
A Semantic Approach to the Design of Valid and
Reversible Semistructured Views

Yabing Chen, Tok Wang Ling, Mong Li Lee
School of Computing, National University of Singapore

{chenyabi, lingtw, leeml}@comp.nus.edu.sg

Masatake Nakanishi
Faculty of Business Management, Nagoya Keizai University

nakanishi-m@nagoya-ku.ac.jp

Gillian Dobbie
Department of Computer Science, Auckland University

gill@cs.auckland.ac.nz

Existing systems that support semistructured views do not maintain semantics during the process
of designing the views. Thus, these systems do not guarantee the validity and reversibility of
the views. In this paper, we propose an approach to address the issue of valid and reversible
semistructured views. We design a set of view operators for designing semistructured views.
These operators are select, drop, join and swap. For each operator, we develop a complete set of
rules to maintain the semantics of the views. In particular, we maintain the evolution and integrity
of relationships once an operator is applied. We also examine the reversible view problem under
our operators and develop rules to guarantee that the designed views are reversible. Finally, we
examine the changes in the participation constraints of relationship types during the view design
process, and develop rules to ensure the correctness of the participation constraints.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design - Schema
and Subschema; H.2.3 [Database Management]: Languages - Query Languages

General Terms: Design, Theory

Additional Key Words and Phrases: Schema Maintenance; Data Models; Semistructured Views;
Semistructured Data; XML

1. INTRODUCTION

XML has emerged as the dominant standard for publishing and exchanging data for
Internet-based business applications. Given that a large amount of data has been
stored in traditional databases such as the relational database, semistructured XML

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,

KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007, Pages 95–123.

96 Y. Chen et al.

views are constructed over these databases for exchange over the Web. Exporting
underlying source data to semistructured XML views not only secures the source
data, but it also provides application-specific views of the source data.

A lot of works have been done on XML views. The majority of the works are
focused on presenting semistructured views over relational databases using query
languages, such as SilkRoute [Fernandez M. 1999; 2001], XPERANTO [Carey M.
2000a; 2000b] and ROLEX [Bohannon P. 2002]. Other works provide a semistruc-
tured view mechanism over native XML data, such as Xyleme [Cluet S. 2001] and
ActiveView [Abiteboul S. 1999]. [Hwang D. H. 2005] examine how XML views
can be defined, materialized and incrementally updated using an object-relational
database. [Mandhani B. 2005] introduce the notion of view answerability and de-
sign a method for maintaining a cache of materialized XPath views. Semistructured
views are also presented as a middleware in data integration system, such as MIX
[Baru C. 1999] and MARS [Deutsch and Tannen 2003]. [Rajugan R. 2005] con-
sider XML views as a way of representing and processing non-XML data as XML.
Based on the virtual XML concept, one can construct a default view or a specific
view for a non-XML format and issue aggregate queries on an aggregate of XML
or non-XML data. [Rajugan R. 2005] propose a three layer XML view model to
facilitate the design and manipulation of XML data at a higher level of abstraction.
The work also incorporate conceptual query operators such as select, project and
join to allow the definition of view, however, it does not consider the swap operator
and the design of valid and reversible views. [Ni W. 2003] design a graphical query
language called GLASS for semistructured data.

We observe that if a system does not maintain the semantics implied in the source
data during the design of the semistructured views, the designed views may violate
the source semantics and become invalid. For example, since the designed views do
not distinguish the attributes of object classes and attributes of relationship types,
they are unable to maintain the integrity of relationship types in the source data.
Further, existing systems do not address the problem of reversible views. A view is
said to be reversible if the original source schema can be produced back by applying
some operators to the view. Without a mechanism to guarantee the reversibility of
the view, users will not be able to produce the original source schema back.

[Chen Y. B. 2002] puts forth an initial proposal to design valid XML views over
native XML data. A conceptual schema for the source data is first extracted based
on a semantically rich data model, the Object-Relationship-Attribute model for
Semistructured data (ORA-SS) [Dobbie G. 2000]. The ORA-SS model is able to
capture semantics that are not supported in data models such as OEM [Papakon-
stantinou Y. 1995], Dataguide [McHugh J. 1997] or XML DTD/Schema.1 Next,
XML views are created by applying four operators, select, drop, join and swap, on
the source ORA-SS schema. The select and join operators are analogous to the
select and join operators in relational data model. The drop operator is the oppo-
site of the project operator in relational data model. The fourth operator swap is
unique in semistructured data as it interchanges the positions of parent and child
object classes. The swap operator raises the issue of view reversibility. That is,
when we swap two object classes to construct a view schema, we can reconstruct

1http://www.w3.org/XML/Schema.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 97

the original source schema from the view by carrying out a reverse swapping.
In this paper, we examine the problem of maintaining source semantics in the

design of valid and reversible semistructured views. We present the complete set of
rules with proofs to guarantee that the designed views are meaningful and reversible
when any of the view operators are applied. We also further develop rules to ensure
the correctness of the participation constraints of relationship types in the views.
The proposed approach not only enables users to design flexible semistructured
views, but also guarantees the designed views are meaningful and reversible.

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS data
model. Section 3 demonstrates how the semantics captured in ORA-SS allows us
to design valid and reversible semistructured views. Section 4 presents the rules
to maintain the semantics of the views for each operator. We also examine the
reversible view problem in this section. Rules for the evolution of the participation
constraints of object classes in relationship types are given in Section 5. Finally,
we conclude in Section 6.

2. ORA-SS DATA MODEL

The ORA-SS model [Ling T. W. 2005] comprises of three basic concepts: object
classes, relationship types and attributes. An object class models a set of real world
entities and is related to other object classes through relationship types. Attributes
are properties that describe an object class or a relationship type.

The ORA-SS schema diagram is a directed graph where each internal node is
an object class and each leaf node is a complex attribute or an attribute. An
object class is similar to an entity type in an Entity-Relationship diagram or an
element in XML documents. It is represented as a labelled rectangle in an ORA-SS
schema diagram. A relationship type describes a relationship among object classes
in one hierarchical path. Each relationship type has a degree and participation
constraints. The ORA-SS diagram uses a solid labelled directed edge connecting
object classes to denote a relationship type. ORA-SS can express n-ary (n ≥ 2)
relationship types implied in XML source data.

An attribute of an object class or a relationship type is represented as a circle
attached to the object class or the lowest participating object class of the relation-
ship type. There can be many different types of attributes in ORA-SS schema, such
as object identifier attributes, single-valued attributes and multi-valued attributes,
etc. In ORA-SS schema, an object identifier attribute is denoted as a filled circle.
A single-valued attribute is denoted as a circle. A multi-valued attribute is denoted
as a circle with a star symbol *(0:n) or a plus symbol +(1:n) inside.

The ORA-SS data model also provides various notations to express the complex
object structures: a circle with “ANY” symbol for attributes with unknown struc-
ture or whose structure is heterogeneous, a circle with a “|” symbol for disjunctive
attribute, a diamond with a “|” symbol for disjunctive relationship type, a diamond
with a “IDD” symbol for weak object class, a rectangle with a “<” symbol for the
ordering on the attribute of object class, etc.

The following example illustrates the essence of ORA-SS.

Example 1. Figure 1 depicts an ORA-SS source schema, which is extracted
from an XML document. This schema contains six object classes, such as part,

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

98 Y. Chen et al.

supplier

project'

qty

part

jno

spj,3,1:n,1:n

sno

pno

price

spj

jname

ps employee

*

eno ename progress

je, 2, 1:n, 1:n

je

project

ps, 2, 1:n, 1:n

sname

pname

factory

fno fname

sf,2,1:n,1:n email

jno

Figure 1. An ORA-SS source schema.

supplier and project, etc, which are represented as rectangles. Each object class has
an object identifier attribute, such as the object identifier attribute pno of part. In
addition, the attribute email of employee is a multi-valued attribute indicated with
a star symbol.

There is a binary relationship type between object class part and supplier in Fig-
ure 1, which is labeled as “ps, 2, 1:n, 1:n” on the incoming edge of supplier, where
ps denotes the name of the relationship type between supplier and part, 2 indicates
the degree of the relationship type. The first “1:n” indicates the child participation
constraints in the relationship type. That is, there can be minimum one supplier and
maximum many suppliers for one part. The second “1:n” then indicates the parent
participation constraints in the relationship type. That is, there can be minimum
one part and maximum many parts supplied by one supplier. The relationship type
ps also has one attribute called price in Figure 1. This attribute price is determined
by both part and supplier and is attached to supplier with label ps on the incoming
edge of the attribute.

In addition, there is a ternary relationship type “spj, 3, 1:n, 1:n” labeled on the
incoming edge of project′, which involves object classes supplier, part and project′.
The first “1:n” in the relationship type indicates each pair of part and supplier can
have minimum one project′ and maximum many project′s. The second “1:n” in
the relationship type indicates one project′ can have minimum one pair of part and
supplier and maximum many pairs of part and supplier. The relationship spj also
has one attribute qty attached to project′, which indicates the quantity of a part
supplied by a supplier in a project′. In general, the participating object classes of a
relationship type are not explicitly presented on the label for the relationship type.
However, when the participating object classes are not next to each other in the
path of the schema, the participating object classes will then be explicitly expressed
on the label such as dc(department, course), 2, 1:n, 1:1. (see Figure 3).

The dotted line between object classes project′ and project denotes a reference
from project′ to project. This reference indicates that each object identifier value
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 99

of project′ is referring to an object identifier value of project. It thus removes the
duplicates of the attribute jname below project′. For the purpose of simplicity, the
schema in Figure 1 only shows a reference between project′ and project. As a matter
of fact, there can also be references for object classes supplier and factory to remove
the duplicates of sname and fname, respectively. �

The above example demonstrates that the ORA-SS model is able to capture
semantics implied in XML or semistructured data. The major advantages of ORA-
SS over existing semistructured data models such as OEM and Dataguide are its
ability to distinguish between attributes and object classes, differentiate between
attributes of object classes and attributes of relationship types, as well as express the
degree of relationship types and the participation constraints on the object classes
in the relationship types. These semantics which are explicitly expressed in the
ORA-SS data model are important for designing “good”semistructured databases
and defining meaningful views.

3. MOTIVATING EXAMPLE

Suppose we have the source schema as shown in Figure 2, and we want to design a
view that swaps the object classes course and student. Figure 3 shows the resulting
view which is not only valid but is also reversible.

Note that the participating object classes in the relationship type dc in Figure 3
have to be explicitly stated in the views as “dc(department, course), 2, 1:n, 1:1”.
This is because these object classes are not located next to each other in the paths.
There is an object class student between them in the same paths. If the partici-
pating object classes of the relationship type dc in Figure 3 are not specified, then
the default participating object classes will be student and course.

A valid view requires that the attribute grade be moved down and be attached
to course (as shown in Figure 3) to keep the semantics of the relationship type cs
intact. In addition, the object class lecturer also needs to move down with course in
Figure 3 to keep the semantics of the relationship type cl intact. The meaning of the
attribute workload is still the same as in the source schema, that is, the workload of
a lecturer under a course. Note that we do not need to move the object class tutor
up with student although tutor and student are involved in the relationship type
cst. This is because tutor needs to be attached to the lowest participating object
class of cst, i.e., course. Thus, the semantics of the ternary relationship type cst
remains unchanged.

Next, we illustrate an example of reversible views by applying another swap op-
erator to swap student and course in Figure 3. The attributes of student and course
will move together with their owner object classes. The relationship attribute grade
is thus attached to the object class student again. Further, the object class lecturer
will move up with course as a whole, thus keeping the semantics of the relationship
type cl intact. The view obtained will be the same as the original source schema
in Figure 2. We say that the view in Figure 3 is a reversible view of original source
schema in Figure 2 since we can reproduce the original source schema from it.

Let us now consider the case of an invalid view. We have observed that it is
important to distinguish between the attributes of object classes and attributes of
relationship types. However, XML DTD and OEM do not differentiate these two

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

100 Y. Chen et al.

department

course

student lecturer

tutor

dname

code title

stuNo name hobby grade

?

stfNo office feedback

stfNo name office workload

dc,2,1:n,1:1

cs,2,4:n,1:6

cst,3,1:1,1:n

cl,2,1:n,1:n

cs

cst

cl

*

Figure 2. An ORA-SS source schema of course-student-lecturer.

types of attributes. If we design a view based on XML DTD or OEM graph, we will
probably move the attribute grade (which is an attribute of the relationship type
cs) together with the object class student when we swap the object classes course
and student. The resulting view is shown in Figure 4. The view obtained in Figure
4 violates the functional dependency: {stuNo, code}→grade in the source schema.

Further, the source schema in Figure 2 has a binary relationship type called cl
that involves course and lecturer. Without this additional information regarding
the cl relationship type, we will probably keep the object class lecturer in the same
position after swapping course and student. That is, lecturer is attached to student
in the view. The relationship type cl will be lost in the view (see Figure 4) as course
and student are now in two different paths. Thus, all the distinct lecturers will be
repeatedly placed under each student in the corresponding XML view documents.
Further, the attribute work load will become meaningless as it wrongly becomes
an attribute of lecturer in the view and has nothing to do with course. For these
reasons, the view in Figure 4 is invalid.

The above example illustrates the importance of maintaining semantics when
designing semistructured views. By properly maintaining the semantics in the
views, such as moving relevant attributes or object classes in the views, we can
ensure that valid and reversible semistructured views are designed.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 101

department

student

course

lecturertutor

dname

stuNo name

code title grade

hobby

?

stfNo office feedback

stfNo name office workload

dc(department,course),2,1:n,1:1
cs,2,1:6,4:n

cst,3,1:1,1:n

cs

cst

*

cl

cl,2,1:n,1:n

Figure 3. A valid and reversible ORA-SS view schema obtained by swapping course and student
in Figure 2.

4. VIEW DESIGN RULES

In our context, a semistructured view conforms to an ORA-SS view schema. Thus,
a semistructured view is valid if and only if its corresponding ORA-SS view is valid.
In other words, an XML view is valid if and only if it conforms to a valid ORA-SS
view.

Definition 4.1. (Valid Semistructured Views) Given an semistructured
source data D, let S be the ORA-SS source schema extracted from D, V be an
ORA-SS view based on S, and SV be an semistructured view conforming to V , SV
is said to be valid iff its corresponding ORA-SS view V is valid.

Based on the above definition, the problem of valid XML views becomes the
problem of valid ORA-SS views. In this section, we will present the rules to maintain
the validity of ORA-SS views when select, drop, join, swap operators are applied
on the source schema.

4.1 The Select Operator

The select operator is similar to select operator in relational data model. It filters
data by applying predicates on attributes in an ORA-SS schema. There is no
restructuring of the schema. Thus, the view schema will not violate semantics in
the source schema, and we do not need rules for the validity of views when select
operations are applied.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

102 Y. Chen et al.

department

student

course

lecturer

tutor

dname

stuNo name

code title

gradehobby

?

stfNo office feedback

stfNo name office workload

*

Figure 4. An invalid ORA-SS view schema obtained by swapping course and student in Figure 2.

Example 2. Suppose we design a view that applies a select operation (qty > 500)
on the source schema in Figure 5. The resulting view schema is shown in Figure 6.
This view will retrieve those suppliers, parts and projects together the relationship
and attributes as shown in Figure 5, where each supplier supplies some part for
some project with quantity larger than 500. �

project

part

supplier

spj,
 3,1:n,1:n

jno

sno

pno

qty

spj

sname

jname

pname

s p

sp,2,1:n,1:n

price

Figure 5. An ORA-SS source schema of
supplier-project-part.

project

part

supplier

spj,
 3,1:n,1:n

jno

sno

pno

qty>500

spj

sname

jname

pname

s p

sp,2,1:n,1:n

price

Figure 6. An ORA-SS view applied with a
select operation applied in Figure 5.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 103

pj

part

project

pno

jno

pname

jname total_qty

pj

Figure 7. An ORA-SS view dropping supplier in Figure 5.

4.2 The Drop Operator

The drop operator drops object classes or attributes in the source schema. It
is opposite to the project operator in relational data model. The drop operator
will affect relationship types that involve the dropped object class. The following
example illustrates the case where a drop operator is applied.

Example 3. Figure 7 shows a view that is based on the ORA-SS source schema
in Figure 5. The object class supplier has been dropped. This view indicates that for
a given part, all those projects which need this part are placed below as its children.
Obviously, the attributes of supplier (i.e., sno and sname) have to be dropped too
in the view schema as attributes cannot exist without its owner object class.

We also have to remove the relationship type sp and spj since both of them involve
the dropped object class supplier. The attribute of the relationship type sp (i.e.,
price) is also dropped in the view schema in Figure 7. Further, the attribute of the
relationship type spj (i.e., qty) is mapped to an aggregate attribute (i.e., total qty),
which represents the total quantity of one part in a given project. It is actually an
attribute of a new derived relationship type involving only project and part, which
is derived from spj. �

This example shows that flexible views can be designed based on ORA-SS with
its additional semantics. The following four rules guarantee the validity of XML
views when drop operators are applied.

Rule Drop 1: If an object class O in a source schema is dropped in designing
a view; then the attributes of O are dropped too in the view.

Rule Drop 2: If an object class O in a source schema is dropped in designing
a view; then each relationship type involving O is dropped too in the view.

If a participating object class of a relationship type is dropped in the view, the
relationship type will be broken. Although the relationship type will not be shown
in XML document or XML schema, it needs to be dropped to keep the semantics
in the ORA-SS view schema consistent.

After a relationship type is dropped, the rest of the object classes of the relation-
ship type still have semantic connection in the view. The rules Drop 3 and Drop 4
specify how we can derive a new relationship type from the dropped relationship
type.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

104 Y. Chen et al.

Rule Drop 3: If an object class O in a source schema is dropped in designing a
view; then for each n-ary (n ≥ 2) relationship type R involving O, a new relationship
type is generated by projecting R on all object classes except O, and the attributes
of R can be dropped, or mapped into attributes with aggregate function, or mapped
into attributes typed in bag of values.

Rule Drop 4: If an object class O in a source schema is dropped in designing
a view; then if O is the only common participating object class of two relationship
types R1 and R2, and all participating object classes of R1 and R2 are in a continual
path, and the participating object classes of R1 is not a subset of the participating
object classes of R2 and vice versa; then a new relationship type is generated by
joining R1 and R2 based on the object class O.

Correctness of Rule Drop 3: Suppose object classes O1, O2, ..., On partic-
ipate in a relationship type R in a source schema. We assume one of the object
classes (say Oi, i = 1, ..., n) is dropped in designing a view. According to Rule
Drop 3, a new relationship type R′ is derived by projecting out Oi and all R′s
attributes from R:

R′ =
∏

o1,...,oi−1,oi+1,...,on

R

All the rest of the object classes of R except Oi are kept in the new relationship
type. Obviously, R′ does not violate the semantics implied in R according to the
theory of relational data model. It is because the new relationship type keeps the
rest of the semantic connection among the object classes in the view. The attributes
of R can be dropped as it will not violate any semantics of the new relationship
type R′. However, new attributes can be derived for R′ via aggregate functions. In
this way, the semantics among the rest object classes of R is correctly kept in the
view and the view is still valid. �

Example 4. Consider the ORA-SS source schema in Figure 8. It contains three
object classes: part, supplier and project. There is one binary relationship type
called ps involving part and supplier, and another ternary relationship type called
spj involving all the three object classes. The symbol “+” is a shorthand to indi-
cate the 1:n participation constraint. Suppose we design a view by dropping object
class supplier. According to the rules Drop 1 and Drop 2, the attributes of supplier
and relationship types involving supplier are dropped too. Figure 9 shows a view of
Figure 8 where we derive a new relationship type called pj from spj based on Rule
Drop 3. A new attribute called total qty is derived for pj by applying a sum func-
tion to the attribute qty in the source schema. Thus, this view keeps the semantic
connection between part and project and is valid.

Without Rule Drop 3 and the semantics captured in the ORA-SS source diagram,
we may produce a view as shown in Figure 10, which does not indicate what re-
lationship type exists between part and project, and attribute qty is still attached
to the object class project. The attribute qty in Figure 10 violates the functional
dependency {pno, sno, jno} → qty in the source schema. Thus, the view in Figure
10 is an invalid view. �

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 105

part

supplier
pno

sno

pname

sname
project

jno jname

ps,2,+,+

spj,3,+,+

qty

spj

ps

price

Figure 8. An ORA-SS source schema.

 part

pno pname
project

jno jname

pj, 2, +, +

total_qty

pj

Figure 9. A valid view schema obtained by
dropping supplier.

part

pno pname
project

jno jname qty

Figure 10. An invalid view schema obtained
by dropping supplier.

The above example illustrates Rule Swap 3 and shows that an invalid view may
be produced without this rule. In more complicated cases, the dropped object class
may involve more than one relationship type in the source schema. Thus, we need
to join those relationship types to keep the semantic connection among them. This
is achieved by Rule Drop 4.

Correctness of Rule Drop 4:

(1) We will first show why the conditions in Rule Drop 4 are necessary. Suppose
the first condition is false. That is, there are other common object classes for
R1 and R2. Obviously, we do not have to join R1 and R2 in this case as the
semantic connection between R1 and R2 is still explicitly expressed through
the other common object classes.
Now suppose the second condition is false. That is, all participating object
classes of R1 and R2 are not in the same path. In this case, we cannot join
R1 and R2 as the object classes of the new relationship type will not be in the
same path and the new relationship type will be meaningless.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

106 Y. Chen et al.

Finally, suppose the third condition is false. Then either all participating object
classes of R1 participate in R2 or vice versa. In this case, if the only common
object class of R1 and R2 is dropped, all object classes of R1 must have been
removed in the view schema. Thus, we do not need to join R1 and R2 in the
view schema.

(2) Next, we examine the validity of view obtained. Suppose O11, O12, ..., O1n

participate in the relationship type R1 in the order from ancestor to descendant
and O21, O22, ..., O2m participate in the relationship type R2 in the same order
in the source schema. R1 and R2 are in the same path in the. We assume
O1n = O21 is the only common object class of R1 and R2, which is dropped in
designing a view. Satisfying all conditions of the Rule Drop 4, we derive a new
relationship type R′ in the view schema by joining R1 and R2 as follows:

R′ =
∏

o11,o12,...,o21,...,o2m

(R1 �o1n=o21 R2)

Notice the join operator is actually an equijoin for R1 and R2 based on the
identifiers’ value of O1n and O21. The derived relationship type R′ does not
violate the semantics of R1 and R2 according to the theory of relational data
model. Instead, it keeps semantic connection among the two relationship types.
Thus, the semantics among the rest object classes participating in R1 and R2

in the view is correctly kept and the view is still valid. �

The following example illustrates the Rule Drop 4 and shows an invalid view may
be produced if the rule is not applied.

Example 5. Consider the ORA-SS source schema in Figure 11. There are three
object classes project, staff and publication. The binary relationship type js between
project and staff indicates which staff participates in a project. The binary relation-
ship type sp between staff and publication indicates the publications of a staff.

Suppose we design a view that drops the intermediate object class staff. In fact,
there is still semantic connection between project and publication based on the source
schema, which indicates all publications published by those staff participating in a
given project. Thus, we need to generate a new derived relationship type jp between
the two object classes in the view. In particular, jp is generated as follows.

jp =
∏

project,publication

(js �js[staff]=sp[staff] sp)

Note that the Join operator is an equijoin for js and sp based on the identifiers’
value of staff in js and staff in sp. In this way, the rest two object classes are
connected together through the semantics and the view is still meaningful. The
valid view with the new relationship type is shown in Figure 12.

Without Rule Drop 4, we do not know the relationship because it is not clear how
the view is derived from the source schema (see Figure 13). In this ambiguous view
schema, the semantic connection between the two object classes will be lost. �

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 107

project

staff
jno

sno

jname

sname
publication

isbn title

js,2,+,+

sp,2,*,+

Figure 11. An ORA-SS
source schema.

project

jno jname
publication

isbn title

jp,2,*,+

Figure 12. A valid view
schema.

project

jno jname
publication

isbn title

Figure 13. An ambiguous
view schema.

4.3 The Join Operator

Referencing object classes and referenced object classes can occur in an ORA-SS
source schema. Two object classes can be connected together by foreign key to key
reference in the schema. Thus, these two object classes can be joined together with
a join operator. When a join operator is applied, we remove the referenced object
class in the view schema and attach all attributes of the referenced object class to
the referencing object class.

Example 6. Figure 14 shows an ORA-SS source schema diagram. The object
class supplier′ under project refers to an object class supplier with the object iden-
tifier attribute of supplier, denoted by a dotted line. There is a relationship type
between retailer and supplier called rs, which has an attribute contract under re-
tailer. The meaning of the relationship type is that for a given supplier, all the
retailers having contracts with the supplier will be placed below as its sub-elements.

Figure 15 depicts a view, which joins object classes supplier and supplier′ together.
The join operator attaches the attributes sno and sname of supplier to supplier′ in
the view. In addition, the object class retailer also moves below supplier′ and its
attribute contract moves with retailer. As supplier′ refers to supplier with a foreign
key to key reference in the source schema, supplier′ can play the role of supplier in
the view schema. Thus, the relationship type rs between supplier and retailer are
still kept in the view and actually become the relationship type between supplier′ and
retailer. �

When a join operator is applied, we need to handle the object classes and rela-
tionship types in the path of the referenced object class. We develop two rules for
the join operator. The first rule handles the descendants of the referenced object
class and their relationship types. The second rule handles the ancestors of the
referenced object class and their relationship types.

Rule Join 1: If a referencing object classes Oi is joined with a referenced object
class Oj in designing a view; then all attributes of Oj are attached to Oi in the view,
and if there is a relationship type R involving no ancestors of Oj but descendants
of Oj; then

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

108 Y. Chen et al.

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

rs,2,1:n,1:n

rs

sno

Figure 14. An ORA-SS schema diagram.

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno contract

rs,2,1:n,1:n

rs

Figure 15. An ORA-SS view schema by joining supplier′ and supplier in Figure 14.

—Case 1: Keep R and all its participating object classes in the view.

—Case 2: Drop some of the object classes of R in the view to derive a new rela-
tionship type, and the attributes of R can be dropped, mapped into attributes with
some aggregate function, or mapped into attributes typed in bag of values.

Correctness of Rule Join 1. Rule Join 1 first attaches the attributes of Oj

to Oi as Oi refers to Oj by a foreign key to key reference and Oi plays the role of
Oj in the view. Next, it handles the relationship types involving descendants of
Oj in the view. There are two cases for the relationship types. Suppose one of the
relationship types is R. In Case 1, R is kept in the view. Thus, all participating
object classes of R are also kept in the view and Oi plays the role of Oj in R. Thus,
the semantics of R is still kept in the view and the view is valid.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 109

In Case 2, a new relationship type is derived from R by dropping some of the
participating object classes of R. The attributes of R can be handled properly
based on users’ requirements. According to Rule Drop 3, the new relationship type
does not violate the semantics of R and the view is valid. �

We also need to handle the ancestors of Oj in the source schema and their
relationship types, especially when the ancestors of Oj participates in relationship
type with Oj or its descendants.

Rule Join 2: If a referencing object class Oi is joined with a referenced object
class Oj in designing a view; then all attributes of Oj are attached to Oi in the
view, and if there is a relationship type R involving ancestors of Oj, then:

—Case 1: Keep R in the view and swap the ancestors of Oj involving R below Oj.
—Case 2: Drop the ancestors of Oj involving R in the view to derive a new

relationship type, and the attributes of R can be dropped, mapped into attributes
with some aggregate function, or mapped into attributes typed in bag of values.

Correctness of Rule Join 2. Rule Join 2 handles the relationship types in-
volving ancestors of Oj in the view. There are also two cases for processing the
relationship types. Suppose one of the relationship type is R. In Case 1, R and
the ancestors of Oj participating in R are needed in the view schema. Thus, the
ancestors must be swapped first and become descendants of Oj so that they can be
attached as Oi’s descendants in the view schema. In this way, R is kept intact in
the view and the view is valid. Notice a new operator, i.e. swap operator is utilized
in this case. More details on swap operator will be given in the next sub section.

In Case 2, we simply drop all the ancestors of Oj involving R in the view. As
Oi has its ancestors in the view already, the ancestors of Oj in the source schema
cannot appear as ancestors of Oi in the view. After the drop of the ancestors, a
new relationship type can be derived from R and the attributes can be handled
properly in the view schema. In this way, the view will be kept valid. �

Without the two rules, invalid views may be produced, as the following example
will illustrate.

Example 7. Figure 16 depicts an ORA-SS source schema that has a foreign
key to key reference between object classes supplier′ and supplier. The ternary
relationship type ysr involves object classes year, supplier and retailer. The attribute
contract belongs to the relationship type ysr in the source schema. Suppose we design
a view by joining object classes supplier′ and supplier.

By applying Rule Join 2, we can design a valid view that joins the object classes
supplier′ and supplier (see Figure 17). A new relationship type is derived from
ysr, which involves supplier′ and retailer only. The attribute contract becomes a
multi-valued attribute of the new relationship type where all the contracts signed by
a given supplier′ and retailer in each year are aggregated into a bag of values.

However, the view schema in Figure 18 shows that the object class year does not
exist and the relationship type ysr is unchanged. This thus violates Rule Join 2. In
this case, this relationship type is meaningless in the view schema since one of its
participating object classes year is not included in the view.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

110 Y. Chen et al.

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

ysr,3,1:n,1:n

ysr

year

y ear_value

sno

ys,2,1:n,1:n

Figure 16. An ORA-SS source schema.

supplier'

sno
part

pno price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno

sr,2,1:n,1:n

sr

contract
*

Figure 17. A valid view schema by joining supplier′ and supplier in Figure 16.

The meaning of the attribute contract in the source schema is a contract signed
by a supplier and a retailer in a given year. However, in the view schema in Figure
18, the meaning of the attribute contract is changed, which is an attribute of the
ternary relationship type ysr involving object classes retailer, supplier and project.
That is, it indicates a contract signed by a project, a supplier, and a retailer without
any year specified. Thus, the attribute contract in the view schema in Figure 18
has a different meaning in the source schema. The view in Figure 18 is an invalid
view. �

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 111

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno contract

ysr,3,1:n,1:n

ysr

Figure 18. An invalid view schema by joining supplier′ and supplier.

4.4 The Swap Operator

The swap operator restructures the source schema by exchanging the positions of a
parent object class and its child object class. It is unique in XML because it can be
applied only in hierarchical structure. Further, swap operator also introduces the
issue of view reversibility. That is, when we swap two object classes to construct
a view schema, we can reconstruct the original source schema from the view by
carrying out a reverse swap.

Example 8. Figure 19 shows a source schema involving the object classes sup-
plier, part and project. Suppose we want to design a view that swaps supplier and
project hierarchically. Figure 20 shows the view obtained. After supplier and project
have been swapped, we need to ensure that their attributes are relocated properly.

It is clear that the attributes sno and sname should move together with their
owner object class supplier. Likewise, the attributes jno and jname should move
together with their owner object class project. However, the attribute price, which
belongs to the relationship type sp, must remain with the new child object class of
sp, that is, supplier in order to preserve the semantics of the source schema, that
is, the functional dependency, {sno, pno} → price.

If the attribute price remains with the object class part, then it will violate the
functional dependency in the source schema. Similarly, the attribute qty of the
relationship type spj is attached to the lowest participating object class of spj, that
is, supplier. �

When a swap operator is applied to design a view, we not only need to maintain
semantics for the view, but we also need to address the issue of reversible view. We
develop a set of rules to meet both requirements in this section.

Rule Swap 1: If an object classes Oi and its descendant object class Oj in a
source schema are swapped in designing a view; then the attributes of Oi and Oj

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

112 Y. Chen et al.

part

pno
project

jno

price

supplier

sno

sp,2,1:n,1:n

spj ,3,1:n,1:n

sp

qty

spj

sname

pname

jname

Figure 19. An ORA-SS source schema.

 Swap supplier and project

part

pno supplier

sno price

project

jno

sp,2,1:n,1:n
spj ,3,1:n,1:n

sp

qty

spj

jnam e

pname

snam e

Figure 20. An ORA-SS view schema by
swapping supplier and project in Fig-
ure 19.

must remain attached to Oi and Oj respectively in the view.

Rule Swap 1 is straightforward and ensures that the attributes of Oi and Oj do
not become meaningless in the view after Oi and Oj are swapped.

We observe that the relationship types in the source schema that involve Oi

and/or Oj are affected since the hierarchical positions of Oi and Oj have been
interchanged after a swap operator is applied. Given two object classes Oi and Oj

where Oj is a descendant of Oi in an ORA-SS schema, the relationship types that
are affected after a swap of Oi and Oj can be classified into the following three
categories.

(1) The first category is the set of relationship types which do not involve any
other object classes but Oi and/or Oj and/or the ancestors of Oi or Oj in the
ORA-SS source schema. In other words, these relationship types involve object
classes that occur in the straight path of Oi and Oj (see Figure 21).

(2) The second category is the set of relationship types which involve at least both
Oi and object classes in the branch paths between Oi and the parent of Oj , as
shown in Figure 22.

(3) The third category is the set of relationship types which involve at least both
Oj and its descendants, as shown in Figure 23.

These three categories of affected relationship types are handled by the rules
Swap 2, Swap 3 and Swap 4, respectively. These rules not only maintain the se-
mantics of the views, but also guarantee the reversibility of the views.

When Oi and Oj are swapped, all object classes of a relationship type in the
first category are still in one same path. However, the lowest object class of these
relationship types will be changed. Thus, we need to handle the attributes of these
relationship types properly. Rule Swap 2 processes these relationship types.

Rule Swap 2: Suppose an object classes Oi and its descendant object class Oj in
a source schema S are swapped in designing a view. Let S be the set of relationship
types which do not involve any descendants of Oj, but involve the ancestors of Oi

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 113

Oa

Oj

Oi

Ob

Oc

Ok

The First
Category

Od

Figure 21. First category of affected relationships in an ORA-SS source schema.

Oa

Oj

Oi

Ob

Oc

Ok

The Second
Category

Od

Figure 22. Second category of affected relationships in an ORA-SS source schema.

or Oj in the source schema. For each relationship type R in S, the attributes of R
are attached to the lowest participating object class of R in the view.

On the other hand, when Oi and Oj are swapped, all object classes of a relation-
ship type (if any) in the last two categories may not be in one same path or some
gap may be produced in between them.

Rule Swap 3: Suppose an object class Oi in a source schema is swapped with
its descendant object class Oj in designing a view. If there exists a relationship type
which involves at least Oi and Oc, where Oc is a descendant of an object class Oa

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

114 Y. Chen et al.

Oa

Oj

Oi

Ob

Oc

Ok

Od
The Third
Category

Figure 23. Third category of affected relationships in an ORA-SS source.

that lies in the path between Oi and Oj (including Oi) but Oc does not lie in the
path between Oi and Oj in the ORA-SS source schema, then the subtree rooted at
Oc is attached to Oi in the view.

This rule handles relationship type in the second category. Note Oa may be Oi

itself. We study the correctness of this rule.

Oa

Oj

Oi

R1(Oi, Ob)

Ob

Oc

R2(Oi, Oa, Oc)

Ok

Figure 24. An ORA-SS source schema
for swapping Oi and Oj

Swap Oi and Oj

Oa

Oi

Oj

R1(Oi, Ob)

ObOc

R2(Oi, Oa, Oc)

Ok

Figure 25. An ORA-SS view schema
for swapping Oi and Oj

Correctness of Rule Swap 3. Figure 24 depicts a simplified ORA-SS source
schema, which contains two relationship types in the second category. More specif-
ically, there is one relationship type R1 involving Oi and its child Ob, where Ob is
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 115

not in the path between Oi and Oj . Obviously, R1 is in the second category. It
is depicted as R1(Oi, Ob) for simplicity. The second relationship type R2 involves
Oi, Oa and Oc, where Oc is a child of Oa. Notice Oa is in the path between Oi,
and Oj and Ob is not in the path. R2 is thus still in the second category and is
depicted as R2(Oi, Oa, Ob) for simplicity. When Oi and Oj are swapped to design
a view as shown in Figure 25, sub trees rooted at Ob and Oc need to move with
Oi and are attached to Oi to keep the semantics of R1 and R2 intact in the view.
Otherwise, the relationship types will be broken in the view. In addition, if there
are any attributes of R1 and R2 attached to Ob and Oc, the attributes will also be
attached to Ob and Oc in the view. Thus, the Rule Swap 3 appropriately maintains
the semantics in the view and the view is still valid. Further, the preserved rela-
tionship types in the view also make the reversible view possible. In other words,
if the second swap operator is applied to swap Oi and Oj in the view, the original
source schema may be produced back because the two relationship types are kept
intact in the view. The next rule will handle such cases so that reversible views are
guaranteed to be produced. �

Rule Swap 4: Suppose an object class Oi in a source schema is swapped with its
descendant object class Oj in designing a view. For each child Od of the object class
Oj, let T be the subtree that is rooted at Od. Let S be the set of relationship types
which involve at least Oj and its descendants in T . If Ol is the lowest participating
object class among the relationship types in S that lie in the path between Oi and
Oj after the swap, then the subtree rooted at Od is attached to Ol.

This rule handles relationship types in the third category. More specifically, this
rule maintains the semantics in all the relationship types for each subtree rooted
at a child of Oj . We demonstrate the correctness of the rule as follows.

Oa

Oj

Oi

R1(Oa, Oj, Ok)

Oe

Od

R2(Oa, Oj, Od)

Ok

R3(Oi, Oj, Oe)

Figure 26. An ORA-SS source schema for
swapping Oi and Oj .

Oa

Oi

Oj

R1(Oa, Oj, Ok)

Oe

Od

R2(Oa, Oj, Od)

Ok

R3(Oi, Oj, Oe)

Figure 27. An ORA-SS view schema for
swapping Oi and Oj .

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

116 Y. Chen et al.

Correctness of Rule Swap 4. Figure 26 depicts a source schema having rela-
tionship types (R1, R2 and R3) in the third category, that is, they involve at least
Oj and the descendants of Oj . Oj has two children in the source schema, namely
Ok and Od. Suppose we design a view swapping Oi and Oj , as shown in Figure 27.
We will maintain all the relationship types in one subtree rooted at a child of Oj

at one time. Firstly, for subtree rooted at Ok in the source schema, there is only
one relationship type R1, which involves Oa, Oj and Ok. Since Oa is the lowest
participating object class of R1 after the swap, the subtree rooted at Ok is attached
to Oa. In contrast, the subtree rooted at Od has two relationship types R2 and
R3. Since Oi is the lowest participating object class among all the participating
object classes in R2 and R3 after the swap, the subtree rooted at Od is attached
to Oi. In this way, the relationship types in the third category in the view are
kept intact and the view is still valid. In general, if a relationship type R in the
third category does not involve any ancestors of Oj , that is, it only involves Oj and
the descendants of Oj , then the subtree rooted at a child of Oj (say Od) remains
attached to Oj after the swap, because Oj is the lowest participating object class
of R in the view. However, if R involves some ancestors of Oj , then the subtree
rooted at Od will be attached in the view to the lowest participating object class
among all the relationship types in the subtree. �

4.5 Reversible Views

Rule Swap 3 and Rule Swap 4 not only maintain the semantics of the view so that
it is kept valid, but they also guarantee the reversibility of the view.

Definition 4.2. (Reversible View) A valid view schema V of a source schema
S is called a reversible view if the source schema is a valid view of V under our
view operators, i.e. select, drop, join and swap.

A view is reversible if the original source schema can be restored back by applying
some operators to the view. Among our view operators, it is clear that a view will
not be reversible if the select or drop operator is applied. This is because some
data will be lost in the view and it is impossible to recover the data back from the
view. The join operator joins two object classes together. Based on the rules for
join operator, the source data may not be lost in the view in some cases. However,
we need to introduce new operators to restore the referenced object class back in
order to make the view reversible. Thus, we will not consider the join operator
here. Finally, swap operator swap two object classes in the view and the view
can be reversible by applying another swap operator. Therefore, we consider swap
operator only for the issue of reversible view.

On closer examination, we observe that the rules Swap 3 and Swap 4 can address
the reversible view problem. Let us revisit the motivating example in Section 3.

Example 9. Suppose we want to design a view in Figure 4 based on the source
schema in Figure 2. This view swaps the object classes course and student. Based
on the rules Swap 1 and Swap 2, we first move the attributes of the two object
classes with their owner object classes, and the relationship type cs’s attribute grade
is attached to course, that is, the new lowest participating object class of cs. It is
because cs is in the first category as defined above and Rule Swap 2 applies. With
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 117

the rule Swap 3, the object class lecturer will move down with course in the view.
Thus, the relationship type cl (in the second category) involving course and lecturer
is kept intact and the view is valid. Moreover, the object class tutor does not move
up with student. Instead, it is attached to the lowest participating object class of
cst (in the third category), i.e. course, as stated in the rule Swap 4. Thus, the
semantics of the ternary relationship type cst remains unchanged and the resulting
view in Figure 3 is valid.

Let us now apply a swap operation to the view in Figure 4 by swapping student
and course again. Applying the rules Swap 1 and Swap 2, the attributes of student
and course will move with their owner object classes. The relationship attribute
grade is thus attached to the object class student again. Applying the rule Swap 4,
the object class lecturer will move up with course as a whole since course is the
lowest participating object class of cl. On the other hand, tutor will be attached to
student because student is the lowest participating object class of cst. In this way,
the semantics of the two relationship types are kept intact. Furthermore, the view
obtained is the same as the original source schema in Figure 2. Thus, the view in
Figure 4 is a reversible view because we can produce the original source schema back
by applying swap operator on it. �

5. PARTICIPATION CONSTRAINTS

When designing a semistructured view with the operators above, new relationship
types may be derived in the view from existing relationship types. Further, the
view may change the order of participating object classes of an existing relationship
type. For both cases, we need to recalculate the participation constraints of the
relationship type in the view.

Example 10. Consider the source schema in Figure 28 together with its FD
diagram. The following functional dependencies hold in the source schema:

code,matricNo → staffNo

staffNo → code

Suppose we design a view by swapping course and tutor as shown in Figure 29. The
view still keeps the two relationship types in the source schema after the rules of
swap operator are applied. However, new participation constraints must be derived
in the view schema for cst because the ordering of participating object classes is
changed. The new parent and child participation constraints in cst become 1:n and
1:n respectively. Further, the participation constraints in cs are also changed 3:8
and 4:n.

Figure 30 shows a view where student is dropped from the source schema in Figure
28. Thus, for a given course, all distinguished tutors teaching the course are placed
below as its sub-elements. In this case we derive a new relationship type ct by
projecting cst. From the functional dependency diagram in Figure 28(b), a tutor
can teach in only one course, but a course may have more than one tutors, so the
participation constraint for course in ct in the view is 1:n, and for tutor is 1:1.
Note that the attribute feedback becomes an attribute of ct with cardinality “*”. �

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

118 Y. Chen et al.

grade

Course

Student

Tutor

code title

cs, 2, 4:n, 3:8

cst, 3, 1:1, 1:n
cs

matricNo name

feedbackstaffNo
preferredArea

cst

?

Course Student

Tutor

n/1

1/n

n/-

(a) Source Schema (b) Functional Dependency Diagram

of Source Schema

Figure 28. Example source schema and its functional dependency diagram.

We develop four rules to handle the participation constraints for relationship
types in semistructured views under our view operators. Rule PC 1 and Rule PC 2
handle the cases where the order of participating object classes of binary relation-
ship types and n-ary (n > 2) relationship types are changed respectively. Rule PC 3
handles the case where new relationship types are derived by projecting existing
relationship types. Finally, Rule PC 4 handles the case where new relationship
types are derived by joining existing relationship types.

We use p and c to denote the parent and child participation constraints of an
original relationship type R respectively. Likewise, we use p′ and c′ to denotes the
parent and child participation constraints of a derived relationship type R′.

Rule PC 1: If R′ is derived in the view by swapping two participating object
classes of an existing binary relationship type R in the source schema; then p′ = c
and c′ = p.

When a swap operator is applied on two participating object classes of a binary
relationship type, the order of the two participating object classes will then be
reversed in the view schema. Thus, in the new relationship type in the view, the
participation constraints will also be reversed.

Rule PC 2: If R′ is derived in the view by swapping two participating object
classes in an existing n-ary (n > 2) relationship type R in the source schema, and
O1, O2, ..., On is participating object classes of R′ in the order from ancestor to
descendant in the view schema; then

(1) For p′: If there exists a functional dependency {O1, O2, ..., On−1} → On in the
functional dependency diagram, then set p′ to be 1:1, otherwise set p′ to be 0:n
(or *).

(2) For c′: if there exists a functional dependency: On → {O1, O2, ..., On−1} in
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 119

grade

Tutor

Student

Course

staffNo
preferredArea

cs

cst, 3, 1:n, 1:n

cs, 2, 3:8, 4:n

matricNo name

feedback
code

title

View Schema

cst

?

Figure 29. Changes in participation constraints due to the application of a swap operator.

feedback

Course

Tutor

ct

ct , 2, 1:n, 1:1

code title

preferedArea
staffNo

*

Figure 30. Changes in participation constraints due to the application of a project operator.

the functional dependency diagram, then set c′ to be 1:1, otherwise c′ is set 0:n
(or *).

This rule handles the case where a swap operator is applied on an n-ary (n > 2)
relationship type. Firstly, we use the functional dependency diagram to determine
the value of p′ and c′. When there is a corresponding functional dependency, we
directly use it to determine p′ and c′. On the other hand, there may be no func-
tional dependencies between O1, O2, ..., On−1 and On in the functional dependency
diagram. Without loss of generality, we assign 0:n to p′ or c′ in this case.

Rule PC 3: If R′ is derived in the view by projecting an existing relationship
type R in the source schema, and O1, O2, ..., On is participating object classes of R′

in the order from ancestor to descendant in the view schema; then
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

120 Y. Chen et al.

(1) For p′: If there exists a functional dependency {O1, O2, ..., On−1} → On in the
functional dependency diagram, then set p′ to be 1:1, otherwise set p′ to be 0:n
(or *).

(2) For c′: if there exists a functional dependency: On → {O1, O2, ..., On−1} in
the functional dependency diagram, then set c′ to be 1:1, otherwise c′ is set 0:n
(or *).

Similar to the Rule PC 2, the Rule PC 3 also utilizes the information of the
functional dependency diagram to decide how to generate p′ and c′. We do not
provide detailed proof here for the three rules above as they are straightforward.

Rule PC 4: If R′ is derived in the view by joining one relationship type R1

(O11, O12, ..., O1n) with another relationship type R2 (O21, O22, ..., O2m), where O1n =
O21 is the common object class they are joined on, then

(1) For p′: If there exists a functional dependency

{O11, O12, ..., O1(n−1), O22, ..., O2(m−1)} → O2m

or a functional dependency

{O22, O23, ..., O2(m−1)} → O2m

or the two functional dependencies

{O11, O12, ..., O1(n−1)} → O1n and {O21, O22, ..., O2(m−1)} → O2m

then set p’ to be 1:1, otherwise, set p’ to be 0:n.
(2) For c′: If there exists a functional dependency

O2m → {O11, O12, ..., O1(n−1), O22, ..., O2(m−1)}
in the functional dependency diagram, then set c′ to be 1:1, otherwise set c′ to
be 0:n (or *).

Rule PC 4 handles the participation constraints in the derived relationship types
by joining existing relationship types, which is because the common object class
(O1n/O21) of the two relationship types is dropped in the view.

Correctness of Rule PC 4. For p′, if there exists the functional dependency:

{O11, O12, ..., O1(n−1), O22, ..., O2(m−1), O2m} → O2m

in the functional dependency diagram, then it is obvious that p′ is set to be 1:1. If
there exists the functional dependency:

{O22, O23, ..., O2(m−1)} → O2m

in the functional dependency diagram, then by the augmentation property, we can
deduce the functional dependency:

{O11, O12, ..., O1(n−1), O22, ..., O2(m−1), O2m} → O2m

Therefore p′ is set to be 1:1. Finally, suppose there exist two functional dependen-
cies:

{O11, O12, ..., O1(n−1)} → O1n and {O21, O22, ..., O2(m−1)} → O2m

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

A Semantic Approach to the Design of Valid and Reversible Semistructured Views 121

Since O1n = O21 is the common object class of the two relationship types, then by
the pseudo-transitivity property, we can deduce the functional dependency:

{O11, O12, ..., O1(n−1), O22, ..., O2(m−1), O2m} → O2m

Therefore p′ is set to be 1:1. In all the other cases, p′ must be set to be 0:n. For c′,
there is only one case. That is, if the functional dependency

O2m → {O11, O12, ..., O1(n−1), O22, ..., O2(m−1)}
exists in the functional dependency diagram, then c′ is set to be 1:1. Otherwise, c′

is set to 0:n. �

Theorem 5.1. Semistructured views designed based on all the above rules do
not violate the semantics, i.e. functional dependencies, relationship types, and key
and foreign key constraints implied in the underlying semistructured/XML data.
Further, the original source schema can be a valid view of the semistructured views
under the rules. In other words, the semistructured views are valid and reversible
views.

Outline of Proof. All the rules above are clearly correct or have been proven
to be correct. It is also clear that they do not violate the semantics in the source
schema. Thus, the view schema designed based on the rules is valid and reversible.

6. CONCLUSION

Existing systems that support semistructured views do not maintain the semantics
that are implied by the source schema during the process of designing views. Thus,
they do not guarantee the validity and reversibility of the views. This work ad-
dresses these two issues. We utilize a semantically rich semistructured data model,
and employ a set of view operators for designing semistructured views. The oper-
ators consist of select, drop, join and swap operators. For each type of operator,
we develop a complete set of rules to maintain the semantics of the views. More
specifically, we maintain the evolution and integrity of relationships once an oper-
ator is applied. We also examine the reversible view problem under our operators
and develop rules to guarantee the designed views are reversible views. Finally,
we examine the possible changes for participation constraints of the relationship
types and propose rules to keep the participation constraints correct. To the best
of our knowledge, this is the first work to employ a semantic data model for main-
taining semantics of semistructured views and solving the reversible view problem.
The proposed approach provides for a more robust view mechanism so that we can
exploit the potential of XML/semistructured data to exchange data on the Web.

REFERENCES

Abiteboul S., Cluet S., Mignet L., et al. 1999. Active views for electronic commerce. VLDB,
138–149

Baru C., Gupta A., Ludaescher B., et al. 1999. XML-based information mediation with mix.
ACM SIGMOD Demo, 597–599.

Bohannon P., Korth H., Narayan P., Ganguly S., and Shenoy P. 2002. Optimizing view
queries in rolex to support navigable tree results. VLDB. 119–130.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

