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Abstract 

In this paw=, a normal form for 
entity-relationship diagrams and the objectives 
for such a normal form are presented. A normal 
form entity-relationship diagram may consist of 
composite attributes, multivalued attributes, and 
special types of relationship sets such as 
existence dependent, identifier dependent, ISA, 
UNION, INTERSECT, and DECOMPOSE relationships. A 
comprehensive algorithm is given to translate a 
normal form entity-relationship diagram to a set 
of relations. We show that all relations 
generated are either in third normal form or fifth 
normal form. General guidelines and detailed 
steps for converting an entity-relationship 
diagram to a normal form entity-relationship 
diagram are presented. These steps can also be 
used as guidelines for designing databases using 
entity-relationship approach. 

I. Introduction - 

The entity-relationship approach for 
database schema design was proposed in [Chen 761. 
It uses the concepts of entity type and 
relationship set and incorporates some of the 
important semantic information about the real 
world. The structure of a database organized 
according to the entity-relationship approach can 
be represented by a diagrammatic technique called 
an entity-relationship (ER) diagram [Chen 761. 
Two of the main reasons for using ER approach for 
database designs are: first, the ER approach 
allows us to capture and preserve some of the 
important semantics of the real world; second, it 
can achieve a high degree of data independence and 
therefore it becomes an attractive candidate for 
logical database design. Since ER approach is 
used for logical database designs, a method is 
needed to translate ER diagrams to other data 
models, such as relational data models, network 
data models, etc. Methods for translating an ER 
diagram to a relational database have been studied 
by many researchers [Chung 81, Dumpala 81, Hwang 
81, Jajodia 83, Melkanoff 80, Morgenstern 81, Ng 
80, Wang 801. Most of these methods are simply a 
form of guidelines, rules of thumb, and/or 
consider 

only 
simple ER diagrams which do not include 

some of the ER concepts such as 
attributes, 

composite 
weak entity types, recursive 

relationship sets, and weak 
namely, 

relationship sets, 
ISA, UNION, INTERSECT, and DECOMPOSE 

relationships. The relations generated by these 
methods do not guarantee the results to be in good 
normal form. Unlike the relational model which is 
based on the mathematical theory of relations 
where methods (normalization theory) are used to 
determine whether a set of relations is a good 
design for a given database, it is very difficult 
to determine whether an ER diagram is the best 
representation for a given database. This is a 
major problem in the field of ER approach 
research. In this paper, a normal form for ER 
diagrams is defined based on the concepts in ER 
approach and the theory of dependencies in 
relational model [Codd 72, Bernstein 76, Fagin 77, 
Ling 81, Nicolas 781. Unlike the definition of a 
normal form ER diagram given in [Chung 811, we 
allow composite attributes, multivalued 
attributes, and special types of relationship 
sets, namely, existence dependent, identifier 
dependent, ISA, UNION, INTERSECT, and DECOMPOSE 
relationships, to be included in a normal form ER 
diagram. We also ensure that all basic 
relationship sets and dependencies are represented 
in the diagram, that no redundant relationship 
sets exist in the diagram, and adopt the universal 
relation assumption [Atzeni 821 in the definition. 
A comprehensive algorithm which translates a 
normal form ER diagram to a set of relations is 
given in section 5. The concepts of a role name 
and ISA relationship in relational model [Ullman 
801 are used in the translating process. We show 
that all relations generated are either in 3NF or 
5NF. General guidelines and detailed steps for 
converting an ER diagram to a normal form ER 
diagrams are given in section 6. 

2. The Relational Model 

A relational database, consisting of several 
interrelated relations, was first introduced by 
Codd [Codd 701. A relation is defined as follows: 
Given sets of atomic (non-decomposable) elements 
Dl,D2 ,...,Dn (not necessarily distinct), R is a 
first norms1 form ralation (or simply relation) on 
these n sets if it is a set of ordered n-tuples 
<dl,d2,...,dn> such that di belongs to Di for 
i=1,2,...,n. Thus R is a subset of Dl x D2 x . . . . 
x Dn where x denotes the Cartesian product. 
Dl,D2,..., Dn are called the domains of R. Rather 
than referencing each use of a domain by a 
position number, each is assigned a unique role 
name, called an attribute of R. For any tuple in 
T, the value for the attribute named B is referred 
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to as a B-value; for a set of attributes 
X={Bl,BZ,...,Bp}, the tuple's value for the 
attributes in X is referred to as an X-value; the 
values of the other attributes in the tuple are 
said to be associated with that X-value. 

A set of attributes Y of R is said to be 
functionally dependent on a set of attributes X of 
R if each X-value in R has associated with it 
exactly one Y-value in R (at any time). This is 
denoted by X--9Y and is called a functional 
dependency (FD) of R; X and Y are termed the left 
and right sides of the dependency, respectively. 
A functional dependency X--+Y of R is said to be a 
full dependency of R (or Y is fully dependent on 
X) if there exists no proper subset X' of X such 
that Y is functionally dependent on X'. A set of 
attributes K of a relation R is said to be a 
candidate key (or simply a key) of R if all 
attributes of R are functional dependent on K and 
there exists no proper subset K' of K such that 
all attributes of R are functional dependent on 

. K. An attribute of R is called a prime attribute 
if it is contained in some key of R. All other 
attributes of R are called non-prime attributes of 
R. 

Codd recognised that certain relations may 
contain some redundancy and the redundancy may 
cause some updating anomalies. One process that 
attempts to remove undesirable updating anomalies 
and redundancy from a relation is called 
normalization, which was originally defined in two 
stages [Codd 721. A relation R is in second 
normal form (2NF) if every non-prime attribute of 
R is fully dependent on each candidate key of R. 
Let A and B be two non-identical sets of 
attributes of a relation R and d be an attribute 
of R which does not belong to the union of A and 
B, such that A-+B, B-+d, B-j+A (i.e. A is not 
functionally dependent on B), then we say that d 
is transitively dependent on A under R. A 
relation R is in Codd third normal form (3NF) if 
it is in second normal form and every non-prime 
attribute of R is not transitively dependent on 
each key of R [Codd 721. A relation R is in 
Boyce-Codd Normal Form (BCNF) iff whenever there 
exists an non-trivial functional dependency in R, 
say A--+B (i.e. B is not a subset of A), then all 
attributes of R are also functionally dependent on 
A. 

Let R(A,B,C) be a relation defined on three 
pairwise disjoint sets of attributes A, B, and C. 
A multivalued dependency (MVD) A--++B or A--++BIC 
is said to hold for the relation R if, whenever 
tuples <a,b,c> and <a,b',c'> are both in R, then 
tuples <a,b,c'> and <a,b'c> are also in R. The 
statement "A--HB" is read as "attribute set B is 
multi-dependent on attribute set A", or, 
equivalently, "attribute set A multi-determines 
attribute set B". A multivalued dependency 
A--HB]C is non-trivial if neither B nor C is an 
empty set of attributes. A non-trivial MVD A--++B 
is said be a strong MVD if B does not functionally 
dependent on A. A relation R is said to be in 
fourth normal form (4NF) if, whenever there exists 
a non-trivial MVD in R, say A--++B, then all 
attributes of R are also functionally dependent on 

A [Fagin 771. Note that although there may be 
certain multivalued dependencies that we expect to 
hold in a projection relation of a relation R, we 
do not expect these dependencies to hold in R 
itself. Such a dependency is said to be an 
embedded multivalued dependency (EMVD). 

Let R(A,B,C) be a relation defined on three 
pairwise disjoint sets of attributes A, B, and C. 
We say that R satisfies the join dependency (JD) 
"*(AB,BC,AC,)" if, whenever tuples <a,b,c'>, 
<a',b,c>, <a,b',c> appears in R, then <a,b,c> also 
appears in R. The concept of an embedded join 
dependency (EJD) can be defined similarly as the 
definition of EMVD. In general, relation R 
satisfies the JD *(X,Y,...,Z) iff it is the join 
of its projections on X,Y,...,Z, where X,Y,...,Z 
are subsets of the set of attributes of R. A 
relation R is in fifth normal form (5NF) iff every 
join dependency in R is implied by the candidate 
keys of R. [Nicolas 78, Date 811. It has been 
shown that any 5NF relation is also in 4NF; any 
4NF relation is also in BCNF; and any BCNF 
relation is also in 3NF. 

3. The Entity-Relationship Approach 

The entity-relationship approach for database 
schema design was proposed in [Chen 761. Its uses 
the concepts of entity type and relationship set 
and incorporates some of the important semantic 
information about the real world. Information in 
the real world is recognized by either entities or 
relationships among entities. An entity is an 
object which exists in our minds and can be 
distinctly identified. For example, a particular 
house, a person, and a car, etc, are all entities. 
Entities can be classified into different entity 
types; each entity type (or entity set) contains a 
set of entities, each satisfying a set of 
predefined common properties. For example, we may 
group all the employees in a company as an entity 
type EMPLOYEE; We may group all the wards in a 
hospital as an entity type WARD. 

Let E={El,E2,...,En] be a set of entity 
types. A relationship set R over E is defined as 
a subset of the Cartesian product of the entity 
types which satisfies a set of predefined common 
properties, i.e. 

R C{<el,e2,...en> ( ei G Ei, 1 <= i <=n] 

Each element of R is called a relationship. For 
example, let the two entity types DEPT and EMP be 
the set of all departments and the set of all 
employees in a company, respectively. We define a 
relationship set EMP-DEPT over these two entity 
types, i.e. EMP-DEPT is a subset of EMP x DEPT, 
and each relationship <e,d> in EMP-DEPT means the 
employee e belongs to the department d. 

An entity type E (or a relationship set R) 
has attributes representing structural properties 
of E (or R). An attribute A is a mapping from E 
(or R) into a Cartesian product of n value sets, 
VlxV2x...xVn. If n>=2 then we call A a composite 
attribute, e.g. DATE is a composite attribute 
with the associated values sets {DAY,MONTH, YEAR]. 
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The mappings can be one of the four types: 
one-to-one, many-to-one, one-to-many, and 
many-to-many. If an attribute A is a one-to-many 
or many-to-many mapping from E (or R) into the 
associated value-type, then A is called a 
multivalued attribute. A minimal set of 
attributes K of an entity type E which defines a 
one-to-one mapping from E into the Cartesian 
product of the associated value sets of K is 
called a key of E. Note that there may exist more 
than one key for an entity type. If an entity 
type has more than one key, then we designate one 
of the keys as the primary key or identifier of 
the entity type. Let K be a set of identifiers of 
some entity types participating in a relationship 
set R. K is called a key of the relationship set 
R if there is a one-to-one mapping from R into the 
Cartesian Product of the associated value sets of 
K and no proper subset of K has such property. 
Note that a relationship set may have more than 
one key. One of the keys of a relationship set is 
designated as the primary key or identifier of the 
relationship set. 

A relationship set R can also be described by 
the set of entity types involved and a set of 
functional dependencies defined among the 
identifiers of the entity types involved in R. In 
the entity-relationship approach, recursive 
relationship sets are allowed. For example, we 
can defined a relationship set MARRIED which is a 
subset of PERSON x PERSON, where PERSON is an 
entity type. We can also have more than one 
relationship sets between the same entity types. 
For example we can define two relationship sets 
namely ATTENDING-PHYSICIAN and 
CONSULTING-PHYSICIAN between the two entity types 
DOCTOR and PATIENT. Given two relationship sets 
Rl and R2 defined on the two se t 
Sl={Al ,.*.,Ai,Bl,...,Bj} 
S2={ Bl ,...,Bj,Cl,...Ck} where B 81 
types participating in both 
The join of Rl and R2, denoted 
defined as follows: 

Rl * R2 =(<al,...,ai,bl,... , 
<al ,...,ai,bl,.. . 

s of entity types 
and 

,...,Bj are entity 
relationship sets. 
by Rl * R2, is 

bj,cl,...,ck> 1 
,bj>GSl 

and <bl ,...,bj,cl,...,ck>BS2) 

Note that there are entity types in which 
entities cannot be identified by the values of its 
own attributes, but has to be identified by its 
relationship with other entities. Such an entity 
type is called a weak entity type and the 
relationship set which is used to identify the 
entity is said to be an identifier dependent 
relationship set. If the existence of an entity 
in one entity type depends upon the existence of a 
specific entity in another entity type, such a 
relationship set and entity type are called 
existence dependent relationship set and weak 
entity type. Clearly an identifier dependent 
relationship set is also an existence dependent 
relationship set. An entity type which is not a 
weak entity type is called a regular entity type. 
A relationship set which involves weak entity 
type(s) is called a weak relationship set. A 
relationship set which does not involve weak 
entity type(s) is called a regular relationship 
set. If an entity in one entity type El is also 

in another entity type E2, we call the 
relationship between these two entity types El and 
E2 an ISA relationship set. Clearly the 
identifiers of the two entity types of an ISA 
relationship set must be defined on the same value 
set. If an entity type is equal to the union (or 
intersection) of some other entity types, such a 
relationship is called a UNION (or INTERSECT) 
relationship. If an entity type can be 
partitioned or decomposed into several other 
entity types, such a relationship is called a 
DECOMPOSE relationship. Note that all the special 
relationship sets such as existence dependent, 
identifier dependent, ISA, UNION, INTERECT, 
DECOMPOSE relationships are weak relationship sets 
and with no attributes associated. 

The structure of a database organized 
according to the entity-relationship approach can 
be represented by a diagrammatic technique called 
an entity-relationsip diagram (ERD) [Chen 761. A 
regular entity type is represented by a rectangle, 
labelled by its name. A weak entity type is 
represented by a double-rectangle, labelled by its 
name. A relationship set is represented by a 
diamond, labelled by its name. For existence 
dependent and identifier dependent relationship 
sets, the diamond boxes are also labelled with the 
symbols E and ID respectively. For ISA, UNION, 
INTERSECT, and DECOMPOSE relationship sets, the 
corresponding diamond boxes are labelled by ISA, 
UNION, INTERSECT, and DECOMPOSE respectively. 

Arcs are used to connect a relationship set 
and the entity types which participate in the 
relationship set. For existence dependent and 
identifier dependent relationship sets, arrows are 
used to join the diamond boxes to the weak entity 

types instead of arcs. Arrows are also used in 
the ISA, UNION, INTERSECT, and DECOMPOSE 
relationship sets. An arc which joins a 
relationship set and an entity type may be 
labelled by a role name if required. If a 
relationship set involves only two entity types, 
and the relationship is a one-to-one, one-to-many, 
many-to-one, or many-to-many mapping, then the two 
arcs which join the two entity types and the 
relationship set are labelled by '1' and *l', '1' 
and 'n', *n* and 'l', or *n' and 'm' respectively. 
Sometimes, we do not label the arcs of a 
many-to-many relationship set in order to simplify 
the ER diagram. It is difficult to represent all 
the functional dependencies among all the entity 
types in a relationship set which involves more 
than two entity types. 

Figures 3.1 to 3.4 show 4 different 
relationship sets which involves 3 entity types, 
namely A, B, and C. The relationship set in 
Figure 3.1 shows no functional dependency defined 
amongst the three entity type. Figure 3.2 depicts 

a functional dependency AB--+C, where A, g, C are 
used as the identifiers of the entity types A, B, 
and C respectively. Figure 3.3 represents the 
functional dependency A--%BC and Figure 3.4 
represents the functional dependencies A--)BC, 
B-+AC, and C--+AB. Note that it is very 
difficult to represent a relationship set which 
involves three entity types A, B, and C with 
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functional dependencies AB--+C and AC--+B. We can 
describe such a relationship set by Figure 3.2 
with a constraint (functional dependency) AC--9B. 

Since we do not need to use the concept of 
value sets of attributes in our discussion, we 
will not represent value sets in ER diagrams. 
Attributes of entity types and relationship sets 
are represented by circles, labelled by attribute 
names. Arrows are used to connect entity types or 
relationship sets and their many-to-one 
attributes. Double sided arrows, f-9, are used to 
connect entity types or relationship sets and 
their one-to-one attributes. Double arrows, f-3) 
and --+9, are used to connect entity types or 
relationship set and their one-to-many and 
many-to-many multivalued attributes respectively. 
A key of an entity type which consist of more than 
one attribute are indicated by joining the 
attributes of the key with a line. Figure 3.5 
depicts an entity type E with attributes A, B, C, 
D, E, F. A and BC are keys of E; D, E, F are 
many-to-one, many-to-many and one-to-many 
attributes respectively. 

Figure 3.6 shows a ER diagram of a EMP-PROJ 
database. Work is a relationship set defining a 
many-to-many mapping between the two entity types 
EMPLOYEE and PROJECT. EMPLOYEE has three single 
valued attributes namely, EMP#, NAME and SALARY, 
and one multivalued attribute QUALIFICATION. EMP# 
is its identifier. PROJECT has 3 single valued 
attributes namely, PROJ#, P-Name, and BUDGET. 
PROJ# is the identifier. The relationship set 
WORK has a single valued attribute PROGRESS. 

4. A Normal Form For ER Diagrams 

In this section, we define what is meant by a 
normal form ER diagram (NF-ER diagram). The 
objectives for defining such a normal form for ER 
diagrams are : 

(1) to capture and preserve all the semantics of 
the real world of a database which can be 
expressed in term of functional, multivalued, and 
join dependencies, by representing them explicitly 
in the ER diagram. 

(2) to ensure that all the reiationships 
represented in the ER diagram are non-redundant, 
i.e. none-of the relationships can be derived 
from other relationships. 

(3) to ensure that all the relations translated 
from the ER diagram are in good normal form, 
either in 3NF or 5NF. 

A ER normal form is defined in [Chung 811. It is 
a very restrictive definition and has several 
drawbacks. First, it does not allow the existence 
of multivalued attributes; all multivalued 
attributes have to be converted to relationship 
sets. This defeats the objective stated in (1) 
above, namely to preserve the semantics of the 
real world in a ER diagram. Second, it does not 
allow the existence of non-trivial functional 
dependencies whose left sides do not include one 

identifier of some entity type or relationship 
set. This implies that no one-to-one or 
one-to-many attributes are allowed for 
relationship sets. This also implies that all 
relations translated are in BCNF. This 
contradicts the fact that there are 3NF relations 
which cannot be decomposed into BCNF if we require 
a database to cover the given set of functional 
dependencies. Third, the concept of composite 
attribute is not included in the paper [Chung 811. 
In this section, we enhance the definition of a 
ER-NF [Chung 811 by allowing the existence of 
multivalued attributes, composite attributes, and 
one-to-one and one-to-many attributes for 
relationship sets in order to remove the above 
mentioned drawbacks. First, we define what are 
meant by entity type normal form and relationship 
set normal form. Then we give a precise 
definition for an ER normal form diagram. 

Definition 4.1 Let E be an entity type and K be 
its identifier. The 
set of basic dependencies of E, BD(E), is defined 
as follows : 

(1) For each many-to-one attribute A of E, K--+A 
is a FD in BD(E). 
(2) For each one-to-many multivalued attribute A 
of E, A--+K is a FD in BD(E). 
(3) For each one-to-many and many-to-many 
multivalued attribute A of E, K--++A is a MVD in 
BD(E). 
(4) For each key Kl of E which is not the 

identifier of E, K-+Kl and Kl--9K are FDs in 
BD(E). 
(5) No other FDs or MVDs are in BD(E). 

Informally, the set of basic dependencies of 
an entity type E are the functional dependencies 
and multivalued dependencies of E which are 
explicitly shown in the ER diagram. 

Definition 4.2 An entity type E of a ER diagram is 
said to be in entity normal form (E-NF) if all 
functional dependencies and multivalued 
dependencies which only involve attributes of E , 
can be derived (or implied) from the set of basic 
dependencies of E, BD(E),by using the Armstrong's 
axioms for functional dependencies and inference 
rules for multivalued dependencies [Beeri 771. 

In Figure 4.1, the set of basic dependencies 
of the entity type EMPLOYEE consists of the 
following dependencies : 

E# --+SSN, NAME, SEX 
SSN -+ E# 
Et --++SKILL 
E# --%'DEGREE 

where E# is the identifier of EMPLOYEE and SSN is 
a key of EMPLOYEE. 

EMPLOYEE is in E-NF because there is no other 
dependencies which only involve attributes of E 
and cannot be derived from the set of basic 
dependencies of EMPLOYEE. 

In figure 4.2 the entity type SUPPLIER has a 
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many-to-one composite attribute ADDRESS which 
consists of three attributes, namely, CITY, 
STREET, and ZIP. The entity type SUPPLIER is not 
in E-NF because the two functional dependencies : 
CITY,STREET--9ZIP and ZIP--XITY are not in the 
set of basic dependencies of the entity type. A 
method to convert such a non E-NF entity type to a 
E-NF will be presented in section 5. 

Lemma 4.1 Let E be an entity type. If E is in 
E-NF, then the following statements hold. 

(1) Each single valued attribute A of E is fully 
dependent on each key'of E which does not contain 
A, and on each one-to-many attribute of E. 
(2) All components of any composite single valued 
attribute A of E are fully dependent on each key 
of E which does not contain 8. 
(3) There is no non-trivial functional 
dependencies defined among components of any 
composite attribute of E. 
(4) For each one-to-any attribute A of E and for 
each many-to-many attribute B of E, A--++B is a 
strong MVD. 
(5) For each key K of E and for each multivalued 
attribute A of E, K--+)A is a strong MVD. 
(6) No multivalued attribute of E iS 
multi-dependent on a part of a key of E. 
(7) No component of a composite multivalued 
attribute of E is multi-dependent on the 
identifier of E. 

Lemma 4.2 An entity type E of an ER diagram is in 
E-NF if and only if it satisfies the following 
conditions: 

I:) Any non-trivial canonical form full dependency 
.e. the right side of the FFD is a single 

attribute) A--jB which only involves attributes 
and components of composite attributes of E 
implies 

(a) A is a key of E or A is a one-to-many 
attribute of E, and 
(b) B is a single valued attribute or B is a 
component of a composite single valued 
attribute of E. 

(2) Any strong MVD A--9B which only involves 
attributes and components of composite attributes 
of E and in which B is not multi-dependent on any 
proper subset of A and no proper subset of B is 
multi-dependent on A, implies 

(a) A is a key of E or A is a one-to-many 
attribute of E , and 
(b) B is a multivalued attribute of E. 

Lemmas 4.1 and 4.2 can be proved directly 
using the definition of an E-NF entity type, 
Armstrong's axioms for functional dependencies, 
and inference rules for multivalued dependencies 
[Beeri 77,Ullman SO]. 

Definition 4.3 Let R be a relationship set with 
identifier K and F be the associated set of 
functional dependencies which only involve the 
identifiers of the set of entity types 
participating in R. The set of basic dependencies 
of R, denoted by BD(R),is defined as follows: 
(1) For each one-to-one attribute A of R, K--+A 

and A-9K are FDs in BD(R). 
(2) For each many-to-one attribute A of R, K--+A 
is a FD in BD(R). 
(3) For each one-to-many multivalued attribute A 
of R, A-9K is a FD in BD(R). 
(4) For each one-to-many and many-to-many 
multivalued attribute A of R, K--HA is a MVD in 
BD(R). 
(5) Let A--+B be a full dependency in F such that 
A is a set of identifiers of entity types 
participating in R , and B is an identifier of 
some entity type participating in R. If A is a 
key of R or B is part of a key of R then A-->B is 
a FD in BD(R). 
(6) No other FDs or MVDs are in BD(R). 

Definition 4.4 A relationship set R of a ER 
diagram is said to be in relationship normal form 
(R-NF) if all functional dependencies and 
multivalued dependencies which only involve 
attributes of R and identifiers of entity types 
participating in R are implied by the set of 
dependencies of R, i.e. BD(R). 

Informally speaking, the set of basic 
dependencies of a relationship set R includes 
those functional dependencies and multivalued 
dependencies which involves attributes of R and 
are explicitly shown in the ER diagram. Item 5 of 
the definition of the basic set of dependencies of 
a relationship set is to ensure that all relations 
which correspond to a R-NF relationship set are at 
least in 3NF. 

Figure 4.3 shows a relationship set R defined 
on three entity types A, B, and C with attributes 
E, F, and G. If the set of functional 
dependencies, which only involves identifiers of 
the entity types of R, only consists of the 
functional dependency A--9BC, where A, B, and C 
are used as the identifiers of the entity types 
A,B and C respectively, then the set of basic 
dependencies of R contains the following 
dependencies: 

A--+EG, G--+A, A--++F, A--+BC. 

Note that R is R-NF if there is no FDs or MVDs 
which involves the attributes E, F, G and cannot 
be derived from DB(R). Note that if R is 
associated with another FD B--X, then R is not in 
R-NF since B-X cannot be derived from DB(R). 

Lemma 4.3 Let R be a regular relationship set and 
BD(R) be the set of basic dependencies of R. If R 
is in R-NF, then the following statements hold: 
(1) All many-to-one attributes of R are fully 
dependent on each key, each one-to-one attribute 
and each one-to-many attribute of R. 
(2) All components of any composite single valued 
attribute A of R are fully dependent on each key 
of R, each one-to-many attributes and each 
one-to-one attribute of R which is not equal to A. 
(3) There is no non-trivial functional 
dependencies defined among components of any 
composite attribute of R. 
(4) For each one-to-many (or one-to-one) attribute 
A of R and for each many-to-many attribute B of R, 
A--++B is a strong MVD. 
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(5) For each key K of R and for each multivalued 
attribute A of R, K--+)A is a strong MVD. 
(6) No multivalued attribute of R is 
multi-dependent on a part of a key of E. 
(7) No component of a composite multivalued 
attribute of R is multi-dependent on the 
identifier of E. 

This lemma is similar to lemma 4.1. 

Lemma 4.4 Let R be a regular relationship set and 
BD(R) be the set of basic dependencies of R. R is 
in R-NF if and only if it satisfies the following 
conditions : 

(1) Any non-trivial full dependency A--+B which 
only involves attributes, components of composite 
attributes, and identifiers of entity types 
participating in R, and in which B is an attribute 
or a component of a composite attribute of R, 
implies 

(a) A is a key of R, or A is a one-to-many or 
one-to-one attribute of R, and 
(b) B is a single valued attribute or a 
component of a composite single valued 
attribute of R. 

(2) Any non-trivial full dependency A--+B which 
only involves attributes of identifiers of entity 
types participating in R and in which B is a 
single attribute, implies either A is a key of R 
or B is part of a key of R. 

(3) Any strong MVD A--P)B which only involves 
attributes, components of composite attributes, 
and identifiers of entity types participating in R 
and in which B is not multi-dependent on any 
proper subset of A and no proper subset of B is 
multi-dependent on A, implies 

(a) A is a key of R, or A is a one-to-one or 
one-to-many attribute of R, and 
(b) B is a multivalued attribute of R. 

Lemma 4.4 is similar to lemma 4.2 except the 
extra condition (2) in lemma 4.4. 

(b) R is not equal to the join of any three 
other relationship sets 

Informally speaking, the first condition of 
the definition for a normal form ER diagram is 
required in order to conform to the universal 
relation assumption. The second condition of the 
definition ensures that all relations generated 
for all entity tyees are in 5NF. The fourth 
condition of the definition ensures that the ER 
diagram has captured all the relationships and 
dependencies of the given database. The second 
and fifth conditions ensure that all relations 
generated for all regular relationship sets are 
either in 3NF or 5NF and that there is no relation 
in BCNF but not in 4NF or 5NF. In section 5, we 
will show that all relations generated for a 
normal form ER diagram are in good normal form. 

5. Translation of a Normal Form ER diagram to a 
relational database 

In this section, an algorithm is given to 
translate a normal form ER diagram to a set of 
relations. Such a normal form ER diagram may 
consist of composite attributes, recursive 
relationship sets, weak entity types, and special 
types of relationship sets, such as existence 
dependent, identifier dependent, ISA, UNION, 
INTERSECT, and DECOMPOSE relationship sets. All 
the relations produced by the algorithm are either 
in 3NF or 5NF. Since we adopt the concept of 
covering the given set of functional dependencies 
in the normalization process, some of the 
relations produced are in 3NF and cannot be 
decomposed into BCNF. Since we also adopt the 
concept of the universal relation assumption, role 
names are required for some entity types 
participating in some relationship sets and the 
concept of ISA in relational model is used to link 
the role names and the identifiers of the 
corresponding entity types. In fact, this 
algorithm can also be used to translate any ER 
diagram, but the relations produced may not be in 

Defi nition 4.5 Let D be an entity relationship 
diagram. The set of basic dependencies of D, 
denoted by BD(D), is defined as the union of the 
sets of dependencies of all entity types of D and 
the sets of basic dependencies of all relationship 
sets of D. 

good normal form. It is more comprehensive and 
precise than any other translation methods given 
in [Chung81, Dumpala 81, Hwang 81, Jajodia 83, 
Melkanoff 80, Morgenstern 81, Ng 80, Wong 801. 

Algorithm 1: Translate a normal form ER diagram 
to a set of relations. 

Definition 4.6 An entity relationship diagram D is 
in normal form (ER-NF) if it satisfies the 

Step 1: ~ {Assign role names to certain arcs in 

following conditions : order to conform to the universal relation 
assumption ] 

(1) All attribute names are distinct and of 
different semantics. 
(2) Every entity type in the ER diagram is in 
E-NF. 
(3) Every relationship set in the ER diagram is in 
R-NF. 
(4) All relationships and dependencies are implied 
by the set of basic dependencies of D. 
(5) Every relationship set R with no associated 
attribute defined on it, satisfies the following 
conditicns : 

(a) R is not equal to the join of any two 
other relationship sets, and 

For each cycle in the ER diagram, we assign 
each arc which connects an entity type and a 
relationship set in the cycle, a unique role name 
if there is no role name assigned. 

{Here, a cycle in an ER diagram is defined as a 
cycle in the corresponding graph of the ER diagram 
in which all entity types and regular relationship 
sets (i.e. except those special relationships: 
existence dependent, identifier dependent, ISA, 
UNION, INTERSECT, and DECOMPOSE relationship sets) 
are nodes in the graph and arcs which connect 
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entity types and relationship sets are edges in 
the graph.} 

Step 2: (Assign identifiers for entity types 
involved in special relationship such as ISA, 
UNION, INTERSECT, DECOMPOSE} 

(1) If entity types A and B are involved in a ISA 
relationship such that A ISA B, and K is the 
identifier of B, then we assign a unique 
identifier name say Kl, for A and record the 
constraint: Kl ISA K. 

(2) If entity types A and B are involved in a 
UNION (or DECOMPOSE) relationship such that A is a 
union of (or A can be decomposed to) B and some 
other entity types, and K is the identifier of A, 
then we assign a unique identitifer name, say Kl, 
for B and record the constraint: Kl ISA K. 

(3) If entity types A and B are involved in an 
INTERSECT relationship such that A is the 
intersection of B and some other entity types, and 
K is the identifier of B, then we assign a unique 
identifier name, say Kl for A and record the 
constraint: Kl ISA K. 

{Generate relations for each entity type} Step 3: 
For each entity type E (either weak or 

regular entity type) in the ER diagram, we 
construct the following relations for E. 

(1) All the keys of E and all the many-to-one 
single valued attributes form a relation. The 
keys and primary key of this relation are the keys 
and identifier of E respectively. We call this 
relation a type E-l relation. 

(2) Each many-to-many multivalved attribute and 
the identifier of E form form a relation. This 
relation is an all key relation, i.e. all the 
attributes of the relation form the key of the 
relation. We call this relation a type E-2 
relation. 

(3) Each one-to-many attribute and the identifier 
of E form a relation and the key of this relation 
is the one-to-many attribute. We call this 
relation a type E-3 relation. 

Note that we replace all composite attributes of E 
by their components in all the relations 
generated. 

Step 4: {Translate each regular relationship set 
to relations} 

For each regular set R, we construct the 
following relations for R: 

(I) All the identifiers of the entity types 
participating in R and all the many-to-one and 
one-to-one attributes form a relation. The keys 
and and the one-to-one attributes of R are keys of 
this generated relation. The primary key of this 
relation is the identifier of R. If A--)B is a 
non-trivial canonical form full dependency in the 
set of dependencies of R and A is not a key of R, 
then we record A--9B as a constraint of this 

relation. We call this relation a type R-l 
relation. 
(2) Each many-to-many attribute of R and the 
identifier of R form an all key relation. We call 
this relation a type R-2 relation. 

(3) Each one-to-many attribute A of R and the 
identifier of R form a relation and A is the key 
of the relation. We call this relation a type R-3 
relation. 
Note that if an arc which joins an entity type 
(with identifier K) and R is labelled by a role 
name, say N in step 1, we replace the occurrences 
of K in relations generated and the functional 
dependencies constraints generated (if any by (1) 
of this step) by the role name N, and record the 
constraint: N ISA K. We also replace all 
composite attributes in the relations by their 
components. Note that there is no relation 
generated for any special relationships. Instead, 
constraints are generated as described in step 2 
of the algorithm. 

Example 5.1 Figure 5.1 is a normal-form ER diagram 
which has 5 entity types, 3 regular relationship 
sets, and one ISA relatioship. The identifier Cl 
of entity type C is assigned in step 2. of 
algorithm 1. The roles name AX, AY, BX, BY are 
assigned by step 1. Assume that the relationship 
set R3 has 2 functional depdendencies, namely 
Eb ,D# --9 A# and Ad --9 D#. Clearly the keys of 
R3 are {E#,DI} and {A#,Eb} and we designate 
{E#,D#} as the identifier of R3. The set of 
relations generated by algorithm 1 consists of the 
followings 

(1) relations of entity type A: 
AEl(@ , Al , A2) 
AE3(& , A#) 

(2) relations of entity type B: 
BEZ(Bu. 
BEZ'(B// , 82) 

(3) relation of entity type C: 
CEl(C@ , Cl) 
constraint: C# ISA B# 

(4) relation of entity type D: 
DEl(Q& , Dl , D2) 

Note that Dl and D2 are components of a 
composite attribute. 

(5) relation of entity type E: 
EEl(E& , El , E2 , E3) 
where E# is the primary key. 

(6) relation for relationship set Rl: 
RlRl(AX. BX) AX ISA Aii' 
constraints: , BX ISA Bi/ 

(7) relations for relationship set R2: 
RZRl(AY, BY, S2) 
R2R2(AY, BY, S3) 
constraints: AX ISA Ad , AY ISA At, BX ISA 
Bt, BY ISA Bt 

(8) relations for relationship set R3 
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Keys are {D#,E#},{A#,E#] 
{D#,E#} 
Constraint: Ai/ --3 D# 

Note that relation R3Rl 
BCNF. There is no relati 
relationship ISA; it is 
constraint: Ci/ ISA B/I. 

It is obvious that 

and primary key is 

is in 3NF but not 
on corresponding to 
translated to the 

the relations and 
constraints generated by algorithm 1 cover the 
given set of functional dependencies and 
relationship sets of the given normal form ER 
diagram. In the following two theorems, we show 
that all these relations are either in 3NF or 5NF. 

Theorem 1: The relations generated for each of 
the entity types of a normal form ER diagram by 
step 3 of algorithm 1 are in 5NF. 

Proof: Let E be an entity type of the given 
normal form ER diagram. From algorithm 1, there 
are three types of relations generated for E. 

(1) Let Sl be a type E-l relation of E, i.e. Sl 
consists of all the keys and many-to-one single 
valued attribute of E. By lemma 4.1 each single 
valued attribute is fully dependent on each key of 
Sl, therefore Sl is in ZNF. Let A--9B be a 
non-trivial canonical form full dependency in Sl. 
By lemma 4.2, A is a key of E. Hence Sl is in 
BCNF. Also, since there is no strong multivalued 
or join dependency involved in Sl, Sl is also in 
4NF and 5NF. 

(2) Let S2 be a type E-2 relation of E, i.e. S2 
consists of one many-to-many multivalued attribute 
and the identifier of E. Since E is in E-NF, by 
lemma 4.2, there is no non-trivial function 
dependency or non-trivial multivalued dependency 
in S2. Hence S2 in 4NF. Clearly there is no join 
dependency in 52, therefore S2 is also in 5NF. 
(3) Let 53 be a type E-3 relation of E, i.e. S3 
consists of an one-to-many attribute A and the 
identifier of E. Clearly A is a key of S3. Since 
E is in E-NF, by lemma 4.2 there is no non-trivial 
full dependency with the left side not equal to A 
in S3. Hence S3 is in BCNF. Clearly there is no 
MVD or JD in S3, therefore 53 is also in 4NF and 
5NF. 

From the above discussion, we have proved 
that all relations generated by step 3 of 
Algorithm 1 are in 5NF. 

Theorem 2: The relations generated for each of 
the relationship sets of a normal form ER diagram 
by step 4 of algorithm 1 are either in 3NF or 5NF. 

Proof: As we have discussed before, we do not 
need to generate relations for the special 
relationships such as existence dependency, 
identifier dependency, ISA, UNION, INTERSECT, and 
DECOMPOSE relationships. Let R be a relationship 
set other than the special relationships and BD(R) 
be the set of basic dependencies of R. We have 
the following three cases: 

Case 1: R has no associated attribute and there 

is no non-trivial functional dependency defined 
among the identifiers of the entity types 
participating in R. 

Clearly algorithm 1 only generates a type R-l 
relation, say S, for R which consists of all the 
identifiers of the entity types participating in 
R. Clearly S is an all key relation. By the 
definition of a normal form ER diagram, R is not 
equal to the join of any two or three other 
relationship sets and all relationships are 
implied by the set of basic dependencies of D. 
Therefore there is no non-trivial multivalued 
dependency or join dependency in S. Hence S is in 
5NF. 

Case 2: R has no associated attribute and there 
are non-trivial functional dependencies defined 
among the identifiers of the entity types 
participating in R, ie. BD(R) is not empty. 

Clearly algorithm 1 only generates a type R-l 
relation, say S, for R which consists of all the 
identifiers of the entity types participating in 
R. Since R is in R-NF, by lemma 4.3, all the 
non-prime attributes are fully dependent on each 
key of R, and therefore S is in 3NF. Note that if 
there is no non-trivial full dependency, say A--+B 

in BD(R) such that A is not a key of R then there 
is no non-trivial full dependency A--+B in S such 
that A is not a key S. Therefore S is in BCNF. 
By item 5 of the definition of a normal form ER 
diagram, there is no non-trivial strong 
multivalued dependencies or join dependency in S, 
therefore S is 5NF. 

Case 3: R has associated attributes. In this 
case, we have to consider the three types of 
relations possibly generated for R. 

(1) Let Sl be a type R-l relation of R, i.e. Sl 
consists of the identifiers (or role names) of the 
entity types participating in R and all the 
many-to-one and one-to-one single valued 
attributes of R. If R has no single valued 
attribute associated with it, then Sl is either 
the same as the relation in case 1 or case 2. 
Here we assume that S has some single valued 
attributes associated with it. Clearly the keys 
of Sl are the keys of the relationship set R and 
all the one-to-one attributes of R. Since R is in 
R-NF, by lemma 4.3, all the many-to-one attributes 
of R are fully dependent on each key of R and each 
one-to-one attribute of R. This means that all 
non-prime attributes of Sl are fully dependent on 
each key of Sl and therefore Sl is in 2NF. By 
lemma 4.4, there is no non-trivial full dependency 
A-+B in Sl such that B is a non-prime attribute 
and A is not a key of Sl. Therefore there is no 
transitive dependency in Sl. Hence Sl is in the 
3NF. Using the similar argument stated in case 2, 
if there is no non-trivial full dependency A--+B 
in BD(R) such that A is not a key of R then Sl is 
in 5NF; otherwise Sl is not in BCNF but in 3NF. 

(2) Let S2 be a type R-2 relation of R, i.e. S2 
consists of a many-to-many attribute and the 
identifier of R. Since R is in R-NF, by lemma 
4.4, there is no non-trivial functional dependency 
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or strong multivalued dependency in S2. Hence S2 
is in 4NF. Clearly there is no join dependency in 
s2. Therefore 52 is also in 5NF. 

(3) Let S3 be a type R-3 relation of R, i.e. S3 
consists of an one-to-many attribute A and 
identifier of R. Clearly A is a key of S3. Since 
R iS in R-NF, by lemma 4.4, there is no 
non-trivial full dependency with the left side not 
equal to A in S3. Hence S3 is in BCNF. Clearly 
there is no MVD or JD in 53, therefore S3 is also 
in 4NF and 5NF. 

From the above discussion, we have shown that 
all relations generated by step 4 of algorithm 1 
are either in 3NF or 5NF. 

Theorem 3: All the relations generated for a 
normal form ER diagram by algorithm 1 are either 
in 3NF or 5NF. 

Proof: The proof follows directly from theorems 1 
and 2. 

6. Converting an ER diagram to a normal form ER 
diagram 

In this section, guidelines and steps for 
converting an ER diagram to a normal form ER 
diagram are present. We will not discuss each 
step in detail. A detailed algorithm for the 
converting process and the proof for the 
correctness of the algorithm will be presented in 
another paper by the author. Basically, the 
converting process is based on the four lemmas 
described in section 4 and the definition of a 
normal form ER diagram. The basic steps for the 
converting process are as follows: 
Step 1: Ensure that all attribute names are 
distinct and of different semantics. 
Step 2: Convert any non E-NF entity type to E-NF. 
We remove all undesirable functional dependencies 
and/or multivalued dependencies by introducing new 
entity types and relationship sets. 
Step 3: Convert any non R-NF relationship set to 
R-NF. We remove all undesirable functional 
dependencies, multivalued dependencies, and/or 
join dependencies either by introducing new entity 
types and relationship sets or by splitting the 
relationship set into smaller ones. 
Step 4: Remove those relationship sets which have 
no associated attributes and is equal to the join 
of two or three other relationship sets. 

Below we discuss each step in more detail. 

6.1 STEP 1 

Step 1 is necessary in order to ensure that 
the translated relations conform to the universal 
relation assumption. To ensure that all attribute 
names are unique is trivial. Now if there are two 
attributes, say A and B, are of the same semantic 
meaning (ie. refer to the same thing). There are 
4 possible cases: 
(1) A and B are attributes of two entity types, 
(2) A and B are attributes of two relationship 

sets, 
(3) A is an attribute of an entity type, and B is 

an attribute of a relationship type, 
(4) A is an attribute of a relationship set and B 
is an attribute of an entity type. 

Let us consider the first case and assume 
that A and B are attributes of entity type El and 
E2 respectively. Note A and B can be a 
one-to-many, many-to-many, or many-to-one 
attribute, a key or part of a key, or even the 
identifier or part of the identifier of the entity 
types El and E2 respectively. We can't have a 
single converting rule for all the cases, although 
the main idea is the same: replace one attribute 
by another one and create a new entity type for 
them if necessary. Figures 6.1 and 6.2 show two 
of the cases. Only relevant information are shown 
in the figures. 

6.2 Convert a non E-NF entity type to E-NF 

The results in lemmas 4.1 and 4.2 are used to 
test whether a given entity type E is in E-NF. 
This implies we need to test the following 
conditions: 

(1) Each single valued attribute A is fully 
dependent on each key of E which does not contain 
A. 
(2) All components of any composite Single valued 
attribute A are fully dependent on each key of E 
which does not contain A. 
(3) There is no non-trivial functional 

dependencies defined among components of any 
composite attribute of E. 
(4) No multivalued attribute of E is 

multi-dependent on a part of a key of E. 
(5) No component of a composite many-to-many 
attribute of E is multi-dependent on the 
identifier of E. 
(6) No component of a composite many-to-one 
attribute determines the identifier of E. 
(7) Condition 1 of lemma 4.2. 

If an entity type does not satisfy any of the 
above conditions, we have to remove some of the 
attributes involved and create some new entity 
types and relationship sets. Figures 6.3 to 6.5 
show three of the many possible cases. 

6.3 Convert a non R-NF relationship set to R-NF 

'lne results in lemmas 4.3 and 4.4 are used to 
test wnetner a regular relationsnlp set K IS in 
kc-Nur, i.e. we 11eeu to Lest the L"ll"WlIqg 
COnaltlOns: 

(I) Each single valued attribute of R is fully 
dependent on each key of R 
(2) All components of any composite single valued 
attribute are fully dependent on each key of R 
(3) There is no non-trivial functional 
dependencies defined among components of any 
composite attribute of R 
(4) No multivalued attribute of R is 
multi-dependent on a part of a key of R 
(5) No component of a composite multivalued 
attribute of R is multi-dependent on the 
identifier of R 
(6) No component of a composite many-to-one or 
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one-to-one attribute determines the identifier or 
E 
(7) Condition 1 of lemma 4.4 
(8) Condition 2 of lemma 4.4 

Note that the first seven conditions are 
similar to the seven conditions in section 6.2. 
If a relationship set does not satisfy any of the 
above conditions, we have to remove some of the 
attributes involved and create some new entity 

types and relationship sets, or split the 
relationship set into two or more smaller 
relationship sets. Figures 6.6 to 6.8 show three 
of the many possile cases. 

6.4 Remove redundant relationships 

If a relationship set R which has no 
associatea attribute and is equal to the join of 
two or three other relationship sets, then clearly 
the relation generated for R will not be in 4NF or 
5NF. We have to remove this type of relationship 
sets from ER diagrams. In fact, given an ER 
diagram and a set of dependencies associated with 
the ER diagram, we can only achieve the following: 

Given a relationship set R with no 
associated attribute, we can detect the 
existence of two or three relationship 
sets such that the set of entity types 
participating in R is equal to the union 
of the entity types participating in the 
other two or three relationship sets. 

To detect whether the join of two or three 
relationship sets is equal to R or not, we require 
more information about the semantic meaning of the 
relationship sets which can be provided by the 

database designer or database owner. 

7. Conclusion 

In this paper, we first defined the concept 
of a basic set of dependencies of an entity type 
and a relationship set, a normal form entity type, 
and a normal form relationship set. We then 
defined what is meant by a normal form ER diagram. 
A normal form ER diagram may consist of composite 
attributes, multivalued attributes, weak entity 
types, and special relationships such as existence 
dependent, identifier dependent, ISA, UNION, 
INTEKSECT, DECOMPOSE relationships. The 
definition for a normal form ER diagram gives the 
necessary and sufficient condition for ensuring 
all relations of the corresponding ER diagram are 
either in 3NF or 5NF. An algorithm was given to 
translate a normal form ER diagram to a set of 
relations which conforms to the universal relation 
assumption, and a set of constraints which 
consists of some functional dependencies and a set 
of ISA relationships. We have proved that all 
relations are in 3NF or 5NF. We also gave a 
method to convert an ER diagram to a normal form 
ER diagram. Further research to simplify and 
reduce the number of cases to be considered in 
order to convert a ER diagram to normal form is 
required. 
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