER)
= {s1, ..., sn}

. . .

Step 2

S1_PRICE = price[supplier='s1']
...

SUPPLIER = supplier
PRICE = price

mm

mm

mm

m

m

mm

Remove
redundancy

PROD

P#

MONTH

MONTH

SUP
m m

PRICE

SUPPLIERS#
m

PNAME

Fig. 5. Resolve schematic discrepancies for attributes of relationship types

types respectively. In the merged schema, the relationship type R is redundant as it is a
projection of SUP and has no attributes. Consequently, we remove R and get the schema
of DB1 in Fig. 1. □

The transformations of the algorithms (in Section 4.1 and 4.2) correctly preserve
the FDs/MVDs in the presence of context, as shown in the following proposition.

Proposition 1. Let E be a set of similar entity types (or relationship types) with the
same set of discrepant meta-attributes, and K be the global identifier of E (or a set
of global identifiers of entity types if E is a set of relationship types). Suppose each
entity type (or relationship type) of E has a set of attributes with the same
cardinality:
A = {A | A = Aont[C1=c1, …, Cm=cm, inherit Cm+1, …, Cn], ci∈dom(Ci) for 1≤ i ≤m}.
Then in the transformed schema, C1, …, Cn are modeled as entity types, and the
following FDs/MVDs hold:
Case 1: A are m:1 attributes. Then Aont is modeled as an attribute A’= Aont, and a

FD {K, C1, …, Cn} → A’ holds.
Case 2: A are m:m attributes. Then Aont is modeled as an attribute A’= Aont, and a

MVD {K, C1, …, Cn} A’ holds.
Case 3: A are 1:1 attributes. Then Aont is modeled as an entity type with the

identifier A’= Aont, and FDs {K, C1, …, Cn} → A’ and {A’, C1, …, Cn} → K hold.
Case 4: A are 1:m attributes. Then Aont is modeled as an entity type with the

identifier A’= Aont, and a FD {A’, C1, …, Cn} → K holds. □

For lack of space, we only prove Case 1 when E is a set of entity types. In a
transformed schema, given two relationships with values on A': (k, c1, …, cm, a) and
(k', c1', …, cm', a') for k and k' values (or value sets) of K, c1, …, cm and c1', …, cm'
values of C1, …, Cm, and a and a' values of A'. If k=k', c1=c1', c2=c2',…, cm=cm', then
in the original schemas, the two relationships correspond to the same entity and same
attribute, say A1∈A. As A is a m:1 attribute, we have a=a'. That is, the FD {K, C1, …,
Cn} → A’ holds in the transformed schema.

In schema integration, schematic discrepancies of different schema constructs
should be resolved in order, i.e., first for entity types, then relationship types, finally
attributes of entity types and attributes of relationship types. The resolutions for most
of the other semantic heterogeneities (introduced in Section 1) follow the resolution
of schematic discrepancies.

5 Related Work

Context is the key component in capturing the semantics related to the definition of an
object or association. The definition of context as a set of meta-attributes with values
is originally adopted in [7, 23], but is used to solve different kinds of semantic
heterogeneities. Our work complements rather than competes with theirs. Their work
is based on the context at the attribute level only. We consider the contexts at
different levels, and the inheritance of context.

A special kind of schematic discrepancy has been studied in multidatabase
interoperability, e.g. [11, 12, 16, 17, 19], and [2]. They dealt with the discrepancy
when schema labels (e.g., relation names or attribute names) in one database
correspond to attribute values in another. However, we use contexts to capture meta-
information, and solve a more general problem in the sense that schema constructs
could have multiple (instead of single) discrepant meta-attributes. Furthermore, their
works are at the “structure level”, i.e., they did not consider the constraint issue in the
resolution of schematic discrepancies. However, the importance of constraints can
never be overestimated in both individual and multidatabase systems. In particular,
we preserve FDs and MVDs during schema transformation, which are expressed as
cardinality constraints in ER schemas.

The purposes are also different. Previous works focused on the development of a
multidatabase language by which users can query across schematic discrepant
databases. However, we try to develop an integration system which can detect and
resolve schematic discrepancies automatically given the meta-information on source
schemas.

The issue of inferring view dependencies was introduced in [1, 8]. However, their
works are based on the views defined using relational algebra. In other words, they
did not solve the inference problem in the transformations between schematic
discrepant schemas. In [14, 21, 24], people have begun to focus on the derivation of
constraints for integrated schemas from constraints of component schemas in schema
integration. However, these works failed to consider schematic discrepancy in schema
integration. Our work complements theirs.

6 Conclusions and Future Works

Information integration provides a competitive advantage to businesses, and becomes
a major area of investment by software companies today [18]. In this paper, we
resolve a common problem in schema integration, schematic discrepancy in general,
using the paradigm of context. We define context as a set of meta-attributes with
values, which could be at the levels of databases, entity types, relationship types, and
attributes. We design algorithms to resolve schematic discrepancies by transforming
discrepant meta-attributes into entity types. The transformations preserve information
and cardinality constraints which are useful in verifying lossless schema
transformation, schema normalization and query processing in multidatabase systems.

We have implemented a schema integration tool to semi-automatically integrate
schematic discrepant schemas from several relational databases. Next, we’ll try to
extend our system to integrate databases in different models and semi-structured data.

References

[1] S. Abiteboul, R. Hull, and V. Vianu: Foundations of databases. Addison-Wesley, 1995, pp
216-235

[2] R. Agrawal, A. Somani, Y. Xu: Storing and querying of e-commerce data. VLDB, 2001, pp
149-158

[3] C. Batini, M. Lenzerini: A methodology for data schema integration in the Entity-
Relationship model. IEEE Trans. on Software Engineering, 10(6), 1984

[4] C. Batini, M. Lenzerini, S. B. Navathe: A comparative analysis of methodologies for
database schema integration, ACM Computing Surveys, 18(4), 1986, pp 323-364

[5] P. P. Chen: The entity-relationship model: toward a unified view of data. TODS 1(1), 1976
[6] A. Elmagarmid, M. Rusinkiewicz, A. Sheth: Management of heterogeneous and

autonomous database systems. Morgan Kaufmann, 1999
[7] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel: Context interchange: new features and

formalisms for the intelligent integration of information. ACM Transactions on Information
Systems, 17(3), 1999, pp 270-293

[8] G. Gottlob: Computing covers for embedded functional dependencies. SIGMOD, 1987
[9] C. N. Hsu and C. A. Knoblock: Semantic query optimization for query plans of

heterogeneous multidatabase systems. TKDE 12(6), 2000, pp 959-978
[10] Qi He, Tok Wang Ling: Extending and inferring functional dependencies in schema

transformation. Technical report, TRA3/04. School of Computing, National University of
Singapore, 2004

[11] R. Krishnamurthy, W. Litwin, W. Kent: Language features for interoperability of
databases with schematic discrepancies. SIGMOD, 1991, pp 40-49

[12] V. Kashyap, A. Sheth: Semantic and schematic similarity between database objects: a
context-based approach. The VLDB Journal 5, 1996, pp 276-304

[13] Tok Wang Ling, Mong Li Lee: Issues in an entity-relationship based federated database
system, CODAS, 1996, pp 60-69

[14] Mong Li Lee, Tok Wang Ling: Resolving constraint conflicts in the integration of entity-
relationship schemas. ER, 1997, pp 394-407

[15] Mong Li Lee, Tok Wang Ling: A methodology for structural conflicts resolution in the
integration of entity-relationship schemas. Knowledge and Information Sys., 5, 2003, pp
225-247

[16] L. V. S. Lakshmanan, F. Sadri, S. N. Subramanian: On efficiently implementing
schemaSQL on SQL database system. VLDB, 1999, pp 471-482

[17] L. V. S. Lakshmanan, F. Sadri, S. N. Subramanian: SchemaSQL—an extension to SQL for
multidatabase interoperability. TODS, 2001, pp 476-519

[18] N. M. Mattos: Integrating information for on demand computing. VLDB, 2003, pp 8-14
[19] R. J. Miller: Using schematically heterogeneous structures. SIGMOD, 1998, pp 189-200
[20] Web ontology language, W3C recommendation. http://www.w3.org/TR/owl-guide/
[21] M. P. Reddy, B.E.Prasad, Amar Gupta: Formulating global integrity constraints during

derivation of global schema. Data & Knowledge Engineering, 16, 1995, pp 241-268
[22] A. P. Sheth and S. K. Gala: Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing surveys, 22(3), 1990
[23] E. Sciore, M. Siegel, A. Rosenthal: Using semantic values to facilitate interoperability

among heterogeneous information systems, TODS, 19(2), 1994, pp 254-290
[24] M. W. W. Vermeer and P. M. G. Apers: The role of integrity constraints in database

interoperation. VLDB, 1996, pp 425-435
[25] Xiaoying Wu, Tok Wang Ling, Mong Li Lee, and Gillian Dobbie: Designing

Semistructured Databases Using ORA-SS Model. WISE, 2001, pp 171-180

