
Logical Database Design with Inclusion Dependencies

Tok Wang LING and Cheng Hian GOH
Department of Information Systems & Computer Science

National University of Singapore

Abstract

Contrary to popular belief, relation schemes in
good classical normal forms are not necessarily devoid of
redundancies. This arises from the fact that classical data
dependencies are oblivious to important constraints which
may exist between sets of attributes occuring in different
relation schemes. In this paper, we study how inclusion
dependencies (INDs) can be used to model these con-
straints leading to the design of better database schemes.
A new normal form, called Inclusion Normal Form (IN-
NF), is proposed. Unlike classical normal forms, the IN-
NF characterizes a database scheme as a whole rather
than the individual relation schemes. We show that a
database scheme in IN-NF is always in Improved 3NF,
while the converse is not true. Finally, we demonstrate
how classical relational design framework may be
extended to faciliate the design of database schemes in
IN-NF.

1. Introduction

Within the last two decades, a number of data
dependencies [14] have been introduced to facilitate the
design of "good" relation schemes. The ones which have
been studied extensively include functional dependencies
(FDs), multivalued dependencies (MVDs), and join
dependencies (JDs). These classical data dependencies
gave rise to the definition of a number of normal forms. A
relation scheme is said to be "good" ff it is in Q normal
form, where Q can he "third", "Boyce-Codd", "fourth", or
"fifth". By designing relation schemes in good normal
forms, we eliminate redundancies which may be present
in a relation and circumvent the problem of updating
anomalies [24]. Ling et al. [16] pointed out that classical
normal forms failed to identify redundancies which may
exist on a global scale. To address this problem, an
Improved Third Normal Form (Improved 3NF) was intro-
duced. It has been shown that if a database scheme D is
in Improved 3NF, then each of the relation schemes in D
is also in Codd 3NF. Furthermore, the database scheme as
a whole is devoid of redundancies (with respect to the set
of FDs which hold in the database).

It has been suggested that of all the data dependen-
cies which have been proposed, FDs and inclusion depen-
dencies (INDs) are probably the two most common kinds
of constraints in a relational database [2]. Many research-
ers however held the notion that while INDs are impor-
tant constraints in a database, they are irrelevant as far as
logical database design is concern [18]. Thus it appears
that with the introduction of the Improved 3NF, the logi-
cal database design problem is well-solved, at least for
most practical purposes.

In this paper, we suggest that the earlier conclusion
is fallacious. This is because INDs have an important
impact on the classical design goal of minimality. Since
classical normal forms (including the Improved 3NF)
have failed to consider the effects of INDs on the struc-
ture of a database, they are inadequate in characterizing a
database scheme which is truly devoid of redundancies.
In consideration of the above, we propose a new normal
form, called Inclusion Normal Form (IN-NF), which
accounts for both the FDs and INDs which hold in a data-
base scheme. We illustrate that a database scheme in IN-
NF is always in Improved 3NF, while the converse is not
true; in other words, the IN-NF is a stronger normal form
which eliminates certain redundancies which remain
undetected in the Improved 3NF. The design of a data-
base scheme in IN-NF can be accomplished by extending
the Deletion Normalization Algorithm proposed in [16].
This design step is shown to he equivalence preserving,
conforming to the principles of the classical relational
design framework.

The rest of this paper will be organized as follows.
Section 2 of this paper gives a formal treatment of inclu-
sion dependencies and some related results. Section 3
illustmte~ how INDs can be used to model important con-
swaints which hold in a database. In section 4, we give a
brief survey of logical database design within the classical
database design framework and introduce the Improved
3NF proposed by Ling et al. [16]. Section 5 defines the
Inclusion Normal Form (IN-NF) and suggests how the
classical design framework can be extended to accommo-
date this new normal form. The last section gives the
conclusion and highlights some future work.

0-8186-2545-7/92 $3.00 © 1992 IEEE 642

2. I n c l u s i o n D e p e n d e n c i e s

In this section, we provide the preliminary
definitions followed by some important results for INDs.
Our definitions here follow those in [6] for most part.

A relation scheme is an object R(U), where R is the
name of the relation scheme and U is a finite sequence
<Ax Am> of attributes. For simplicity, we sometimes
write Ax Am for <Ax Am>. To avoid ambiguous
references, we also write R.A to refer to an attribute A in a
relation scheme R. A tuple t over U=<Ax Am> is a
sequence <ax am> where e~ is an element from the
doma/n of Ai. A relation (over R(U), or simply over R) is a
set of tuples over U. If t = <ax am> is a tuple over U =
<Ax Am>, and X = <A~ A.,> where ix ik are
distinct members of {1 m}, then t[X] is <a~ a~>.
I f r is a relation over R, then fiX] = {t[X]ltcr }. A data-
base scheme D = {Rx(Ux) RnCO,)} (or simply
{Rx Rn}) is a set of relation schemes. A database
over D is a mapping which associates each relation
scheme Ri(O.0 with a relation ri over R~. In the rest of this
paper, we will adopt the following notation: if R
represents a relation scheme, then r denotes a relation
over R; similarly, d represents a database over the data-
base scheme D. We will also denote singleton attributes
with letters from the front of the alphabet (A,B, • • •), and
sets of attributes with letters from the back (X,Y, • • •).

Definition 1. Suppose Rt(Ax Am) and
Rj(Bx Bp) are two relation schemes (not necessarily
distinct) in a database scheme D = {Rx R,}. I f X is a
sequence of k distinct members of Ax Am, and if Y is
a sequence of k distinct members of Bx Bp, then we
say that the Inclusion Dependency (IND) R~X]~Rj[Y]
holds in a database d if whenever rt and rj are relations in
d, it must be the case that r~[X]~rj[Y].

Casonova et al. [6] showed that the following rules
form a complete axiomatization for INDs.

IND1 (reflexivity): R[X]~R[X], if X is a
sequence of distinct attributes of R.

IND2 (projection & permutation): if
R[AI Am] ~ S[B1 Bin], then R[Ak AJ
S[B~. B.~, for each sequence ix ik of distinct
integers from { 1 rn }.

IND3 (transitivity): if R[X]~S[Y] and S[Y]~T[Z],
then R[X]~-T[Z].

I N s of the form R[X]~R[X] are said to be trivial.
An IND is nontrivial if it is not trivial. Clearly we are
interested only in INDs that are nontrivial. We say that
the IND R[X]~S[Y] is unary if X is singleton; otherwise,
the IND is n-ary.

Inference rules for functional and inclusion depen-
dencies taken together have also been studied [6, 7, 19].

Although it is still not clear whether a complete axiomati-
zafion exists forfinite databases, the following lemma has
been shown to be sound.

L e m m a 1. (Pullback Rule [19]) If RIXY]~.S[WZ]
(where I X I = I W I) and W--,Z, then X-,Y.

Proof. See [7].

3. D a t a M o d e f i n g using Inclusion D e p e n d e n c i e s

It has been long realized that the relational data
model offers the database designer little facilities for
modeling semantics of the real world. This gave rise to
semantic data models [15, 20] which invariably introduce
some notions of "entities" and "relationships" for model-
ing real world objects and associations between these
objects. (We will not attempt a formal definition of "enti-
ties" and "relationships" but instead suggest that they
correspond roughly to the same discussed in the entity-
relationship model [8].) Codd [11], in an attempt to
reconcile the relational model with these, suggested that
we may classify relations in a relational database into
those corresponding to entities, entity properties, and rela-
tionships. We will adopt this view of a relational database
since it allow us to refer to relations in our database more
meaningfully.

In this section, we demonstrate that INDs can be
used to model important real world constraints on data.
We suggest that these constraints fall neatly into two
categories, corresponding to those acting on real world
entities and those acting on relationships. These
correspond to the class of unary INDs and the class of n-
ary INDs respectively.

3.1 . D a t a Modeling using Unary I N D s

Unary INDs in a relational database arise from a
number of different soarces. Before we can discuss these
in greater detail, we need to define the notion of entity
keys. Given an entity type E, we can lind an attribute KE
called the entity key, such that every distinct entity of this
type has a unique I~-value corresponding to it. t. In a
sense, the entity key I~ may be seen as a lexical surrogate
for the real world entity. While it may be possible to find
more than one such attribute (i.e., one which is capable of
identifying the entity uniquely), we assume that one of
these will be designated as the entity key at the database
designer's discretion.

t For the sake of simplifying our discussion, we shall ignore the
possibility of having composite keys for entity types. We suggest
that such cases can be circumvented by renaming the composite
key with a new attribute name, or by introducing an artificial
attribute which serves as the key.

643

We assert that for each entity type in our universe
of discourse, there exists a base relation corresponding to
that entity type. The main purpose of the base relation is
to list all the entity key values of entities of that type
which are currently recorded in the database. (Codd [11]
refer to this as the E-relation, although his definition
differs from ours since a system-generated surrogate is
being used in place of a user-specified entity key.) We
will denote the base relation corresponding to the entity
type E by Re. It follows from this definition that for every
other occurrence of KE (in say a relation scheme R), the
IND R[Ke]~..Re[Ke] holds. Furthermore, if F is a subtype
[23] of E, then RF[KF]~..RE[Ks] a l ~ holds. Hence, we see
that referential integrity and subtype integrity defined in
[11] can be easily formulated in terms of unary INDs.

A third set of consWaints which has an important
impact on the structure of a database is the set of partici-
pation constraints. Suppose an entity type E participates
in a relationship represented by the relation scheme R.
Then there exists an attribute A (which may be distinct
from K~ as a result of renaming, in which case it is called
a role name) such that R[A]~R~[K~] holds in compliance
with referential integrity. If however we know that the
entity's participation in this relationship is total (i.e.,
every element of this entity type must participate in this
relationship), then the converse RE[KE]~R[A] also holds.

Finally, the constraint "whenever an entity of type
E participates in a relationship of type R,, then it must
also participate in relationship of type R2" can be
Ixanslated to the IND R,[A]~R2[B] where A and B are role
names of Ke (not necessarily distinct) in relation schemes
R, and R2.

3.2. Data Modeling using N-ary INDs
While every entity in the real world is represented

in the database, this is not the case for real world "rela-
tionships". On the contrary, meaningful associations
between entities are often broken down into basic rela-
tionships (during logical design) so that information will
not be represented redundantly. Two attributes which do
not appear in the same relation scheme may be related in
some meaningful way. Furthermore, important constraints
may exist between these meaningful associations.

We first examine the notion of attribute compatibil-
ity which determines how meaningful association
between attributes can be identified. Loosely speaking,
two attributes are compatible if it makes sense to perform
an equi-join using them. Beeri and Korth [4] suggested
that the attributes A and B (not necessarily distinc0 in
relation schemes R and S respectively are compatible if
either R[A]~.SIB] or S[B]ff.R[A]. We find this definition too
restrictive since it is possible that both of the INDs fail to

hold and yet r[A]t"~s[B]~. Instead we suggest the follow-
ing definition. The attributes R.A and S.B are compatible
if there exists a base relation T with key K such that
R/Ale---T/K] and S[B]~r[K].

Definition 2. Let D" be a set of relation schemes
{R, Rm} which is a subset of some database scheme
D. We say that a relation scheme R is pj-derived from D,
if every relation of R is obtained from relations in a data-
base of D, using only the repeated application of

(i) the projection operator; and

(ii) the equi-join operator, such that two relations R and
S are joined on attributes R.A and S.B only if R.A
and S.B are compatible.

Intuitively, every pj-derived relation scheme embodies a
relationship among attributes present in it.

Given a database scheme D = [R~ Rn}. In anal-
ogy to containment constraints acting on entities, we can
also identify such constraints acting on relationships (or
associations of attributes). These consl~aints take the form
"every relationship of type R, is also an instance of rela-
tionship type R2".

Example 1. Suppose we are given the attributes
E(mployee#), EN(ame), D(epartment), o(ffice),
P(hone), M(anager#), m~(ame), M(gr)P(hone), and the
following FDs which hold in the database: E ~ { EN, 0 },
O--~{P,D}, P-->{O}, M--~{MN, MP,D}, D-->{M}. We

may model these information in the relation schemes as
follows:

R1 (E, EN, O)
R2 (O, P, D)
R3 (M, MN, MP, D)

Since every manager is an employee (a subtype relation-
ship), dearly the IND R3[M, MN] ~ RI [E ,EN]
holds. The constraint "if an employee is a manager of a
department, then he/she must belong to that department"
can be modeled as an IND R3[M,D] ~ (R1 t~
R2) [E,D]. Similary, the IND R3 [M, MP] c_ (RI
R2) [E, P] holds in the database. []

Since we are concerned with containment relation-
ships between groups of attributes, the INDs correspond-
ing to these constraints are invariably n-ary. Furthermore,
if the n-ary IND R/A, Ad ~ S[Bx B,] holds, then
it must be the case that the unary INDs R[AOc_S[BJ where
i=l n must also hold (by IND2). Although the con-
verse result is not true in general, we can make use of the
unary I N s (which are easier to identify) to help identify
and validate the n-ary INDs.

644

4. Logical Database Design within Classical Relational
Design Theory

Prior to discussing how INDs can have an impact
on the design of "good" database schemes, we will first
examine the classical framework for logical database
design. More importantly, we address the question,
"What is a good database scheme7" and introduce some
classical results.

4.1. Characterizing a "Good" Database Scheme
In the seminal paper [3], Beeri et al. suggested that

the logical database design problem can be summarized
as follows: for a given set of attributes (the initial data-
base scheme which comprises of a universal relation
scheme Re) and a given set of data dependencies Z, find an
equivalent database scheme {RI R~} that is better in
some sense. The goal here is to replace a relation r0 over
the universal relation scheme Re with a multi-relation
database {rl r,} where r~ is a relation over R~. The
relations r~ r~ in this case is said to be a decomposi-
tion of re. This is desirable from the point of view of
storage minimization as well as avoidance of updating
anomalies. With these objectives in mind, Beeri etal. pro-
posed the following design principles: representation,
separation, and minimality.

4.1.1. The Principle of Representation

The principle of representation suggests that any
database scheme derived from the first must be capable of
representing the same information and no more. Since we
assumed that the initial specification, comprising of a
universal relation scheme R and a set of dependencies Y~,
is a complete and error-free rendition of the real world
information requirements, any further refinement of this
model must therefore be a total representation of this ini-
tial scheme.

A first requirement for representation is injective-
ness or reconstructibility, i.e., it should be possible to
reconstruct the relation re over Re from the relations over
{R~ R~}. The reconstruction operator for this purpose
is usually the join operator. Suppose r0 is a relation of Re
satisfying Y, and r~ = ro[Rt]. We say that the database
{rl r.} is a lossless (or nonloss) decomposition of re if
r o = ~ s . The mapping from Re to [RI R,} is injective
ff for every re of Re satisfying Y~, {r~ r~} is a nonloss
decomposition of r0.

A second criterion for representation is surjective-
ness. It has been suggested that a decomposition must
represent an instance of the real world; i.e., any database
{rl r~} over {RI,...,R~} must result in a relation re
over Re. When only FDs are present in Y-, this is to say
that ~ = (L)~,VO +, where ~ is the set of FDs which holds

in Ri and 1 ~ denotes the closure of the set of FDs given by
F. We sometimes refer to this by saying that {R1 R.}
is a dependency preserving decomposition of R. Unfor-
tunately, it is not clear how this characterisation can be
extended to include other types of data dependencies such
as (embedded) MVDs or JDs.

The two criteria taken together defines a surjective
and injective mapping (i.e., a bijection) [21] between the
databases of {Re} and that of {Rx R,}. In this
instance, we say that two database schemes are
equivalent.

4.1.2. The Principle of Separation

The principle of separation suggests that "indepen-
dent relationships" among attributes should be
represented separately by different relation schemes. This
offers several advantages [24]. First, it decrease the
necessities of update propagations for maintaining given
dependencies. Second, it makes it possible to insert and
delete information without having to prepare data which
are yet unavailable or without losing information (inser-
tion and deletion anomalies). These difficulties are in fact
the ones which first motivated the introduction of the vari-
ous normal forms. It is conceived that by separating these
"independent relationships" into basic information units,
less effort is needed when updating the database. The
relation schemes in good normal form thus collectively
forms a "better" representation than the initial universal
relation scheme.

4.1.3. The Principle of Minimal Redundancy

The principle of minimal redundancy is strongly
related to the criteria of representation. If our concern is
to preserve the information content, we may strive for
minimal data representation. This can take two forms:
first, there may exist a relation scheme Rj which is redun-
dant, i.e., re = ~gl~,jrl; second, certain attributes may be
redundant, i.e., there exists some Rj'cRj where r0 =

n • (~,~,l~ri)~rj.

On the other hand, if the concern is the representa-
tion of dependencies, then we similarly define an attribute
to be redundant ff its removal does not upset the fact that
the FDs embodied in the database scheme forms a cover
for Y,

4.2. Logical Design Through Normalization

The desire to avoid update propagations and vari-
ous other updating anomalies prompted the introduction
of data dependencies and normal forms. The first data
dependency known as functional dependency (FD) was
introduced by Codd [9]. This is followed by the introduc-
tion ofmuitivalued dependency (MVD) [12], and later on,

645

join dependency (JD) [1] and many others (see [14]).
These data dependencies give rise to a number of normal
forms, such as "third" [9], "Boyce-Codd" [10], "fourth"
[12], "projection-join" [13], etc. In the last two decades,
research in relational database design has focused largely
on the introduction of various data dependencies and
"higher" normal forms. The "faith" in normal form is so
strong that a relation scheme is often considered to be
"good" if it is one of these normal forms. Logical data-
base design thus became synonymous with normalization:
the process of arriving at relation schemes in good normal
form.

Ling et al. [16] showed that a collection of relation
schemes in good normal form (in the classical sense) is
not devoid of redundancies. This is due to the fact that
classical design theory focused only on redundancies
within a relation scheme and failed to observe that redun-
dancies may continue to exist on a "global" level even
though none exists in any relation by itself. To remedy
this oversight, an Improved Third Normal Form was pro-
posed.

Definition 3. Given a universal relation scheme 1%,
and a set of FDs r (we sometimes denote this by writing
<1%,E>), a database scheme D = {R,(U,) R.(U,)} is
said to be a preparatory database scheme (abbreviated
PDS) derived from 1% and E if

(i) the set of FDs implied by the keys of the
relation schemes (i.e., the set of all FDs {K--->Utl K is a
key of R~(UJ}) forms a minimal cover for E, and

(ii) no two distinct relation schemes have
equivalent keys (i.e., whenever K~ and Kj are keys of
R~ and Rj respectively, it is not the case that I~--->I~ and
Iq--,K.~.

(iii) the relation schemes R, R. form a non-
loss decomposition of 1%.

A PDS of <Ro, E> can be obtained by using a
Preparatory Algorithm [16]. This algorithm is similar to
Bernstein's synthesis method [5] except that the output is
augmented to guarantee reconstruetibility. Intuitively, the
Preparatory Algorithm separates the attributes in the
universal relation scheme, such that each relation scheme
now embodies an independent relationship among its
attributes. Clearly, a PDS D = {R, R,} obtained in
this manner is equivalent to the original database scheme
described by the universal relation scheme 1% since both
covering and reconstructibility are guaranteed.

Give a PDS D=[R,(U1) R,(U,)}, we denote the
FDs implied by the keys of the relation schemes, exclud-
ing B in Ri, by G'~fB); i.e., G'~fB) = q./~=~ {K--->UTK I K is a
key in Rj} k.) {K---~U~-K-B IK is a key in R~ and Be K}.

Definition 4. Let Ri be a relation scheme in a PDS.
An attrbute B in Rl is said to be restorable if there exists
a key K of R, not containing B, such that K---,B can be
inferred from G'i(B). In other words, the B-value in a
relation over R~ can always be recovered from the other
relations in a database.

Definition 5. Let Rt be a relation scheme in a PDS.
An attribute B in RI is said to be nonessential if whenever
B is contained in a key K of Rl, there exists another K' of
Rt not containing B such that K~K" can be inferred from
G't(B). In other words, B is not needed to derive any attri-
bute in R~.

DefinRion 6. An attribute B in Rt is said to be
superfluous if it is .both restorable and nonessential.

Definition 7. A preparatory database scheme
D=-{R, R.} is in Improved Third Normal Form if there
are no superfluous aUributes in any of the relation
schemes in D.

The Improved 3NF can be achieved in practice
using the Deletion Normalization Algorithm proposed by
Ling et al. This algorithm comprises of the following
steps.

Step One. (Generate a Preparatory Schema.) Given
<R~I>, we make use of the Preparatory Algorithm to
arrive at a PDS D.

Step Two. (Delete all superfluous attributes.) For
each superfluous attribute that is in D, delete that attribute
from the corresponding relation scheme, resulting in a
new database scheme. Repeat this step until no more
superfluous attributes can be found.

Clearly, an attribute which is restorable in Ri can be
eliminated from the relation scheme without affecting
reconstructibility. It can also be shown that if B is both
restorable and nonessential in Ri, then B can be eliminated
from R~ without affecting dependency preservation. The
deletion of a superfluous attribute (in step two) therefore
result in a database scheme which is equivalent to the ori-
ginal one.

Example 2. Suppose the initial database scheme
comprises of the attributes S t u # , SName,
Course#,CName,Mark, Year and we are given the
following FDs

Stu# ~ SName
Course# -~ CName

CName ~ Course#
Stu#,Course# -~ Mark

Stu#,CName -+ Year

The Preparatory Algorithm produces the following rela-
tion schemes:

646

R1 (Stu#, SName)
R2 (Course#, CName)
R3 (Course#, Stu#, CName, Mark, Year)

• , 1

Either Course# or CName is SUperfluous in R3, since
its removal does not affect covering or reconstructibility.
If either C o u r s e # or CName is removed from R3,
then the resulting d~tabase scheme is in Improved 3NF. []

Theorem 1. If a database scheme D is in Improved
3NF, then every relation scheme in D is in Codd 3NF.

Proof: See [16].

5. A Normal Form for Functional and Inclusion
Dependencies

While it has been generally acknowledged that FDs
and INDs together constitute the most commonly occur-
ing constraints in a relational database [2], many
researchers held the notion that INDs do not play any role
in determining the logical structure of a database [18].
With the introduction of the Improved 3NF, it therefore
appears that the problem of logical database design is
well-solved (at least for most practical purposes in which
"higher" dependencies such as MVDs and JDs are
deemed unrealistic).

In this paper, we contend that this conclusion is fal-
lacious. This is because INDs in fact have an important
impact on the traditional design goals of achieving
minimality and avoidance of updating anomalies. We
substantiate this statement with the following example.

Example 3. Consider the database scheme
presented in Example 1. Each of the relation schemes are
clearly in 5NF. Furthermore, the database scheme is also
in Improved 3NF. Nevertheless, the database is certainly
not devoid of redundancies. For instance, the attribute
MN in R3 is clearly redundant since it can always be
derived from R1. By eliminating this attribute we obtain
a database scheme which is clearly better than the original
one from the view point of storage minimization. Further-
more, the IND R3[M, MN#] ~ RI[E,EN] is now
reduced to a unary IND involving only M and E, which
is probably cheaper to enforce. []

The above example suggests clearly that classical
normal forms (including the Improved 3NF) are not ade-
quate in characterizing a database which is nonredundant.
Furthermore, since INDs are qualitatively different from
FDs, the redundancies induced by the interaction between
INDs and FDs cannot be circumvented by simply identi-
fying all the FDs that are implied, and afterwhich apply-
ing classical synthesizing or decomposition methods for
normalizing the database. (In this respect, we remark that
undue attention has been accorded to identifying a com-
plete axiomatization of FDs and INDs [6, 7, 19], which

have yet to yield any success.) In Example 3 for instance,
all relevant FDs have in fact been identified (right from
the start of the design process) based on the semantics of
the data elements involved; nevertheless, the database
scheme is not free from redundancies.

In the following definitions (8 through 11), we
assume that D = [R1 R~] is a PDS, and we let • be
the set of INDs which hold in D.

Definition 8. An attribute B in a relation scheme
Rle D is said to be weakly restorable if there exists a key K
of Rl, not containing B, such that K-OB can be derived
from Gq(B)q.flb using Armstrong's axioms and the Pull-
back Rule.

Clearly, whenever B in R~ is restorable," it is also
weakly restorable. However, we need to show that when-
ever B in R~ is weakly restorable, it can indeed be
removed without affecting reconslructibility as is the case
when it is restorable.

Lemma 2. Suppose D" is the database scheme
obtained from D by removing the attribute B from R~e D.
If B in Ri is weakly restorable, then every database of D
can be reconstructed from a database of D'.

Proof. Due to space limitation we will give only a
sketch of the proof here. It has been shown that if B in R~
is restorable, then it can be removed without affecting
reconstructibility. If B in R~ is weakly restorable but not
restorable, then it must be the case that there exists a rela-
tion scheme S pj-derived from some relation schemes (not
including RO such that the IND R[XB]v.S[YA] holds, and
Y-OA can be inferred from G'I(B). It is now sufficient to
show that whenever Ri[XB]c$[YA] and Y-OA hold, then B
can be eliminated from Ri without affecting reconsln~cti-
bility. Let R'i be the relation scheme obtained from R~
after removing B. Suppose n and s be relations over Rs and
S respectively. It can be shown that, n[XB] =
n[XB]t,~ri[X] = ltxA(s[YA]~y=xr'i[X]), where r'i is the
corresponding relation over R% since ri[XB]~s[YA] and
Y--->A. []

Definition 9. An attribute B in a relation scheme
Ri¢ D is said to be weakly nonessential if whenever B is
contained in a key K of R~, there exists another key K" of
R~ not containing B such that K-oK" can be derived from
G'~(B)t..)O using Armstrong's axioms and the Pullback
Rule.

It is again clear that whenever an attribute B is R~ is
nonessential, it is weakly nonessential.

Definition 10. An attribute B in R~ is said to be
weakly superfluous if it is both weakly restorable and
weakly nonessential.

647

Theorem 2. If D" is a database scheme obtained
from D by removing from it Ri~ that is weakly
superfluous, then the database schemes D and D" are
equivalent.

Proof. We have shown (in Lemma 2) that every
weakly restorable attribute can be removed without
affecting reconstructibiliy. While CFD) covering is not
guaranteed to be preserved when a weakly superfluous
attribute is being removed, we will show that every data-
base d' of IY cannot violate any FDs implied by the keys
of D. The sketch of the proof is as follows.

Since B in Ri is weakly restorable, then there exists
a key K~ of R~(U.0 not containing B such that Kr-->B can be
inferred from G'~(B)k. ~ . In other words, this constraint
can be enforced in the database scheme independently of
B in R~. Let K be any key of R~. If B is not in K, then obvi-
ously K--->B can be enforced independently of B in Ri since
K-->Kt and Kt---,B follows from G'~(B)L)4,. Suppose now B
is in K. Since B is weakly nonessential, there exists a key
K2 of R~ not containing B such that the FD K--->K2 can be
inferred from G'~(B)L)O. Since K2 is a key of R'~(U'O
(obtained from Ri(U.3 by removing from it the attrbute B),
K2--~U'i and thus K--*O'i is enforced independently of B in
Ri. Thus, B can be removed from Rj without introducing a
database state which violates some FDs implied by the
keys in D. Removing a weakly superfluous attribute from
its relation scheme is therefore equivalence preserving. []

Definition 11. A PDS D={R, R,} is in Inclu-
sion Normal Form (IN-NF) if there are no weakly
superfluous attributes in any of the relation schemes.

It is worthwhile pointing out that Mannila and
Raiha have proposed an Inclusion Dependency Normal
Form (IDNF) [17] which suggests that database designers
should strive for database schemes in which INDs are
key-based and noncircular. Their IDNF however did not
address the classical relational design goals (of minimal-
ity and avoidance of updating anomalies) and also
assumed that all INDs which are not key-based are
irrelevant to logical design. The IN-NF proposed in this
paper on the other hand is consistent with classical rela-
tional framework, and give rise some very nice results, as
seen in the next theorean.

Theorem 3. Every database scheme in IN-NF is
also in Improved 3NF.

Proof: It suffices to prove that every superfluous
attribute in any R in a database scheme D is weakly
superfluous. This is trivial since every restorable attribute
is weakly restorable and every nonessential is also weakly
nonessential. []

We emphasize that the converse of this theorem is
not true; i.e., a database scheme in Improved 3NF is not

necessarily in IN-NF. Thus IN-NF is a "higher" normal
form than Improved 3NF analogous to saying that 4NF is
a higher normal form than Codd 3NF. Since relation
schemes in a database scheme in Improved 3NF are
guaranteed to be in 3NF (see Theorem 1), we have the
following corollary.

Corollary 1. If D is a database scheme in IN-NF,
then every relation scheme in D is in Codd 3NF.

D~_t_abase schemes in the proposed IN-NF can be
achieved by extending the the Deletion Normalization
Algorithm:

Step One. Given a universal relation scheme and a
set of functional dependencies, we obtain a PDS using the
Preparatory Algorithm. Having done this, it is possible
for certain real world semantics to be attributed to each
relation scheme. For instance, a data analyst might be
able to identify relation schemes representing entity, pro-
perties, and relationships. Intuitively, each relation
scheme in this ~t_abase scheme embodies an independent
relationship.

Step Two. Nontrivial INDs which hold in this data-
base can now be identified by the data analyst using
guidelines suggested in Section 3.

Step Three. The database scheme can be
transformed into one in IN-NF by eliminating those attri-
butes which are weakly superfluous.

Ling et al. [16] have shown that the Deletion Nor-
malization Algorithm has a polynomial execution time.
We expect the same bounds to apply here.

Example 4. We will make use of the scenario given
in Example 1 to illustrate how database schemes in IN-NF
can be achieved in practice. Using the Preparatory Algo-
rithm, we would have obtained the same relation schemes
as given earlier. It is possible to attribute certain seman-
tics to each relation scheme. For instance, it is clear that
R1 embodies information of the EMPLOYEE entity type,
R2 of OFFICE, and R3 of MANAGER. As before, we
can identify the INDs

R3[M,D] ~ (RI ~ R2)[E,D]
R3[M, MP] ~ (RI mo R2)[E,P]
R3[M, MN] ~ RI[E,EN]

It can be shown easily that both R3. HN and R3. HP are
weakly superfluous since each is (weakly) nonessential
and weakly restorable. Although R3. D is restorable, it is
not weakly nonessential (D--,M cannot be inferred from
G',(D) and the I N s identified above). Thus the database
scheme obtained from {R1,R2,R3} after removing
R3. MN and R3. MP is ill IN-INF.

Suppose for the sake of illustration, every employee
can be identified uniquely by their name. Hence EN-~E

648

and ~ - - , H hold. The Preparatory Algorithm results in
the same database scheme as before, except that EN and

are now keys of the relation schemes R1 and R3.
Clearly, R 3 . t ~ is weakly restorable as before.
Although g_N is not nonessential (W-oH cannot be
implied from G'3(t~), it is weakly nonessential since
R3 [M, MN]c_RI [E,EN] and EN--~E is implied by the
key of R1. Hence R3 . I ~ is weakly superfluous and
should be removed to result in a database scheme which
is in IN-NF. []

6. Conclusion

While Inclusion Dependencies (INDs) have been
recognized as important constraints in a relational d~_t~-
base, it is traditionally seen as irrelevant to logical data-
base design. In this paper, we show that contrary to this
commonly held notion, I N s play an important role in
accomplishing logical relational design objectives of
minimality and avoidance of updating anomalies. Classi-
cal normal forms as well as design approaches are found
to be inadequate in view of this finding. To remedy this
deficiency, we proposed an Inclusion Normal Form 0N-
NF). It is shown that a database scheme in IN-NF is also
in Improved 3NF (while the converse is not true), and
consequently, every relation scheme in such a database
scheme is also in Codd 3NF. The Deletion Normalization
Algorithm is extended to facilitate the design of a data-
base scheme in IN-NF.

Much of the difficulty in designing a database
scheme in IN-NF lies with problems in identifying the
INDs which hold. Since INDs dependencies are
inherently inter-relational, they cannot be readily
identified in the the universal relation scheme (which
forms the starting point for logical design in the classical
relational design framework). We suggest that this prob-
lem can only be overcomed by injecting greater semantics
into the design process. We are currently examining how
this can be accomplished using an Entity-Relationship
model, in which INDs have a natural interpretation.

References:

[1] Aho, A.V., C. Beeri, and J.D. Ullman, 'q'he theory of
joins in relational data bases," ACM TODS, Vol 4, 1979,
pp. 297-314.

[2] Atzeni, P., and E.P.F. Chan, "Independent database
schemes under functional and inclusion dependencies,"
Proc. 13th VLDB, Brighton, 1987, pp. 159-166.

[3] Beeri, C., P.A. Bemstein, and N. Goodman, "A
sophisticate's introduction to database normalization
theory," Proc. 4th VLDB, 1978, pp. 113-124.

[4] Beeri, C., and H.F. Kortlh "Compatible attributes in a
universal relation," Proc. ACM PODS, 1982, pp. 55-62.

[5] Benmstein, P. A., "Synthesizing Third Normal Form Rela-
tions from Functional Dependencies," ACM TODS, 1:4,
Dec 76, pp. 277-298.

[6] Casanova, M.A., R. Fagin, and C.H. Papadimitriou,
"Inclusion dependencies and their interaction with func-
tional dependencies," (Extended Abstract), Proc. ACM
PODS, 1982, pp. 171-176.

[7] Casanova, M.A., R. Fagin, and C.H. Papadimitriou,
"Inclusion dependencies and their interaction with func-
tional dependencies," J. of Comp. and Sys. Sc., 28, 1984,
pp. 29-59.

[8] Chen, P. P., 'The entity-relationship model: towards a
unified view of data," ACM TODS, hl , 1976, pp. 9-36.

[9] Codd, E.F., "A relational data model for large shared data
banks," CACM 13:6, 1970, pp. 377-387.

[10] Codd, E.F., "Further normalization of the data base rela-
tional model," Data Base Systems (R. Rustin, ed.),
Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 33-64.

[11] Codd, E.F., "Extending the database relational model to
capture more meaning," ACM TODS 4:4, 1979, pp. 397-
343.

[12] Fagin, R., "Multivalued dependencies and a new normal
form for relational databases," ACId TODS, 2:3, 1977,
pp. 262-278.

[13] Fagin, R., "Normal forms and relational database opera-
mrs," Proc. ACM SIGMOD, 1979.

[14] Fagin, R., 'The theory of data dependencies -- a survey,"
Proc. ofSym, inApplied Maths, Vo134, 1986, pp. 19-71.

[15] Hull R., and R. King, "Semantic database modeling: sur-
vey, applications, and research issues," ACM Comp. Sur-
veys, 19:3, Sept 1987, pp. 201-260.

[16] Ling, T.W., F. W. Tompa, and T. Kameda, "An improved
third normal form for relational databases," ACM TODS,
6:2, 1981, pp. 329-346.

[17] Maunila, H., and K.J. Raiha, '~nclusion dependencies in
database design," Proc. 2ndlCDE, 1986, pp. 713-718.

[18] Missaoni, R., and R. Godin, 'The implication problem for
inclusion dependencies: a graph approach," SIGMOD
RECORD, 19:1, 1990, pp. 36-40.

[19] Mitchell, J.C., "Inference rules for functional and inclu-
sion dependencies," Proc. ACM PODS, 1983, pp. 58-69.

[20] Peckham, J., and F. Maryanski, "Semantic data models,"
ACM Comp. Surveys, 20:3, Sep 1988, pp. 153-189.

[21] Rissanen, J., 'Independent components of relations,"
ACM TODS 2:4, 1977, pp. 317-325.

[22] Sciure, E., "Inclusion dependencies and the universal
instance," Proc. ACMPODS, 1983, pp. 48-57.

[23] Smith, J. M., and D. C. P. Smith, "Database abstractions:
aggregation and generalization," ACM TODS 2:2, 1977,
pp. 105-133.

[24] Ullman, J. D., Princ~vles of Database and Knowledge-
Base Systems, Vol I, Computer Science Press, 1988.

649

