
A Normal Form For Entity-Relationship Diagrams

Tok-Wang Ling

National University of Singapore

Abstract

In this paw=, a normal form for
entity-relationship diagrams and the objectives
for such a normal form are presented. A normal
form entity-relationship diagram may consist of
composite attributes, multivalued attributes, and
special types of relationship sets such as
existence dependent, identifier dependent, ISA,
UNION, INTERSECT, and DECOMPOSE relationships. A
comprehensive algorithm is given to translate a
normal form entity-relationship diagram to a set
of relations. We show that all relations
generated are either in third normal form or fifth
normal form. General guidelines and detailed
steps for converting an entity-relationship
diagram to a normal form entity-relationship
diagram are presented. These steps can also be
used as guidelines for designing databases using
entity-relationship approach.

I. Introduction -

The entity-relationship approach for
database schema design was proposed in [Chen 761.
It uses the concepts of entity type and
relationship set and incorporates some of the
important semantic information about the real
world. The structure of a database organized
according to the entity-relationship approach can
be represented by a diagrammatic technique called
an entity-relationship (ER) diagram [Chen 761.
Two of the main reasons for using ER approach for
database designs are: first, the ER approach
allows us to capture and preserve some of the
important semantics of the real world; second, it
can achieve a high degree of data independence and
therefore it becomes an attractive candidate for
logical database design. Since ER approach is
used for logical database designs, a method is
needed to translate ER diagrams to other data
models, such as relational data models, network
data models, etc. Methods for translating an ER
diagram to a relational database have been studied
by many researchers [Chung 81, Dumpala 81, Hwang
81, Jajodia 83, Melkanoff 80, Morgenstern 81, Ng
80, Wang 801. Most of these methods are simply a
form of guidelines, rules of thumb, and/or
consider

only
simple ER diagrams which do not include

some of the ER concepts such as
attributes,

composite
weak entity types, recursive

relationship sets, and weak
namely,

relationship sets,
ISA, UNION, INTERSECT, and DECOMPOSE

relationships. The relations generated by these
methods do not guarantee the results to be in good
normal form. Unlike the relational model which is
based on the mathematical theory of relations
where methods (normalization theory) are used to
determine whether a set of relations is a good
design for a given database, it is very difficult
to determine whether an ER diagram is the best
representation for a given database. This is a
major problem in the field of ER approach
research. In this paper, a normal form for ER
diagrams is defined based on the concepts in ER
approach and the theory of dependencies in
relational model [Codd 72, Bernstein 76, Fagin 77,
Ling 81, Nicolas 781. Unlike the definition of a
normal form ER diagram given in [Chung 811, we
allow composite attributes, multivalued
attributes, and special types of relationship
sets, namely, existence dependent, identifier
dependent, ISA, UNION, INTERSECT, and DECOMPOSE
relationships, to be included in a normal form ER
diagram. We also ensure that all basic
relationship sets and dependencies are represented
in the diagram, that no redundant relationship
sets exist in the diagram, and adopt the universal
relation assumption [Atzeni 821 in the definition.
A comprehensive algorithm which translates a
normal form ER diagram to a set of relations is
given in section 5. The concepts of a role name
and ISA relationship in relational model [Ullman
801 are used in the translating process. We show
that all relations generated are either in 3NF or
5NF. General guidelines and detailed steps for
converting an ER diagram to a normal form ER
diagrams are given in section 6.

2. The Relational Model

A relational database, consisting of several
interrelated relations, was first introduced by
Codd [Codd 701. A relation is defined as follows:
Given sets of atomic (non-decomposable) elements
Dl,D2 ,...,Dn (not necessarily distinct), R is a
first norms1 form ralation (or simply relation) on
these n sets if it is a set of ordered n-tuples
<dl,d2,...,dn> such that di belongs to Di for
i=1,2,...,n. Thus R is a subset of Dl x D2 x
x Dn where x denotes the Cartesian product.
Dl,D2,..., Dn are called the domains of R. Rather
than referencing each use of a domain by a
position number, each is assigned a unique role
name, called an attribute of R. For any tuple in
T, the value for the attribute named B is referred

CH2226-9/85/0000/0024$01.00 0 1985 IEEE
24

to as a B-value; for a set of attributes
X={Bl,BZ,...,Bp}, the tuple's value for the
attributes in X is referred to as an X-value; the
values of the other attributes in the tuple are
said to be associated with that X-value.

A set of attributes Y of R is said to be
functionally dependent on a set of attributes X of
R if each X-value in R has associated with it
exactly one Y-value in R (at any time). This is
denoted by X--9Y and is called a functional
dependency (FD) of R; X and Y are termed the left
and right sides of the dependency, respectively.
A functional dependency X--+Y of R is said to be a
full dependency of R (or Y is fully dependent on
X) if there exists no proper subset X' of X such
that Y is functionally dependent on X'. A set of
attributes K of a relation R is said to be a
candidate key (or simply a key) of R if all
attributes of R are functional dependent on K and
there exists no proper subset K' of K such that
all attributes of R are functional dependent on

. K. An attribute of R is called a prime attribute
if it is contained in some key of R. All other
attributes of R are called non-prime attributes of
R.

Codd recognised that certain relations may
contain some redundancy and the redundancy may
cause some updating anomalies. One process that
attempts to remove undesirable updating anomalies
and redundancy from a relation is called
normalization, which was originally defined in two
stages [Codd 721. A relation R is in second
normal form (2NF) if every non-prime attribute of
R is fully dependent on each candidate key of R.
Let A and B be two non-identical sets of
attributes of a relation R and d be an attribute
of R which does not belong to the union of A and
B, such that A-+B, B-+d, B-j+A (i.e. A is not
functionally dependent on B), then we say that d
is transitively dependent on A under R. A
relation R is in Codd third normal form (3NF) if
it is in second normal form and every non-prime
attribute of R is not transitively dependent on
each key of R [Codd 721. A relation R is in
Boyce-Codd Normal Form (BCNF) iff whenever there
exists an non-trivial functional dependency in R,
say A--+B (i.e. B is not a subset of A), then all
attributes of R are also functionally dependent on
A.

Let R(A,B,C) be a relation defined on three
pairwise disjoint sets of attributes A, B, and C.
A multivalued dependency (MVD) A--++B or A--++BIC
is said to hold for the relation R if, whenever
tuples <a,b,c> and <a,b',c'> are both in R, then
tuples <a,b,c'> and <a,b'c> are also in R. The
statement "A--HB" is read as "attribute set B is
multi-dependent on attribute set A", or,
equivalently, "attribute set A multi-determines
attribute set B". A multivalued dependency
A--HB]C is non-trivial if neither B nor C is an
empty set of attributes. A non-trivial MVD A--++B
is said be a strong MVD if B does not functionally
dependent on A. A relation R is said to be in
fourth normal form (4NF) if, whenever there exists
a non-trivial MVD in R, say A--++B, then all
attributes of R are also functionally dependent on

A [Fagin 771. Note that although there may be
certain multivalued dependencies that we expect to
hold in a projection relation of a relation R, we
do not expect these dependencies to hold in R
itself. Such a dependency is said to be an
embedded multivalued dependency (EMVD).

Let R(A,B,C) be a relation defined on three
pairwise disjoint sets of attributes A, B, and C.
We say that R satisfies the join dependency (JD)
"*(AB,BC,AC,)" if, whenever tuples <a,b,c'>,
<a',b,c>, <a,b',c> appears in R, then <a,b,c> also
appears in R. The concept of an embedded join
dependency (EJD) can be defined similarly as the
definition of EMVD. In general, relation R
satisfies the JD *(X,Y,...,Z) iff it is the join
of its projections on X,Y,...,Z, where X,Y,...,Z
are subsets of the set of attributes of R. A
relation R is in fifth normal form (5NF) iff every
join dependency in R is implied by the candidate
keys of R. [Nicolas 78, Date 811. It has been
shown that any 5NF relation is also in 4NF; any
4NF relation is also in BCNF; and any BCNF
relation is also in 3NF.

3. The Entity-Relationship Approach

The entity-relationship approach for database
schema design was proposed in [Chen 761. Its uses
the concepts of entity type and relationship set
and incorporates some of the important semantic
information about the real world. Information in
the real world is recognized by either entities or
relationships among entities. An entity is an
object which exists in our minds and can be
distinctly identified. For example, a particular
house, a person, and a car, etc, are all entities.
Entities can be classified into different entity
types; each entity type (or entity set) contains a
set of entities, each satisfying a set of
predefined common properties. For example, we may
group all the employees in a company as an entity
type EMPLOYEE; We may group all the wards in a
hospital as an entity type WARD.

Let E={El,E2,...,En] be a set of entity
types. A relationship set R over E is defined as
a subset of the Cartesian product of the entity
types which satisfies a set of predefined common
properties, i.e.

R C{<el,e2,...en> (ei G Ei, 1 <= i <=n]

Each element of R is called a relationship. For
example, let the two entity types DEPT and EMP be
the set of all departments and the set of all
employees in a company, respectively. We define a
relationship set EMP-DEPT over these two entity
types, i.e. EMP-DEPT is a subset of EMP x DEPT,
and each relationship <e,d> in EMP-DEPT means the
employee e belongs to the department d.

An entity type E (or a relationship set R)
has attributes representing structural properties
of E (or R). An attribute A is a mapping from E
(or R) into a Cartesian product of n value sets,
VlxV2x...xVn. If n>=2 then we call A a composite
attribute, e.g. DATE is a composite attribute
with the associated values sets {DAY,MONTH, YEAR].

25

The mappings can be one of the four types:
one-to-one, many-to-one, one-to-many, and
many-to-many. If an attribute A is a one-to-many
or many-to-many mapping from E (or R) into the
associated value-type, then A is called a
multivalued attribute. A minimal set of
attributes K of an entity type E which defines a
one-to-one mapping from E into the Cartesian
product of the associated value sets of K is
called a key of E. Note that there may exist more
than one key for an entity type. If an entity
type has more than one key, then we designate one
of the keys as the primary key or identifier of
the entity type. Let K be a set of identifiers of
some entity types participating in a relationship
set R. K is called a key of the relationship set
R if there is a one-to-one mapping from R into the
Cartesian Product of the associated value sets of
K and no proper subset of K has such property.
Note that a relationship set may have more than
one key. One of the keys of a relationship set is
designated as the primary key or identifier of the
relationship set.

A relationship set R can also be described by
the set of entity types involved and a set of
functional dependencies defined among the
identifiers of the entity types involved in R. In
the entity-relationship approach, recursive
relationship sets are allowed. For example, we
can defined a relationship set MARRIED which is a
subset of PERSON x PERSON, where PERSON is an
entity type. We can also have more than one
relationship sets between the same entity types.
For example we can define two relationship sets
namely ATTENDING-PHYSICIAN and
CONSULTING-PHYSICIAN between the two entity types
DOCTOR and PATIENT. Given two relationship sets
Rl and R2 defined on the two se t
Sl={Al ,.*.,Ai,Bl,...,Bj}
S2={ Bl ,...,Bj,Cl,...Ck} where B 81
types participating in both
The join of Rl and R2, denoted
defined as follows:

Rl * R2 =(<al,...,ai,bl,... ,
<al ,...,ai,bl,.. .

s of entity types
and

,...,Bj are entity
relationship sets.
by Rl * R2, is

bj,cl,...,ck> 1
,bj>GSl

and <bl ,...,bj,cl,...,ck>BS2)

Note that there are entity types in which
entities cannot be identified by the values of its
own attributes, but has to be identified by its
relationship with other entities. Such an entity
type is called a weak entity type and the
relationship set which is used to identify the
entity is said to be an identifier dependent
relationship set. If the existence of an entity
in one entity type depends upon the existence of a
specific entity in another entity type, such a
relationship set and entity type are called
existence dependent relationship set and weak
entity type. Clearly an identifier dependent
relationship set is also an existence dependent
relationship set. An entity type which is not a
weak entity type is called a regular entity type.
A relationship set which involves weak entity
type(s) is called a weak relationship set. A
relationship set which does not involve weak
entity type(s) is called a regular relationship
set. If an entity in one entity type El is also

in another entity type E2, we call the
relationship between these two entity types El and
E2 an ISA relationship set. Clearly the
identifiers of the two entity types of an ISA
relationship set must be defined on the same value
set. If an entity type is equal to the union (or
intersection) of some other entity types, such a
relationship is called a UNION (or INTERSECT)
relationship. If an entity type can be
partitioned or decomposed into several other
entity types, such a relationship is called a
DECOMPOSE relationship. Note that all the special
relationship sets such as existence dependent,
identifier dependent, ISA, UNION, INTERECT,
DECOMPOSE relationships are weak relationship sets
and with no attributes associated.

The structure of a database organized
according to the entity-relationship approach can
be represented by a diagrammatic technique called
an entity-relationsip diagram (ERD) [Chen 761. A
regular entity type is represented by a rectangle,
labelled by its name. A weak entity type is
represented by a double-rectangle, labelled by its
name. A relationship set is represented by a
diamond, labelled by its name. For existence
dependent and identifier dependent relationship
sets, the diamond boxes are also labelled with the
symbols E and ID respectively. For ISA, UNION,
INTERSECT, and DECOMPOSE relationship sets, the
corresponding diamond boxes are labelled by ISA,
UNION, INTERSECT, and DECOMPOSE respectively.

Arcs are used to connect a relationship set
and the entity types which participate in the
relationship set. For existence dependent and
identifier dependent relationship sets, arrows are
used to join the diamond boxes to the weak entity

types instead of arcs. Arrows are also used in
the ISA, UNION, INTERSECT, and DECOMPOSE
relationship sets. An arc which joins a
relationship set and an entity type may be
labelled by a role name if required. If a
relationship set involves only two entity types,
and the relationship is a one-to-one, one-to-many,
many-to-one, or many-to-many mapping, then the two
arcs which join the two entity types and the
relationship set are labelled by '1' and *l', '1'
and 'n', *n* and 'l', or *n' and 'm' respectively.
Sometimes, we do not label the arcs of a
many-to-many relationship set in order to simplify
the ER diagram. It is difficult to represent all
the functional dependencies among all the entity
types in a relationship set which involves more
than two entity types.

Figures 3.1 to 3.4 show 4 different
relationship sets which involves 3 entity types,
namely A, B, and C. The relationship set in
Figure 3.1 shows no functional dependency defined
amongst the three entity type. Figure 3.2 depicts

a functional dependency AB--+C, where A, g, C are
used as the identifiers of the entity types A, B,
and C respectively. Figure 3.3 represents the
functional dependency A--%BC and Figure 3.4
represents the functional dependencies A--)BC,
B-+AC, and C--+AB. Note that it is very
difficult to represent a relationship set which
involves three entity types A, B, and C with

26

functional dependencies AB--+C and AC--+B. We can
describe such a relationship set by Figure 3.2
with a constraint (functional dependency) AC--9B.

Since we do not need to use the concept of
value sets of attributes in our discussion, we
will not represent value sets in ER diagrams.
Attributes of entity types and relationship sets
are represented by circles, labelled by attribute
names. Arrows are used to connect entity types or
relationship sets and their many-to-one
attributes. Double sided arrows, f-9, are used to
connect entity types or relationship sets and
their one-to-one attributes. Double arrows, f-3)
and --+9, are used to connect entity types or
relationship set and their one-to-many and
many-to-many multivalued attributes respectively.
A key of an entity type which consist of more than
one attribute are indicated by joining the
attributes of the key with a line. Figure 3.5
depicts an entity type E with attributes A, B, C,
D, E, F. A and BC are keys of E; D, E, F are
many-to-one, many-to-many and one-to-many
attributes respectively.

Figure 3.6 shows a ER diagram of a EMP-PROJ
database. Work is a relationship set defining a
many-to-many mapping between the two entity types
EMPLOYEE and PROJECT. EMPLOYEE has three single
valued attributes namely, EMP#, NAME and SALARY,
and one multivalued attribute QUALIFICATION. EMP#
is its identifier. PROJECT has 3 single valued
attributes namely, PROJ#, P-Name, and BUDGET.
PROJ# is the identifier. The relationship set
WORK has a single valued attribute PROGRESS.

4. A Normal Form For ER Diagrams

In this section, we define what is meant by a
normal form ER diagram (NF-ER diagram). The
objectives for defining such a normal form for ER
diagrams are :

(1) to capture and preserve all the semantics of
the real world of a database which can be
expressed in term of functional, multivalued, and
join dependencies, by representing them explicitly
in the ER diagram.

(2) to ensure that all the reiationships
represented in the ER diagram are non-redundant,
i.e. none-of the relationships can be derived
from other relationships.

(3) to ensure that all the relations translated
from the ER diagram are in good normal form,
either in 3NF or 5NF.

A ER normal form is defined in [Chung 811. It is
a very restrictive definition and has several
drawbacks. First, it does not allow the existence
of multivalued attributes; all multivalued
attributes have to be converted to relationship
sets. This defeats the objective stated in (1)
above, namely to preserve the semantics of the
real world in a ER diagram. Second, it does not
allow the existence of non-trivial functional
dependencies whose left sides do not include one

identifier of some entity type or relationship
set. This implies that no one-to-one or
one-to-many attributes are allowed for
relationship sets. This also implies that all
relations translated are in BCNF. This
contradicts the fact that there are 3NF relations
which cannot be decomposed into BCNF if we require
a database to cover the given set of functional
dependencies. Third, the concept of composite
attribute is not included in the paper [Chung 811.
In this section, we enhance the definition of a
ER-NF [Chung 811 by allowing the existence of
multivalued attributes, composite attributes, and
one-to-one and one-to-many attributes for
relationship sets in order to remove the above
mentioned drawbacks. First, we define what are
meant by entity type normal form and relationship
set normal form. Then we give a precise
definition for an ER normal form diagram.

Definition 4.1 Let E be an entity type and K be
its identifier. The
set of basic dependencies of E, BD(E), is defined
as follows :

(1) For each many-to-one attribute A of E, K--+A
is a FD in BD(E).
(2) For each one-to-many multivalued attribute A
of E, A--+K is a FD in BD(E).
(3) For each one-to-many and many-to-many
multivalued attribute A of E, K--++A is a MVD in
BD(E).
(4) For each key Kl of E which is not the

identifier of E, K-+Kl and Kl--9K are FDs in
BD(E).
(5) No other FDs or MVDs are in BD(E).

Informally, the set of basic dependencies of
an entity type E are the functional dependencies
and multivalued dependencies of E which are
explicitly shown in the ER diagram.

Definition 4.2 An entity type E of a ER diagram is
said to be in entity normal form (E-NF) if all
functional dependencies and multivalued
dependencies which only involve attributes of E ,
can be derived (or implied) from the set of basic
dependencies of E, BD(E),by using the Armstrong's
axioms for functional dependencies and inference
rules for multivalued dependencies [Beeri 771.

In Figure 4.1, the set of basic dependencies
of the entity type EMPLOYEE consists of the
following dependencies :

E# --+SSN, NAME, SEX
SSN -+ E#
Et --++SKILL
E# --%'DEGREE

where E# is the identifier of EMPLOYEE and SSN is
a key of EMPLOYEE.

EMPLOYEE is in E-NF because there is no other
dependencies which only involve attributes of E
and cannot be derived from the set of basic
dependencies of EMPLOYEE.

In figure 4.2 the entity type SUPPLIER has a

21

many-to-one composite attribute ADDRESS which
consists of three attributes, namely, CITY,
STREET, and ZIP. The entity type SUPPLIER is not
in E-NF because the two functional dependencies :
CITY,STREET--9ZIP and ZIP--XITY are not in the
set of basic dependencies of the entity type. A
method to convert such a non E-NF entity type to a
E-NF will be presented in section 5.

Lemma 4.1 Let E be an entity type. If E is in
E-NF, then the following statements hold.

(1) Each single valued attribute A of E is fully
dependent on each key'of E which does not contain
A, and on each one-to-many attribute of E.
(2) All components of any composite single valued
attribute A of E are fully dependent on each key
of E which does not contain 8.
(3) There is no non-trivial functional
dependencies defined among components of any
composite attribute of E.
(4) For each one-to-any attribute A of E and for
each many-to-many attribute B of E, A--++B is a
strong MVD.
(5) For each key K of E and for each multivalued
attribute A of E, K--+)A is a strong MVD.
(6) No multivalued attribute of E iS
multi-dependent on a part of a key of E.
(7) No component of a composite multivalued
attribute of E is multi-dependent on the
identifier of E.

Lemma 4.2 An entity type E of an ER diagram is in
E-NF if and only if it satisfies the following
conditions:

I:) Any non-trivial canonical form full dependency
.e. the right side of the FFD is a single

attribute) A--jB which only involves attributes
and components of composite attributes of E
implies

(a) A is a key of E or A is a one-to-many
attribute of E, and
(b) B is a single valued attribute or B is a
component of a composite single valued
attribute of E.

(2) Any strong MVD A--9B which only involves
attributes and components of composite attributes
of E and in which B is not multi-dependent on any
proper subset of A and no proper subset of B is
multi-dependent on A, implies

(a) A is a key of E or A is a one-to-many
attribute of E , and
(b) B is a multivalued attribute of E.

Lemmas 4.1 and 4.2 can be proved directly
using the definition of an E-NF entity type,
Armstrong's axioms for functional dependencies,
and inference rules for multivalued dependencies
[Beeri 77,Ullman SO].

Definition 4.3 Let R be a relationship set with
identifier K and F be the associated set of
functional dependencies which only involve the
identifiers of the set of entity types
participating in R. The set of basic dependencies
of R, denoted by BD(R),is defined as follows:
(1) For each one-to-one attribute A of R, K--+A

and A-9K are FDs in BD(R).
(2) For each many-to-one attribute A of R, K--+A
is a FD in BD(R).
(3) For each one-to-many multivalued attribute A
of R, A-9K is a FD in BD(R).
(4) For each one-to-many and many-to-many
multivalued attribute A of R, K--HA is a MVD in
BD(R).
(5) Let A--+B be a full dependency in F such that
A is a set of identifiers of entity types
participating in R , and B is an identifier of
some entity type participating in R. If A is a
key of R or B is part of a key of R then A-->B is
a FD in BD(R).
(6) No other FDs or MVDs are in BD(R).

Definition 4.4 A relationship set R of a ER
diagram is said to be in relationship normal form
(R-NF) if all functional dependencies and
multivalued dependencies which only involve
attributes of R and identifiers of entity types
participating in R are implied by the set of
dependencies of R, i.e. BD(R).

Informally speaking, the set of basic
dependencies of a relationship set R includes
those functional dependencies and multivalued
dependencies which involves attributes of R and
are explicitly shown in the ER diagram. Item 5 of
the definition of the basic set of dependencies of
a relationship set is to ensure that all relations
which correspond to a R-NF relationship set are at
least in 3NF.

Figure 4.3 shows a relationship set R defined
on three entity types A, B, and C with attributes
E, F, and G. If the set of functional
dependencies, which only involves identifiers of
the entity types of R, only consists of the
functional dependency A--9BC, where A, B, and C
are used as the identifiers of the entity types
A,B and C respectively, then the set of basic
dependencies of R contains the following
dependencies:

A--+EG, G--+A, A--++F, A--+BC.

Note that R is R-NF if there is no FDs or MVDs
which involves the attributes E, F, G and cannot
be derived from DB(R). Note that if R is
associated with another FD B--X, then R is not in
R-NF since B-X cannot be derived from DB(R).

Lemma 4.3 Let R be a regular relationship set and
BD(R) be the set of basic dependencies of R. If R
is in R-NF, then the following statements hold:
(1) All many-to-one attributes of R are fully
dependent on each key, each one-to-one attribute
and each one-to-many attribute of R.
(2) All components of any composite single valued
attribute A of R are fully dependent on each key
of R, each one-to-many attributes and each
one-to-one attribute of R which is not equal to A.
(3) There is no non-trivial functional
dependencies defined among components of any
composite attribute of R.
(4) For each one-to-many (or one-to-one) attribute
A of R and for each many-to-many attribute B of R,
A--++B is a strong MVD.

28

(5) For each key K of R and for each multivalued
attribute A of R, K--+)A is a strong MVD.
(6) No multivalued attribute of R is
multi-dependent on a part of a key of E.
(7) No component of a composite multivalued
attribute of R is multi-dependent on the
identifier of E.

This lemma is similar to lemma 4.1.

Lemma 4.4 Let R be a regular relationship set and
BD(R) be the set of basic dependencies of R. R is
in R-NF if and only if it satisfies the following
conditions :

(1) Any non-trivial full dependency A--+B which
only involves attributes, components of composite
attributes, and identifiers of entity types
participating in R, and in which B is an attribute
or a component of a composite attribute of R,
implies

(a) A is a key of R, or A is a one-to-many or
one-to-one attribute of R, and
(b) B is a single valued attribute or a
component of a composite single valued
attribute of R.

(2) Any non-trivial full dependency A--+B which
only involves attributes of identifiers of entity
types participating in R and in which B is a
single attribute, implies either A is a key of R
or B is part of a key of R.

(3) Any strong MVD A--P)B which only involves
attributes, components of composite attributes,
and identifiers of entity types participating in R
and in which B is not multi-dependent on any
proper subset of A and no proper subset of B is
multi-dependent on A, implies

(a) A is a key of R, or A is a one-to-one or
one-to-many attribute of R, and
(b) B is a multivalued attribute of R.

Lemma 4.4 is similar to lemma 4.2 except the
extra condition (2) in lemma 4.4.

(b) R is not equal to the join of any three
other relationship sets

Informally speaking, the first condition of
the definition for a normal form ER diagram is
required in order to conform to the universal
relation assumption. The second condition of the
definition ensures that all relations generated
for all entity tyees are in 5NF. The fourth
condition of the definition ensures that the ER
diagram has captured all the relationships and
dependencies of the given database. The second
and fifth conditions ensure that all relations
generated for all regular relationship sets are
either in 3NF or 5NF and that there is no relation
in BCNF but not in 4NF or 5NF. In section 5, we
will show that all relations generated for a
normal form ER diagram are in good normal form.

5. Translation of a Normal Form ER diagram to a
relational database

In this section, an algorithm is given to
translate a normal form ER diagram to a set of
relations. Such a normal form ER diagram may
consist of composite attributes, recursive
relationship sets, weak entity types, and special
types of relationship sets, such as existence
dependent, identifier dependent, ISA, UNION,
INTERSECT, and DECOMPOSE relationship sets. All
the relations produced by the algorithm are either
in 3NF or 5NF. Since we adopt the concept of
covering the given set of functional dependencies
in the normalization process, some of the
relations produced are in 3NF and cannot be
decomposed into BCNF. Since we also adopt the
concept of the universal relation assumption, role
names are required for some entity types
participating in some relationship sets and the
concept of ISA in relational model is used to link
the role names and the identifiers of the
corresponding entity types. In fact, this
algorithm can also be used to translate any ER
diagram, but the relations produced may not be in

Defi nition 4.5 Let D be an entity relationship
diagram. The set of basic dependencies of D,
denoted by BD(D), is defined as the union of the
sets of dependencies of all entity types of D and
the sets of basic dependencies of all relationship
sets of D.

good normal form. It is more comprehensive and
precise than any other translation methods given
in [Chung81, Dumpala 81, Hwang 81, Jajodia 83,
Melkanoff 80, Morgenstern 81, Ng 80, Wong 801.

Algorithm 1: Translate a normal form ER diagram
to a set of relations.

Definition 4.6 An entity relationship diagram D is
in normal form (ER-NF) if it satisfies the

Step 1: ~ {Assign role names to certain arcs in

following conditions : order to conform to the universal relation
assumption]

(1) All attribute names are distinct and of
different semantics.
(2) Every entity type in the ER diagram is in
E-NF.
(3) Every relationship set in the ER diagram is in
R-NF.
(4) All relationships and dependencies are implied
by the set of basic dependencies of D.
(5) Every relationship set R with no associated
attribute defined on it, satisfies the following
conditicns :

(a) R is not equal to the join of any two
other relationship sets, and

For each cycle in the ER diagram, we assign
each arc which connects an entity type and a
relationship set in the cycle, a unique role name
if there is no role name assigned.

{Here, a cycle in an ER diagram is defined as a
cycle in the corresponding graph of the ER diagram
in which all entity types and regular relationship
sets (i.e. except those special relationships:
existence dependent, identifier dependent, ISA,
UNION, INTERSECT, and DECOMPOSE relationship sets)
are nodes in the graph and arcs which connect

29

entity types and relationship sets are edges in
the graph.}

Step 2: (Assign identifiers for entity types
involved in special relationship such as ISA,
UNION, INTERSECT, DECOMPOSE}

(1) If entity types A and B are involved in a ISA
relationship such that A ISA B, and K is the
identifier of B, then we assign a unique
identifier name say Kl, for A and record the
constraint: Kl ISA K.

(2) If entity types A and B are involved in a
UNION (or DECOMPOSE) relationship such that A is a
union of (or A can be decomposed to) B and some
other entity types, and K is the identifier of A,
then we assign a unique identitifer name, say Kl,
for B and record the constraint: Kl ISA K.

(3) If entity types A and B are involved in an
INTERSECT relationship such that A is the
intersection of B and some other entity types, and
K is the identifier of B, then we assign a unique
identifier name, say Kl for A and record the
constraint: Kl ISA K.

{Generate relations for each entity type} Step 3:
For each entity type E (either weak or

regular entity type) in the ER diagram, we
construct the following relations for E.

(1) All the keys of E and all the many-to-one
single valued attributes form a relation. The
keys and primary key of this relation are the keys
and identifier of E respectively. We call this
relation a type E-l relation.

(2) Each many-to-many multivalved attribute and
the identifier of E form form a relation. This
relation is an all key relation, i.e. all the
attributes of the relation form the key of the
relation. We call this relation a type E-2
relation.

(3) Each one-to-many attribute and the identifier
of E form a relation and the key of this relation
is the one-to-many attribute. We call this
relation a type E-3 relation.

Note that we replace all composite attributes of E
by their components in all the relations
generated.

Step 4: {Translate each regular relationship set
to relations}

For each regular set R, we construct the
following relations for R:

(I) All the identifiers of the entity types
participating in R and all the many-to-one and
one-to-one attributes form a relation. The keys
and and the one-to-one attributes of R are keys of
this generated relation. The primary key of this
relation is the identifier of R. If A--)B is a
non-trivial canonical form full dependency in the
set of dependencies of R and A is not a key of R,
then we record A--9B as a constraint of this

relation. We call this relation a type R-l
relation.
(2) Each many-to-many attribute of R and the
identifier of R form an all key relation. We call
this relation a type R-2 relation.

(3) Each one-to-many attribute A of R and the
identifier of R form a relation and A is the key
of the relation. We call this relation a type R-3
relation.
Note that if an arc which joins an entity type
(with identifier K) and R is labelled by a role
name, say N in step 1, we replace the occurrences
of K in relations generated and the functional
dependencies constraints generated (if any by (1)
of this step) by the role name N, and record the
constraint: N ISA K. We also replace all
composite attributes in the relations by their
components. Note that there is no relation
generated for any special relationships. Instead,
constraints are generated as described in step 2
of the algorithm.

Example 5.1 Figure 5.1 is a normal-form ER diagram
which has 5 entity types, 3 regular relationship
sets, and one ISA relatioship. The identifier Cl
of entity type C is assigned in step 2. of
algorithm 1. The roles name AX, AY, BX, BY are
assigned by step 1. Assume that the relationship
set R3 has 2 functional depdendencies, namely
Eb ,D# --9 A# and Ad --9 D#. Clearly the keys of
R3 are {E#,DI} and {A#,Eb} and we designate
{E#,D#} as the identifier of R3. The set of
relations generated by algorithm 1 consists of the
followings

(1) relations of entity type A:
AEl(@ , Al , A2)
AE3(& , A#)

(2) relations of entity type B:
BEZ(Bu.
BEZ'(B// , 82)

(3) relation of entity type C:
CEl(C@ , Cl)
constraint: C# ISA B#

(4) relation of entity type D:
DEl(Q& , Dl , D2)

Note that Dl and D2 are components of a
composite attribute.

(5) relation of entity type E:
EEl(E& , El , E2 , E3)
where E# is the primary key.

(6) relation for relationship set Rl:
RlRl(AX. BX) AX ISA Aii'
constraints: , BX ISA Bi/

(7) relations for relationship set R2:
RZRl(AY, BY, S2)
R2R2(AY, BY, S3)
constraints: AX ISA Ad , AY ISA At, BX ISA
Bt, BY ISA Bt

(8) relations for relationship set R3

30

Keys are {D#,E#},{A#,E#]
{D#,E#}
Constraint: Ai/ --3 D#

Note that relation R3Rl
BCNF. There is no relati
relationship ISA; it is
constraint: Ci/ ISA B/I.

It is obvious that

and primary key is

is in 3NF but not
on corresponding to
translated to the

the relations and
constraints generated by algorithm 1 cover the
given set of functional dependencies and
relationship sets of the given normal form ER
diagram. In the following two theorems, we show
that all these relations are either in 3NF or 5NF.

Theorem 1: The relations generated for each of
the entity types of a normal form ER diagram by
step 3 of algorithm 1 are in 5NF.

Proof: Let E be an entity type of the given
normal form ER diagram. From algorithm 1, there
are three types of relations generated for E.

(1) Let Sl be a type E-l relation of E, i.e. Sl
consists of all the keys and many-to-one single
valued attribute of E. By lemma 4.1 each single
valued attribute is fully dependent on each key of
Sl, therefore Sl is in ZNF. Let A--9B be a
non-trivial canonical form full dependency in Sl.
By lemma 4.2, A is a key of E. Hence Sl is in
BCNF. Also, since there is no strong multivalued
or join dependency involved in Sl, Sl is also in
4NF and 5NF.

(2) Let S2 be a type E-2 relation of E, i.e. S2
consists of one many-to-many multivalued attribute
and the identifier of E. Since E is in E-NF, by
lemma 4.2, there is no non-trivial function
dependency or non-trivial multivalued dependency
in S2. Hence S2 in 4NF. Clearly there is no join
dependency in 52, therefore S2 is also in 5NF.
(3) Let 53 be a type E-3 relation of E, i.e. S3
consists of an one-to-many attribute A and the
identifier of E. Clearly A is a key of S3. Since
E is in E-NF, by lemma 4.2 there is no non-trivial
full dependency with the left side not equal to A
in S3. Hence S3 is in BCNF. Clearly there is no
MVD or JD in S3, therefore 53 is also in 4NF and
5NF.

From the above discussion, we have proved
that all relations generated by step 3 of
Algorithm 1 are in 5NF.

Theorem 2: The relations generated for each of
the relationship sets of a normal form ER diagram
by step 4 of algorithm 1 are either in 3NF or 5NF.

Proof: As we have discussed before, we do not
need to generate relations for the special
relationships such as existence dependency,
identifier dependency, ISA, UNION, INTERSECT, and
DECOMPOSE relationships. Let R be a relationship
set other than the special relationships and BD(R)
be the set of basic dependencies of R. We have
the following three cases:

Case 1: R has no associated attribute and there

is no non-trivial functional dependency defined
among the identifiers of the entity types
participating in R.

Clearly algorithm 1 only generates a type R-l
relation, say S, for R which consists of all the
identifiers of the entity types participating in
R. Clearly S is an all key relation. By the
definition of a normal form ER diagram, R is not
equal to the join of any two or three other
relationship sets and all relationships are
implied by the set of basic dependencies of D.
Therefore there is no non-trivial multivalued
dependency or join dependency in S. Hence S is in
5NF.

Case 2: R has no associated attribute and there
are non-trivial functional dependencies defined
among the identifiers of the entity types
participating in R, ie. BD(R) is not empty.

Clearly algorithm 1 only generates a type R-l
relation, say S, for R which consists of all the
identifiers of the entity types participating in
R. Since R is in R-NF, by lemma 4.3, all the
non-prime attributes are fully dependent on each
key of R, and therefore S is in 3NF. Note that if
there is no non-trivial full dependency, say A--+B

in BD(R) such that A is not a key of R then there
is no non-trivial full dependency A--+B in S such
that A is not a key S. Therefore S is in BCNF.
By item 5 of the definition of a normal form ER
diagram, there is no non-trivial strong
multivalued dependencies or join dependency in S,
therefore S is 5NF.

Case 3: R has associated attributes. In this
case, we have to consider the three types of
relations possibly generated for R.

(1) Let Sl be a type R-l relation of R, i.e. Sl
consists of the identifiers (or role names) of the
entity types participating in R and all the
many-to-one and one-to-one single valued
attributes of R. If R has no single valued
attribute associated with it, then Sl is either
the same as the relation in case 1 or case 2.
Here we assume that S has some single valued
attributes associated with it. Clearly the keys
of Sl are the keys of the relationship set R and
all the one-to-one attributes of R. Since R is in
R-NF, by lemma 4.3, all the many-to-one attributes
of R are fully dependent on each key of R and each
one-to-one attribute of R. This means that all
non-prime attributes of Sl are fully dependent on
each key of Sl and therefore Sl is in 2NF. By
lemma 4.4, there is no non-trivial full dependency
A-+B in Sl such that B is a non-prime attribute
and A is not a key of Sl. Therefore there is no
transitive dependency in Sl. Hence Sl is in the
3NF. Using the similar argument stated in case 2,
if there is no non-trivial full dependency A--+B
in BD(R) such that A is not a key of R then Sl is
in 5NF; otherwise Sl is not in BCNF but in 3NF.

(2) Let S2 be a type R-2 relation of R, i.e. S2
consists of a many-to-many attribute and the
identifier of R. Since R is in R-NF, by lemma
4.4, there is no non-trivial functional dependency

31

or strong multivalued dependency in S2. Hence S2
is in 4NF. Clearly there is no join dependency in
s2. Therefore 52 is also in 5NF.

(3) Let S3 be a type R-3 relation of R, i.e. S3
consists of an one-to-many attribute A and
identifier of R. Clearly A is a key of S3. Since
R iS in R-NF, by lemma 4.4, there is no
non-trivial full dependency with the left side not
equal to A in S3. Hence S3 is in BCNF. Clearly
there is no MVD or JD in 53, therefore S3 is also
in 4NF and 5NF.

From the above discussion, we have shown that
all relations generated by step 4 of algorithm 1
are either in 3NF or 5NF.

Theorem 3: All the relations generated for a
normal form ER diagram by algorithm 1 are either
in 3NF or 5NF.

Proof: The proof follows directly from theorems 1
and 2.

6. Converting an ER diagram to a normal form ER
diagram

In this section, guidelines and steps for
converting an ER diagram to a normal form ER
diagram are present. We will not discuss each
step in detail. A detailed algorithm for the
converting process and the proof for the
correctness of the algorithm will be presented in
another paper by the author. Basically, the
converting process is based on the four lemmas
described in section 4 and the definition of a
normal form ER diagram. The basic steps for the
converting process are as follows:
Step 1: Ensure that all attribute names are
distinct and of different semantics.
Step 2: Convert any non E-NF entity type to E-NF.
We remove all undesirable functional dependencies
and/or multivalued dependencies by introducing new
entity types and relationship sets.
Step 3: Convert any non R-NF relationship set to
R-NF. We remove all undesirable functional
dependencies, multivalued dependencies, and/or
join dependencies either by introducing new entity
types and relationship sets or by splitting the
relationship set into smaller ones.
Step 4: Remove those relationship sets which have
no associated attributes and is equal to the join
of two or three other relationship sets.

Below we discuss each step in more detail.

6.1 STEP 1

Step 1 is necessary in order to ensure that
the translated relations conform to the universal
relation assumption. To ensure that all attribute
names are unique is trivial. Now if there are two
attributes, say A and B, are of the same semantic
meaning (ie. refer to the same thing). There are
4 possible cases:
(1) A and B are attributes of two entity types,
(2) A and B are attributes of two relationship

sets,
(3) A is an attribute of an entity type, and B is

an attribute of a relationship type,
(4) A is an attribute of a relationship set and B
is an attribute of an entity type.

Let us consider the first case and assume
that A and B are attributes of entity type El and
E2 respectively. Note A and B can be a
one-to-many, many-to-many, or many-to-one
attribute, a key or part of a key, or even the
identifier or part of the identifier of the entity
types El and E2 respectively. We can't have a
single converting rule for all the cases, although
the main idea is the same: replace one attribute
by another one and create a new entity type for
them if necessary. Figures 6.1 and 6.2 show two
of the cases. Only relevant information are shown
in the figures.

6.2 Convert a non E-NF entity type to E-NF

The results in lemmas 4.1 and 4.2 are used to
test whether a given entity type E is in E-NF.
This implies we need to test the following
conditions:

(1) Each single valued attribute A is fully
dependent on each key of E which does not contain
A.
(2) All components of any composite Single valued
attribute A are fully dependent on each key of E
which does not contain A.
(3) There is no non-trivial functional

dependencies defined among components of any
composite attribute of E.
(4) No multivalued attribute of E is

multi-dependent on a part of a key of E.
(5) No component of a composite many-to-many
attribute of E is multi-dependent on the
identifier of E.
(6) No component of a composite many-to-one
attribute determines the identifier of E.
(7) Condition 1 of lemma 4.2.

If an entity type does not satisfy any of the
above conditions, we have to remove some of the
attributes involved and create some new entity
types and relationship sets. Figures 6.3 to 6.5
show three of the many possible cases.

6.3 Convert a non R-NF relationship set to R-NF

'lne results in lemmas 4.3 and 4.4 are used to
test wnetner a regular relationsnlp set K IS in
kc-Nur, i.e. we 11eeu to Lest the L"ll"WlIqg
COnaltlOns:

(I) Each single valued attribute of R is fully
dependent on each key of R
(2) All components of any composite single valued
attribute are fully dependent on each key of R
(3) There is no non-trivial functional
dependencies defined among components of any
composite attribute of R
(4) No multivalued attribute of R is
multi-dependent on a part of a key of R
(5) No component of a composite multivalued
attribute of R is multi-dependent on the
identifier of R
(6) No component of a composite many-to-one or

32

one-to-one attribute determines the identifier or
E
(7) Condition 1 of lemma 4.4
(8) Condition 2 of lemma 4.4

Note that the first seven conditions are
similar to the seven conditions in section 6.2.
If a relationship set does not satisfy any of the
above conditions, we have to remove some of the
attributes involved and create some new entity

types and relationship sets, or split the
relationship set into two or more smaller
relationship sets. Figures 6.6 to 6.8 show three
of the many possile cases.

6.4 Remove redundant relationships

If a relationship set R which has no
associatea attribute and is equal to the join of
two or three other relationship sets, then clearly
the relation generated for R will not be in 4NF or
5NF. We have to remove this type of relationship
sets from ER diagrams. In fact, given an ER
diagram and a set of dependencies associated with
the ER diagram, we can only achieve the following:

Given a relationship set R with no
associated attribute, we can detect the
existence of two or three relationship
sets such that the set of entity types
participating in R is equal to the union
of the entity types participating in the
other two or three relationship sets.

To detect whether the join of two or three
relationship sets is equal to R or not, we require
more information about the semantic meaning of the
relationship sets which can be provided by the

database designer or database owner.

7. Conclusion

In this paper, we first defined the concept
of a basic set of dependencies of an entity type
and a relationship set, a normal form entity type,
and a normal form relationship set. We then
defined what is meant by a normal form ER diagram.
A normal form ER diagram may consist of composite
attributes, multivalued attributes, weak entity
types, and special relationships such as existence
dependent, identifier dependent, ISA, UNION,
INTEKSECT, DECOMPOSE relationships. The
definition for a normal form ER diagram gives the
necessary and sufficient condition for ensuring
all relations of the corresponding ER diagram are
either in 3NF or 5NF. An algorithm was given to
translate a normal form ER diagram to a set of
relations which conforms to the universal relation
assumption, and a set of constraints which
consists of some functional dependencies and a set
of ISA relationships. We have proved that all
relations are in 3NF or 5NF. We also gave a
method to convert an ER diagram to a normal form
ER diagram. Further research to simplify and
reduce the number of cases to be considered in
order to convert a ER diagram to normal form is
required.

References

[Atzeni 821 P Atzeni and D S Parker Jr,
Assumptions in Relational Database Theory, ACM
Symposium on Principles of Database Systems, Los
Angeles 1982.

[Beeri 771 C Beeri, R Fagin, and J H Howard, A
Complete Axiomatization for functional and
multivalued dependencies in database relations,
3rd ACM SIGMOD Int. Conf. Management of Data,
1977.

[Bernstein 761 P A Bernstein, Synthesizing third
normal form relations from functional
dependencies, ACM Transaction on Database Systems
1 4, 1976.

[Chen 761 P P Chen, The entity-relationship model:
Toward a unified view of data, ACM Transaction on
Database Systems 1 1, 1976.

[Codd 701 E F Codd, A Relational Model of Data for
Large Shared Data Banks, CACM 13, 6, June 1970,

377-387

[Codd 721 E F Codd, Further Normalization of the
Data Base Relational Model, Data Base Systems,
edit by Randell Rustin, Prentice Hall 1972.

[Chung 811 Ilchoo Chung, Fumio Nakamura, P P Chen,
A Decomposition of Relations Using the Entity
Relationship Approach, Entity-Relationship
Approach to Information Modeling and Analysis, P P
Chen (ed.), ER Institute, 1981.

[Date 811 C J Date, An Introduction to Database
Systems, 3rd edition, Addison-Wesley, 1981.

[Dumpala 811 Surya R Dumpala and Sudhir K Arora,
Schema Translation using the Entity-Relationship
Approach, Entity-Relationship Approach to
Information Modeling and Analysis, P P Chen (ed.),
ER Institute, 1981.

[Fagin 771 R Fagin, Multivalued Dependencies and a
new Normal Form for Relational Databases, ACM
Transaction on Database Systems 2 3, Sept 1977.

[Hwang 811 Hai-Yann Hwang and Umeshwar Dayal,
Using The Entity- Relationship Model for
Implementing Multi-Model Database Systems,
Entity-Relationship Approach to Information
Modeling and Analysis, P P Chen (ed.), ER
Institute, 1981.

[Jajodia 831 Sushi1 Jajodia and Peter A Ng, On
Representation of Relational Structures By
Entity-Relationship Diagrams, Entity-Relational
Approach to Software Engineering, C G Davis, S
Jajodia, P A Ng and R T Yeh (eds) North Holland,
1983.

[Ling 811 T W Ling, F W Tompa and T Kameda, An
improved third normal for relational databases,
ACM Transaction on Database Systems 6 2, June
1981.

33

[Melkanoff SO] Michel A Melkanoff and Carlo
Zaniolo, Decompositon of Relations and Synthesis
of Entity-Relationship Diagrams,
Entity-Relationship Approach to Sytems Analysis
and Design, P P Chen (ed) North-Holland Pub Co.,
1980

[Morgenstern 811 Matthew Morgenstern, A Unifying
Approach for Conceptual Schema to Support Multiple
Data Models, Entity-Relationship Approach to
Information Modelling and Analysis, P P Chen (ed),
ER Institue, 1981

[Ng SO] Peter A Ng and Jean F Paul, A Formal
Definition of Entity-Relationship Models,
Entity-Relationship Approach to Systems Analysis
and Design, P P Chen (ed), North-Holland Pub.
Co., 1980.

[Nicolas 781 J M Nicolas, Mutual dependencies and
some results on undecomposable relations, Proc 4th
International conference on Very Large Data Bases,
1978.

[Ullman SO] J D Ullman, Principles of Database
Systems, Computer Science Press, 1980.

[Wong SO] Eugene Wong and Randy H Katz, Logical
Design and Schema Conversion for Relational and
DBTG Databases, Entity-Relationship Approach to
Systems Analysis and Design, P P Chen (ed),
North-Holland Pub. Co., 1980.

A 11
z m H h C

Figure 3.1

A

n 2L 1 1
B c

A
n

c2L

m 1

H c

F1 ure 3.:

A

1 2L 1 1

B C

Figure 3.3 Figure 3.4

Figure 3.5 An entity type with its attributes

Figure 3.6

Figure 4.1 An entity type in
E-NF

Figure 4.2 An entity type not in
E-NF

34

Figure 4.3

Figure 5.1 -

Figure 6.1 A and B a~-+? of the same SemantiC

Figure 6.2 A and M are of the same

Figure 6.4 A ---jc B in E and A is part of a key of E.
Constraint generated is E#---+ AD.

Figure 6.5 A + C and A is part of the identifier of E.
E becomes a weak entity type and the identifier
is still Al?.

li=c&?&kp
C G

Figure 6.6 AH --f D

ag p%g

c D

Figure 6.1 C 4 D in R

Figure b.8 AD +

A B
" m

A n

I w K y-i-J
F m 1

G
D

d
F in R

Figure 6.3 A 3 B in a composite attribute of E

35

