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Abstract 

Contrary to popular belief, relation schemes in 
good classical normal forms are not necessarily devoid of 
redundancies. This arises from the fact that classical data 
dependencies are oblivious to important constraints which 
may exist between sets of attributes occuring in different 
relation schemes. In this paper, we study how inclusion 
dependencies (INDs) can be used to model these con- 
straints leading to the design of better database schemes. 
A new normal form, called Inclusion Normal Form (IN- 
NF), is proposed. Unlike classical normal forms, the IN- 
NF characterizes a database scheme as a whole rather 
than the individual relation schemes. We show that a 
database scheme in IN-NF is always in Improved 3NF, 
while the converse is not true. Finally, we demonstrate 
how classical relational design framework may be 
extended to faciliate the design of database schemes in 
IN-NF. 

1. Introduction 

Within the last two decades, a number of data 
dependencies [14] have been introduced to facilitate the 
design of "good" relation schemes. The ones which have 
been studied extensively include functional dependencies 
(FDs), multivalued dependencies (MVDs), and join 
dependencies (JDs). These classical data dependencies 
gave rise to the definition of a number of normal forms. A 
relation scheme is said to be "good" ff it is in Q normal 
form, where Q can he "third", "Boyce-Codd", "fourth", or 
"fifth". By designing relation schemes in good normal 
forms, we eliminate redundancies which may be present 
in a relation and circumvent the problem of updating 
anomalies [24]. Ling et al. [16] pointed out that classical 
normal forms failed to identify redundancies which may 
exist on a global scale. To address this problem, an 
Improved Third Normal Form (Improved 3NF) was intro- 
duced. It has been shown that if a database scheme D is 
in Improved 3NF, then each of the relation schemes in D 
is also in Codd 3NF. Furthermore, the database scheme as 
a whole is devoid of redundancies (with respect to the set 
of FDs which hold in the database). 

It has been suggested that of all the data dependen- 
cies which have been proposed, FDs and inclusion depen- 
dencies (INDs) are probably the two most common kinds 
of constraints in a relational database [2]. Many research- 
ers however held the notion that while INDs are impor- 
tant constraints in a database, they are irrelevant as far as 
logical database design is concern [18]. Thus it appears 
that with the introduction of the Improved 3NF, the logi- 
cal database design problem is well-solved, at least for 
most practical purposes. 

In this paper, we suggest that the earlier conclusion 
is fallacious. This is because INDs have an important 
impact on the classical design goal of minimality. Since 
classical normal forms (including the Improved 3NF) 
have failed to consider the effects of INDs on the struc- 
ture of a database, they are inadequate in characterizing a 
database scheme which is truly devoid of redundancies. 
In consideration of the above, we propose a new normal 
form, called Inclusion Normal Form (IN-NF), which 
accounts for both the FDs and INDs which hold in a data- 
base scheme. We illustrate that a database scheme in IN- 
NF is always in Improved 3NF, while the converse is not 
true; in other words, the IN-NF is a stronger normal form 
which eliminates certain redundancies which remain 
undetected in the Improved 3NF. The design of a data- 
base scheme in IN-NF can be accomplished by extending 
the Deletion Normalization Algorithm proposed in [16]. 
This design step is shown to he equivalence preserving, 
conforming to the principles of the classical relational 
design framework. 

The rest of this paper will be organized as follows. 
Section 2 of this paper gives a formal treatment of inclu- 
sion dependencies and some related results. Section 3 
illustmte~ how INDs can be used to model important con- 
swaints which hold in a database. In section 4, we give a 
brief survey of logical database design within the classical 
database design framework and introduce the Improved 
3NF proposed by Ling et al. [16]. Section 5 defines the 
Inclusion Normal Form (IN-NF) and suggests how the 
classical design framework can be extended to accommo- 
date this new normal form. The last section gives the 
conclusion and highlights some future work. 

0-8186-2545-7/92 $3.00 © 1992 IEEE 642 



2.  I n c l u s i o n  D e p e n d e n c i e s  

In this section, we provide the preliminary 
definitions followed by some important results for INDs. 
Our definitions here follow those in [6] for most part. 

A relation scheme is an object R(U), where R is the 
name of the relation scheme and U is a finite sequence 
<Ax . . . . .  Am> of attributes. For simplicity, we sometimes 
write Ax . . . . .  Am for <Ax . . . . .  Am>. To avoid ambiguous 
references, we also write R.A to refer to an attribute A in a 
relation scheme R. A tuple t over U=<Ax . . . . .  Am> is a 
sequence <ax . . . . .  am> where e~ is an element from the 
doma/n of Ai. A relation (over R(U), or simply over R) is a 
set of  tuples over U. If  t = <ax . . . . .  am> is a tuple over U = 
<Ax . . . . .  Am>, and X = <A~ . . . . .  A.,> where ix . . . . .  ik are 
distinct members of {1 . . . . .  m}, then t[X] is <a~ . . . . .  a~>. 
I f r  is a relation over R, then fiX] = {t[X]ltcr }. A data- 
base scheme D = {Rx(Ux) . . . . .  RnCO,)} (or simply 
{Rx . . . . .  Rn}) is a set of  relation schemes. A database 
over D is a mapping which associates each relation 
scheme Ri(O.0 with a relation ri over R~. In the rest of this 
paper, we will adopt the following notation: if R 
represents a relation scheme, then r denotes a relation 
over R; similarly, d represents a database over the data- 
base scheme D. We will also denote singleton attributes 
with letters from the front of  the alphabet (A,B, • • • ), and 
sets of  attributes with letters from the back (X,Y, • • • ). 

Definition 1. Suppose Rt(Ax . . . . .  Am) and 
Rj(Bx . . . . .  Bp) are two relation schemes (not necessarily 
distinct) in a database scheme D = {Rx . . . . .  R,}. I f  X is a 
sequence of k distinct members of  Ax . . . . .  Am, and if Y is 
a sequence of k distinct members of  Bx . . . . .  Bp, then we 
say that the Inclusion Dependency (IND) R~X]~Rj[Y] 
holds in a database d if whenever rt and rj are relations in 
d, it must be the case that r~[X]~rj[Y]. 

Casonova et al. [6] showed that the following rules 
form a complete axiomatization for INDs. 

IND1 (reflexivity): R[X]~R[X], if X is a 
sequence of distinct attributes of R. 

IND2 (projection & permutation): if 
R[AI . . . . .  Am] ~ S[B1 . . . . .  Bin], then R[Ak . . . . .  AJ 
S[B~. . . . . .  B.~, for each sequence ix . . . . .  ik of  distinct 
integers from { 1 . . . . .  rn }. 

IND3 (transitivity): if R[X]~S[Y] and S[Y]~T[Z], 
then R[X]~-T[Z]. 

I N s  of the form R[X]~R[X] are said to be trivial. 
An IND is nontrivial if  it is not trivial. Clearly we are 
interested only in INDs that are nontrivial. We say that 
the IND R[X]~S[Y] is unary if X is singleton; otherwise, 
the IND is n-ary. 

Inference rules for functional and inclusion depen- 
dencies taken together have also been studied [6, 7, 19]. 

Although it is still not clear whether a complete axiomati- 
zafion exists forfinite databases, the following lemma has 
been shown to be sound. 

L e m m a  1. (Pullback Rule [19]) If  RIXY]~.S[WZ] 
(where I X I = I W I) and W--,Z, then X-,Y. 

Proof. See [7]. 

3.  D a t a  M o d e f i n g  using Inclusion D e p e n d e n c i e s  

It has been long realized that the relational data 
model offers the database designer little facilities for 
modeling semantics of  the real world. This gave rise to 
semantic data models [15, 20] which invariably introduce 
some notions of "entities" and "relationships" for model- 
ing real world objects and associations between these 
objects. (We will not attempt a formal definition of "enti- 
ties" and "relationships" but instead suggest that they 
correspond roughly to the same discussed in the entity- 
relationship model [8].) Codd [11], in an attempt to 
reconcile the relational model with these, suggested that 
we may classify relations in a relational database into 
those corresponding to entities, entity properties, and rela- 
tionships. We will adopt this view of a relational database 
since it allow us to refer to relations in our database more 
meaningfully. 

In this section, we demonstrate that INDs can be 
used to model important real world constraints on data. 
We suggest that these constraints fall neatly into two 
categories, corresponding to those acting on real world 
entities and those acting on relationships. These 
correspond to the class of  unary INDs and the class of n- 
ary INDs respectively. 

3.1 .  D a t a  Modeling using Unary  I N D s  

Unary INDs in a relational database arise from a 
number of different soarces. Before we can discuss these 
in greater detail, we need to define the notion of entity 
keys. Given an entity type E, we can lind an attribute KE 
called the entity key, such that every distinct entity of  this 
type has a unique I~-value corresponding to it. t. In a 
sense, the entity key I~  may be seen as a lexical surrogate 
for the real world entity. While it may be possible to find 
more than one such attribute (i.e., one which is capable of 
identifying the entity uniquely), we assume that one of 
these will be designated as the entity key at the database 
designer's discretion. 

t For the sake of simplifying our discussion, we shall ignore the 
possibility of having composite keys for entity types. We suggest 
that such cases can be circumvented by renaming the composite 
key with a new attribute name, or by introducing an artificial 
attribute which serves as the key. 
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We assert that for each entity type in our universe 
of discourse, there exists a base relation corresponding to 
that entity type. The main purpose of the base relation is 
to list all the entity key values of entities of that type 
which are currently recorded in the database. (Codd [11] 
refer to this as the E-relation, although his definition 
differs from ours since a system-generated surrogate is 
being used in place of a user-specified entity key.) We 
will denote the base relation corresponding to the entity 
type E by Re. It follows from this definition that for every 
other occurrence of KE (in say a relation scheme R), the 
IND R[Ke]~..Re[Ke] holds. Furthermore, if F is a subtype 
[23] of E, then RF[KF]~..RE[Ks] a l ~  holds. Hence, we see 
that referential integrity and subtype integrity defined in 
[11] can be easily formulated in terms of unary INDs. 

A third set of consWaints which has an important 
impact on the structure of a database is the set of partici- 
pation constraints. Suppose an entity type E participates 
in a relationship represented by the relation scheme R. 
Then there exists an attribute A (which may be distinct 
from K~ as a result of renaming, in which case it is called 
a role name) such that R[A]~R~[K~] holds in compliance 
with referential integrity. If however we know that the 
entity's participation in this relationship is total (i.e., 
every element of this entity type must participate in this 
relationship), then the converse RE[KE]~R[A] also holds. 

Finally, the constraint "whenever an entity of type 
E participates in a relationship of type R,, then it must 
also participate in relationship of type R2" can be 
Ixanslated to the IND R,[A]~R2[B] where A and B are role 
names of Ke (not necessarily distinct) in relation schemes 
R, and R2. 

3.2. Data Modeling using N-ary INDs 
While every entity in the real world is represented 

in the database, this is not the case for real world "rela- 
tionships". On the contrary, meaningful associations 
between entities are often broken down into basic rela- 
tionships (during logical design) so that information will 
not be represented redundantly. Two attributes which do 
not appear in the same relation scheme may be related in 
some meaningful way. Furthermore, important constraints 
may exist between these meaningful associations. 

We first examine the notion of attribute compatibil- 
ity which determines how meaningful association 
between attributes can be identified. Loosely speaking, 
two attributes are compatible if it makes sense to perform 
an equi-join using them. Beeri and Korth [4] suggested 
that the attributes A and B (not necessarily distinc0 in 
relation schemes R and S respectively are compatible if 
either R[A]~.SIB] or S[B]ff.R[A]. We find this definition too 
restrictive since it is possible that both of the INDs fail to 

hold and yet r[A]t"~s[B]~. Instead we suggest the follow- 
ing definition. The attributes R.A and S.B are compatible 
if there exists a base relation T with key K such that 
R/Ale---T/K] and S[B]~r[K]. 

Definition 2. Let D" be a set of relation schemes 
{R, . . . . .  Rm} which is a subset of some database scheme 
D. We say that a relation scheme R is pj-derived from D, 
if every relation of R is obtained from relations in a data- 
base of D, using only the repeated application of 

(i) the projection operator; and 

(ii) the equi-join operator, such that two relations R and 
S are joined on attributes R.A and S.B only if R.A 
and S.B are compatible. 

Intuitively, every pj-derived relation scheme embodies a 
relationship among attributes present in it. 

Given a database scheme D = [R~ . . . . .  Rn}. In anal- 
ogy to containment constraints acting on entities, we can 
also identify such constraints acting on relationships (or 
associations of attributes). These consl~aints take the form 
"every relationship of type R, is also an instance of rela- 
tionship type R2". 

Example 1. Suppose we are given the attributes 
E(mployee#), EN(ame), D(epartment), o(ffice), 
P(hone), M(anager#), m~(ame), M(gr)P(hone), and the 
following FDs which hold in the database: E ~  { EN, 0 }, 
O--~{P,D}, P-->{O}, M--~{MN, MP,D}, D-->{M}. We 

may model these information in the relation schemes as 
follows: 

R1 (E, EN, O) 
R2 (O, P, D) 
R3 (M, MN, MP, D) 

Since every manager is an employee (a subtype relation- 
ship), dearly the IND R3[M, MN] ~ RI [E ,EN]  
holds. The constraint "if an employee is a manager of a 
department, then he/she must belong to that department" 
can be modeled as an IND R3[M,D] ~ (R1 t~ 
R2) [E,D]. Similary, the IND R3 [M, MP] c_ (RI 
R2 ) [ E, P ] holds in the database. [] 

Since we are concerned with containment relation- 
ships between groups of attributes, the INDs correspond- 
ing to these constraints are invariably n-ary. Furthermore, 
if the n-ary IND R/A, . . . . .  Ad ~ S[Bx . . . . .  B,] holds, then 
it must be the case that the unary INDs R[AOc_S[BJ where 
i=l . . . . .  n must also hold (by IND2). Although the con- 
verse result is not true in general, we can make use of the 
unary I N s  (which are easier to identify) to help identify 
and validate the n-ary INDs. 
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4. Logical Database Design within Classical Relational 
Design Theory 

Prior to discussing how INDs can have an impact 
on the design of "good" database schemes, we will first 
examine the classical framework for logical database 
design. More importantly, we address the question, 
"What is a good database scheme7" and introduce some 
classical results. 

4.1. Characterizing a "Good"  Database Scheme 
In the seminal paper [3], Beeri et al. suggested that 

the logical database design problem can be summarized 
as follows: for a given set of attributes (the initial data- 
base scheme which comprises of a universal relation 
scheme Re) and a given set of data dependencies Z, find an 
equivalent database scheme {RI . . . . .  R~} that is better in 
some sense. The goal here is to replace a relation r0 over 
the universal relation scheme Re with a multi-relation 
database {rl . . . . .  r,} where r~ is a relation over R~. The 
relations r~ . . . . .  r~ in this case is said to be a decomposi- 
tion of re. This is desirable from the point of view of 
storage minimization as well as avoidance of updating 
anomalies. With these objectives in mind, Beeri etal. pro- 
posed the following design principles: representation, 
separation, and minimality. 

4.1.1. The Principle of Representation 

The principle of representation suggests that any 
database scheme derived from the first must be capable of 
representing the same information and no more. Since we 
assumed that the initial specification, comprising of a 
universal relation scheme R and a set of dependencies Y~, 
is a complete and error-free rendition of the real world 
information requirements, any further refinement of this 
model must therefore be a total representation of this ini- 
tial scheme. 

A first requirement for representation is injective- 
ness or reconstructibility, i.e., it should be possible to 
reconstruct the relation re over Re from the relations over 
{R~ . . . . .  R~}. The reconstruction operator for this purpose 
is usually the join operator. Suppose r0 is a relation of Re 
satisfying Y, and r~ = ro[Rt]. We say that the database 
{rl . . . . .  r.} is a lossless (or nonloss) decomposition of re if 
r o = ~ s .  The mapping from Re to [RI . . . . .  R,} is injective 
ff for every re of Re satisfying Y~, {r~ . . . . .  r~} is a nonloss 
decomposition of r0. 

A second criterion for representation is surjective- 
ness. It has been suggested that a decomposition must 
represent an instance of the real world; i.e., any database 
{rl . . . . .  r~} over {RI,...,R~} must result in a relation re 
over Re. When only FDs are present in Y-, this is to say 
that ~ = (L)~,VO +, where ~ is the set of FDs which holds 

in Ri and 1 ~ denotes the closure of the set of FDs given by 
F. We sometimes refer to this by saying that {R1 . . . . .  R.} 
is a dependency preserving decomposition of R. Unfor- 
tunately, it is not clear how this characterisation can be 
extended to include other types of  data dependencies such 
as (embedded) MVDs or JDs. 

The two criteria taken together defines a surjective 
and injective mapping (i.e., a bijection) [21] between the 
databases of {Re} and that of {Rx . . . . .  R,}. In this 
instance, we say that two database schemes are 
equivalent. 

4.1.2. The Principle of Separation 

The principle of separation suggests that "indepen- 
dent relationships" among attributes should be 
represented separately by different relation schemes. This 
offers several advantages [24]. First, it decrease the 
necessities of update propagations for maintaining given 
dependencies. Second, it makes it possible to insert and 
delete information without having to prepare data which 
are yet unavailable or without losing information (inser- 
tion and deletion anomalies). These difficulties are in fact 
the ones which first motivated the introduction of the vari- 
ous normal forms. It is conceived that by separating these 
"independent relationships" into basic information units, 
less effort is needed when updating the database. The 
relation schemes in good normal form thus collectively 
forms a "better" representation than the initial universal 
relation scheme. 

4.1.3. The Principle of Minimal Redundancy 

The principle of minimal redundancy is strongly 
related to the criteria of representation. If our concern is 
to preserve the information content, we may strive for 
minimal data representation. This can take two forms: 
first, there may exist a relation scheme Rj which is redun- 
dant, i.e., re = ~gl~,jrl; second, certain attributes may be 
redundant, i.e., there exists some Rj'cRj where r0 = 

n • (~,~,l~ri)~rj.  

On the other hand, if the concern is the representa- 
tion of dependencies, then we similarly define an attribute 
to be redundant ff its removal does not upset the fact that 
the FDs embodied in the database scheme forms a cover 
for Y, 

4.2. Logical Design Through Normalization 

The desire to avoid update propagations and vari- 
ous other updating anomalies prompted the introduction 
of data dependencies and normal forms. The first data 
dependency known as functional dependency (FD) was 
introduced by Codd [9]. This is followed by the introduc- 
tion ofmuitivalued dependency (MVD) [12], and later on, 
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join dependency (JD) [1] and many others (see [14]). 
These data dependencies give rise to a number of normal 
forms, such as "third" [9], "Boyce-Codd" [10], "fourth" 
[12], "projection-join" [13], etc. In the last two decades, 
research in relational database design has focused largely 
on the introduction of various data dependencies and 
"higher" normal forms. The "faith" in normal form is so 
strong that a relation scheme is often considered to be 
"good" if it is one of these normal forms. Logical data- 
base design thus became synonymous with normalization: 
the process of arriving at relation schemes in good normal 
form. 

Ling et al. [16] showed that a collection of relation 
schemes in good normal form (in the classical sense) is 
not devoid of redundancies. This is due to the fact that 
classical design theory focused only on redundancies 
within a relation scheme and failed to observe that redun- 
dancies may continue to exist on a "global" level even 
though none exists in any relation by itself. To remedy 
this oversight, an Improved Third Normal Form was pro- 
posed. 

Definition 3. Given a universal relation scheme 1%, 
and a set of FDs r (we sometimes denote this by writing 
<1%,E>), a database scheme D = {R,(U,) . . . . .  R.(U,)} is 
said to be a preparatory database scheme (abbreviated 
PDS) derived from 1% and E if 

(i) the set of FDs implied by the keys of the 
relation schemes (i.e., the set of all FDs {K--->Utl K is a 
key of R~(UJ}) forms a minimal cover for E, and 

(ii) no two distinct relation schemes have 
equivalent keys (i.e., whenever K~ and Kj are keys of 
R~ and Rj respectively, it is not the case that I~--->I~ and 
Iq--,K.~. 

(iii) the relation schemes R, . . . . .  R. form a non- 
loss decomposition of 1%. 

A PDS of <Ro, E> can be obtained by using a 
Preparatory Algorithm [16]. This algorithm is similar to 
Bernstein's synthesis method [5] except that the output is 
augmented to guarantee reconstruetibility. Intuitively, the 
Preparatory Algorithm separates the attributes in the 
universal relation scheme, such that each relation scheme 
now embodies an independent relationship among its 
attributes. Clearly, a PDS D = {R, . . . . .  R,} obtained in 
this manner is equivalent to the original database scheme 
described by the universal relation scheme 1% since both 
covering and reconstructibility are guaranteed. 

Give a PDS D=[R,(U1) . . . . .  R,(U,)}, we denote the 
FDs implied by the keys of the relation schemes, exclud- 
ing B in Ri, by G'~fB); i.e., G'~fB) = q./~=~ {K--->UTK I K is a 
key in Rj} k.) {K---~U~-K-B IK is a key in R~ and Be K}. 

Definition 4. Let Ri be a relation scheme in a PDS. 
An attrbute B in Rl is said to be restorable if there exists 
a key K of R, not containing B, such that K---,B can be 
inferred from G'i(B). In other words, the B-value in a 
relation over R~ can always be recovered from the other 
relations in a database. 

Definition 5. Let Rt be a relation scheme in a PDS. 
An attribute B in RI is said to be nonessential if whenever 
B is contained in a key K of Rl, there exists another K' of 
Rt not containing B such that K~K" can be inferred from 
G't(B). In other words, B is not needed to derive any attri- 
bute in R~. 

DefinRion 6. An attribute B in Rt is said to be 
superfluous if it is .both restorable and nonessential. 

Definition 7. A preparatory database scheme 
D=-{R, . . . . .  R.} is in Improved Third Normal Form if there 
are no superfluous aUributes in any of the relation 
schemes in D. 

The Improved 3NF can be achieved in practice 
using the Deletion Normalization Algorithm proposed by 
Ling et al. This algorithm comprises of the following 
steps. 

Step One. (Generate a Preparatory Schema.) Given 
<R~I>, we make use of the Preparatory Algorithm to 
arrive at a PDS D. 

Step Two. (Delete all superfluous attributes.) For 
each superfluous attribute that is in D, delete that attribute 
from the corresponding relation scheme, resulting in a 
new database scheme. Repeat this step until no more 
superfluous attributes can be found. 

Clearly, an attribute which is restorable in Ri can be 
eliminated from the relation scheme without affecting 
reconstructibility. It can also be shown that if B is both 
restorable and nonessential in Ri, then B can be eliminated 
from R~ without affecting dependency preservation. The 
deletion of a superfluous attribute (in step two) therefore 
result in a database scheme which is equivalent to the ori- 
ginal one. 

Example 2. Suppose the initial database scheme 
comprises of the attributes S t u # ,  SName, 
Course#,CName,Mark, Year and we are given the 
following FDs 

Stu# ~ SName 
Course# -~ CName 

CName ~ Course# 
Stu#,Course# -~ Mark 

Stu#,CName -+ Year 

The Preparatory Algorithm produces the following rela- 
tion schemes: 
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R1 (Stu#, SName) 
R2 (Course#, CName) 
R3 (Course#, Stu#, CName, Mark, Year) 

• , 1 

Either Course# or CName is SUperfluous in R3, since 
its removal does not affect covering or reconstructibility. 
If either C o u r s e #  or CName is removed from R3, 
then the resulting d~tabase scheme is in Improved 3NF. [] 

Theorem 1. If a database scheme D is in Improved 
3NF, then every relation scheme in D is in Codd 3NF. 

Proof: See [16]. 

5. A Normal Form for Functional and Inclusion 
Dependencies 

While it has been generally acknowledged that FDs 
and INDs together constitute the most commonly occur- 
ing constraints in a relational database [2], many 
researchers held the notion that INDs do not play any role 
in determining the logical structure of a database [18]. 
With the introduction of the Improved 3NF, it therefore 
appears that the problem of logical database design is 
well-solved (at least for most practical purposes in which 
"higher" dependencies such as MVDs and JDs are 
deemed unrealistic). 

In this paper, we contend that this conclusion is fal- 
lacious. This is because INDs in fact have an important 
impact on the traditional design goals of achieving 
minimality and avoidance of updating anomalies. We 
substantiate this statement with the following example. 

Example 3. Consider the database scheme 
presented in Example 1. Each of the relation schemes are 
clearly in 5NF. Furthermore, the database scheme is also 
in Improved 3NF. Nevertheless, the database is certainly 
not devoid of redundancies. For instance, the attribute 
MN in R3 is clearly redundant since it can always be 
derived from R1. By eliminating this attribute we obtain 
a database scheme which is clearly better than the original 
one from the view point of storage minimization. Further- 
more, the IND R3[M, MN#] ~ RI[E,EN] is now 
reduced to a unary IND involving only M and E, which 
is probably cheaper to enforce. [] 

The above example suggests clearly that classical 
normal forms (including the Improved 3NF) are not ade- 
quate in characterizing a database which is nonredundant. 
Furthermore, since INDs are qualitatively different from 
FDs, the redundancies induced by the interaction between 
INDs and FDs cannot be circumvented by simply identi- 
fying all the FDs that are implied, and afterwhich apply- 
ing classical synthesizing or decomposition methods for 
normalizing the database. (In this respect, we remark that 
undue attention has been accorded to identifying a com- 
plete axiomatization of FDs and INDs [6, 7, 19], which 

have yet to yield any success.) In Example 3 for instance, 
all relevant FDs have in fact been identified (right from 
the start of the design process) based on the semantics of 
the data elements involved; nevertheless, the database 
scheme is not free from redundancies. 

In the following definitions (8 through 11), we 
assume that D = [R1 . . . . .  R~] is a PDS, and we let • be 
the set of INDs which hold in D. 

Definition 8. An attribute B in a relation scheme 
Rle D is said to be weakly restorable if there exists a key K 
of Rl, not containing B, such that K-OB can be derived 
from Gq(B)q.flb using Armstrong's axioms and the Pull- 
back Rule. 

Clearly, whenever B in R~ is restorable," it is also 
weakly restorable. However, we need to show that when- 
ever B in R~ is weakly restorable, it can indeed be 
removed without affecting reconslructibility as is the case 
when it is restorable. 

Lemma 2. Suppose D" is the database scheme 
obtained from D by removing the attribute B from R~e D. 
If B in Ri is weakly restorable, then every database of D 
can be reconstructed from a database of D'. 

Proof. Due to space limitation we will give only a 
sketch of the proof here. It has been shown that if B in R~ 
is restorable, then it can be removed without affecting 
reconstructibility. If B in R~ is weakly restorable but not 
restorable, then it must be the case that there exists a rela- 
tion scheme S pj-derived from some relation schemes (not 
including RO such that the IND R[XB]v.S[YA] holds, and 
Y-OA can be inferred from G'I(B). It is now sufficient to 
show that whenever Ri[XB]c$[YA] and Y-OA hold, then B 
can be eliminated from Ri without affecting reconsln~cti- 
bility. Let R'i be the relation scheme obtained from R~ 
after removing B. Suppose n and s be relations over Rs and 
S respectively. It can be shown that, n[XB] = 
n[XB]t,~ri[X] = ltxA(s[YA]~y=xr'i[X]), where r'i is the 
corresponding relation over R% since ri[XB]~s[YA] and 
Y--->A. [] 

Definition 9. An attribute B in a relation scheme 
Ri¢ D is said to be weakly nonessential if whenever B is 
contained in a key K of R~, there exists another key K" of 
R~ not containing B such that K-oK" can be derived from 
G'~(B)t..)O using Armstrong's axioms and the Pullback 
Rule. 

It is again clear that whenever an attribute B is R~ is 
nonessential, it is weakly nonessential. 

Definition 10. An attribute B in R~ is said to be 
weakly superfluous if it is both weakly restorable and 
weakly nonessential. 
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Theorem 2. If D" is a database scheme obtained 
from D by removing from it Ri~ that is weakly 
superfluous, then the database schemes D and D" are 
equivalent. 

Proof. We have shown (in Lemma 2) that every 
weakly restorable attribute can be removed without 
affecting reconstructibiliy. While CFD) covering is not 
guaranteed to be preserved when a weakly superfluous 
attribute is being removed, we will show that every data- 
base d' of IY cannot violate any FDs implied by the keys 
of D. The sketch of the proof is as follows. 

Since B in Ri is weakly restorable, then there exists 
a key K~ of R~(U.0 not containing B such that Kr-->B can be 
inferred from G'~(B)k. ~ .  In other words, this constraint 
can be enforced in the database scheme independently of 
B in R~. Let K be any key of R~. If B is not in K, then obvi- 
ously K--->B can be enforced independently of B in Ri since 
K-->Kt and Kt---,B follows from G'~(B)L)4,. Suppose now B 
is in K. Since B is weakly nonessential, there exists a key 
K2 of R~ not containing B such that the FD K--->K2 can be 
inferred from G'~(B)L)O. Since K2 is a key of R'~(U'O 
(obtained from Ri(U.3 by removing from it the attrbute B), 
K2--~U'i and thus K--*O'i is enforced independently of B in 
Ri. Thus, B can be removed from Rj without introducing a 
database state which violates some FDs implied by the 
keys in D. Removing a weakly superfluous attribute from 
its relation scheme is therefore equivalence preserving. [] 

Definition 11. A PDS D={R, . . . . .  R,} is in Inclu- 
sion Normal Form (IN-NF) if there are no weakly 
superfluous attributes in any of the relation schemes. 

It is worthwhile pointing out that Mannila and 
Raiha have proposed an Inclusion Dependency Normal 
Form (IDNF) [17] which suggests that database designers 
should strive for database schemes in which INDs are 
key-based and noncircular. Their IDNF however did not 
address the classical relational design goals (of minimal- 
ity and avoidance of updating anomalies) and also 
assumed that all INDs which are not key-based are 
irrelevant to logical design. The IN-NF proposed in this 
paper on the other hand is consistent with classical rela- 
tional framework, and give rise some very nice results, as 
seen in the next theorean. 

Theorem 3. Every database scheme in IN-NF is 
also in Improved 3NF. 

Proof: It suffices to prove that every superfluous 
attribute in any R in a database scheme D is weakly 
superfluous. This is trivial since every restorable attribute 
is weakly restorable and every nonessential is also weakly 
nonessential. [] 

We emphasize that the converse of this theorem is 
not true; i.e., a database scheme in Improved 3NF is not 

necessarily in IN-NF. Thus IN-NF is a "higher" normal 
form than Improved 3NF analogous to saying that 4NF is 
a higher normal form than Codd 3NF. Since relation 
schemes in a database scheme in Improved 3NF are 
guaranteed to be in 3NF (see Theorem 1), we have the 
following corollary. 

Corollary 1. If D is a database scheme in IN-NF, 
then every relation scheme in D is in Codd 3NF. 

D~_t_abase schemes in the proposed IN-NF can be 
achieved by extending the the Deletion Normalization 
Algorithm: 

Step One. Given a universal relation scheme and a 
set of functional dependencies, we obtain a PDS using the 
Preparatory Algorithm. Having done this, it is possible 
for certain real world semantics to be attributed to each 
relation scheme. For instance, a data analyst might be 
able to identify relation schemes representing entity, pro- 
perties, and relationships. Intuitively, each relation 
scheme in this ~t_abase scheme embodies an independent 
relationship. 

Step Two. Nontrivial INDs which hold in this data- 
base can now be identified by the data analyst using 
guidelines suggested in Section 3. 

Step Three. The database scheme can be 
transformed into one in IN-NF by eliminating those attri- 
butes which are weakly superfluous. 

Ling et al. [16] have shown that the Deletion Nor- 
malization Algorithm has a polynomial execution time. 
We expect the same bounds to apply here. 

Example 4. We will make use of the scenario given 
in Example 1 to illustrate how database schemes in IN-NF 
can be achieved in practice. Using the Preparatory Algo- 
rithm, we would have obtained the same relation schemes 
as given earlier. It is possible to attribute certain seman- 
tics to each relation scheme. For instance, it is clear that 
R1 embodies information of the EMPLOYEE entity type, 
R2 of OFFICE, and R3 of MANAGER. As before, we 
can identify the INDs 

R3[M,D] ~ (RI ~ R2)[E,D] 
R3[M, MP] ~ (RI mo R2)[E,P] 
R3[M, MN] ~ RI[E,EN] 

It can be shown easily that both R3. HN and R3. HP are 
weakly superfluous since each is (weakly) nonessential 
and weakly restorable. Although R3. D is restorable, it is 
not weakly nonessential (D--,M cannot be inferred from 
G',(D) and the I N s  identified above). Thus the database 
scheme obtained from {R1,R2,R3} after removing 
R3. MN and R3. MP is ill IN-INF. 

Suppose for the sake of illustration, every employee 
can be identified uniquely by their name. Hence EN-~E 
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and ~ - - , H  hold. The Preparatory Algorithm results in 
the same database scheme as before, except that EN and 

are now keys of the relation schemes R1 and R3. 
Clearly, R 3 . t ~  is weakly restorable as before. 
Although g_N is not nonessential (W-oH cannot be 
implied from G'3(t~), it is weakly nonessential since 
R3 [M, MN]c_RI [E,EN] and EN--~E is implied by the 
key of R1. Hence R3 . I ~  is weakly superfluous and 
should be removed to result in a database scheme which 
is in IN-NF. [] 

6. Conclusion 

While Inclusion Dependencies (INDs) have been 
recognized as important constraints in a relational d~_t~- 
base, it is traditionally seen as irrelevant to logical data- 
base design. In this paper, we show that contrary to this 
commonly held notion, I N s  play an important role in 
accomplishing logical relational design objectives of 
minimality and avoidance of updating anomalies. Classi- 
cal normal forms as well as design approaches are found 
to be inadequate in view of this finding. To remedy this 
deficiency, we proposed an Inclusion Normal Form 0N- 
NF). It is shown that a database scheme in IN-NF is also 
in Improved 3NF (while the converse is not true), and 
consequently, every relation scheme in such a database 
scheme is also in Codd 3NF. The Deletion Normalization 
Algorithm is extended to facilitate the design of a data- 
base scheme in IN-NF. 

Much of the difficulty in designing a database 
scheme in IN-NF lies with problems in identifying the 
INDs which hold. Since INDs dependencies are 
inherently inter-relational, they cannot be readily 
identified in the the universal relation scheme (which 
forms the starting point for logical design in the classical 
relational design framework). We suggest that this prob- 
lem can only be overcomed by injecting greater semantics 
into the design process. We are currently examining how 
this can be accomplished using an Entity-Relationship 
model, in which INDs have a natural interpretation. 
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