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ABSTRACT
Searching for all occurrences of a twig pattern in an XML
document is an important operation in XML query process-
ing. Recently a holistic method TwigStack [2] has been
proposed. The method avoids generating large interme-
diate results which do not contribute to the final answer
and is CPU and I/O optimal when twig patterns only have
ancestor-descendant relationships. Another important di-
rection of XML query processing is to build structural in-
dexes [3][8][13][15] over XML documents to avoid unneces-
sary scanning of source documents. We regard XML struc-
tural indexing as a technique to partition XML documents
and call it streaming scheme in our paper. In this paper we
develop a method to perform holistic twig pattern match-
ing on XML documents partitioned using various streaming
schemes. Our method avoids unnecessary scanning of irrel-
evant portion of XML documents. More importantly, de-
pending on different streaming schemes used, it can process
a large class of twig patterns consisting of both ancestor-
descendant and parent-child relationships and avoid gen-
erating redundant intermediate results. Our experiments
demonstrate the applicability and the performance advan-
tages of our approach.

1. INTRODUCTION
XML data is often modelled as labelled and ordered tree

or graph. Naturally twig (a small tree) pattern becomes an
essential part of many XML queries. A twig pattern can
be represented as a node-labelled tree whose edges are ei-
ther Parent-Child (P-C) or Ancestor-Descendant (A-D) re-
lationship. For example, the following twig pattern written
in XPath[19] format:

section[/title]/paragraph//figure ........ (Q1)
selects figure elements which are descendants of some para-
graph elements which in turn are children of section ele-
ments having at least one child element title.

Prior work on XML twig pattern processing usually de-
composes a twig pattern into a set of binary relationships
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which can be either parent-child or ancestor-descendant re-
lationships. After that, each binary relationship is processed
using structural join techniques [1][20] and the final match
results are obtained by “stitching” individual binary join re-
sults together. The main problem with the above solution is
that it may generate large and possibly unnecessary inter-
mediate results because the join results of individual binary
relationships may not appear in the final results.

Bruno et al. [2] proposes a novel holistic XML path and
twig pattern matching method TwigStack which avoids stor-
ing intermediate results unless they contribute to the fi-
nal results. The method, unlike the decomposition based
method, avoids computing large redundant intermediate re-
sults. The method is CPU and I/O optimal for all path (with
no branch) patterns and twig patterns whose edges are en-
tirely ancestor-descendant edges. Meanwhile the space com-
plexity of their algorithm is bounded by the longest path in
the source XML document. However the approach is found
to be suboptimal if there are parent-child relationships in
twig patterns. That is, the method may still generate re-
dundant intermediate results in the presence of P-C rela-
tionships in twig patterns.

An important assumption of the original holistic method
is that an XML document is clustered into element streams
which group all elements with the same tag name together
and assign each element a containment label[2]. We call
this clustering method Tag Streaming. In recent years there
have been considerable amount of research on XML indexing
techniques [3][8][13][15] to speed up queries upon XML doc-
uments. In general, these XML indexes can be regarded as
summary of XML source documents and thus much smaller
in sizes. From another point of view, XML structural index-
ing can also be viewed as methods to partition XML doc-
uments for query processing. Interestingly, Tag Streaming
used in TwigStack can be regarded as a trivial XML index-
ing technique which groups all elements with the same tag
together. Up till now, very little research has been done on
performing holistic twig matching on XML documents par-
titioned by other structural indexing techniques than Tag
Streaming. Furthermore, little is known about if more so-
phisticated XML structural indexing methods may allow op-
timal processing of other classes of twig pattern (besides A-D
only twig patterns). Note that in view of the terminology
used in the original holistic pattern matching paper, we call
the combination of XML indexing methods with contain-
ment labels as XML streaming schemes.

In this paper, we demonstrate that in general a more “so-
phisticated” (we will give a formal definition in later sec-



tions) XML streaming scheme has the following two advan-
tages than a simpler one in twig pattern processing: (1)
Reduce the amount of input I/O cost; (2) Reduce the sizes
of redundant intermediate results. The main reason behind
is the increased “parallelism” to access elements with the
same tag and the additional “context” information we know
about each element.

The main contributions of our work are:

• By studying in detail two XML streaming schemes:
(1) a new Tag+Level scheme, which partitions ele-
ments according to their tags and levels; (2)Prefix Path
Streaming (PPS), first proposed in [4], which parti-
tions elements according the label path from the root
to the element, we show rigourously the impact of
choosing XML streaming schemes on optimality of pro-
cessing different classes of XML twig patterns.

• We develop a holistic Twig Join algorithm iTwigJoin
which works correctly on any XML streaming scheme
(as long as elements in a stream are ordered by their
pre-orders). Applied on the Tag+Level scheme the
algorithm can process A-D or P-C only twig patterns
optimally; applied on the PPS scheme the algorithm
can process A-D only or P-C only or 1-Branchnode
only twig patterns optimally.

• Using experiments we study the tradeoff between the
increase in overhead to manage more element streams
and the reduction in both input I/O cost and inter-
mediate result sizes caused by various XML streaming
schemes. The goal is to find streaming schemes for
different types of XML documents which can process
a large class of twig pattern optimally and meanwhile
incur little overhead.

The remaining parts of our paper are organized as fol-
lows: Section 2 reviews the state of the art twig pattern
matching algorithm: TwigStack and its problems. Section
3 introduces several alternative streaming methods. Section
4 describes how to prune away irrelevant streams to a twig
pattern. Section 5 explains in detail the properties of these
streaming schemes used in twig pattern matching. Section
6 gives algorithms which perform holistic join over streams.
Section 7 presents our experiment results. Section 8 surveys
related work. Section 9 concludes the paper.

2. BACKGROUND
In this section, we discuss our XML data model and briefly

review the problem of XML twig pattern matching and the
state-of-the-art holistic twig pattern matching method:
TwigStack. Notations related to XML twig pattern query
are also introduced.

2.1 XML Data Model and Twig Pattern Query
In this paper, an XML document is modelled as a rooted,

ordered and labelled tree. Without loss of generality, wher-
ever the word “element” appears, it refers to either element
or attribute in an XML document.

Many join algorithms on XML documents rely on certain
numbering schemes. For example, the binary XML struc-
tural join discussed in [1][20] and the twig join discussed in
[2] use (startPos: endPos, LevelNum) (an example of re-
gion encoding) to label elements in an XML file. startPos
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Figure 1: A sample XML document with node la-
bels in parentheses. Each element is also given an
identifier (e.g. s1) for easy reference.

and endPos are calculated by performing a pre-order (doc-
ument order) traversal of the document tree; startPos is
the number in sequence assigned to an element when it is
first encountered and endPos is equal to one plus the end-
Pos of the last element visited. Leaf elements have start-
Pos equal to endPos. LevelNum is the level of a certain
element in its data tree. Element A is a descendant of El-
ement B if and only if startPos(A) > startPos(B) and
endPos(A) < endPos(B). A sample XML document tree
labeled with the above scheme is shown in Fig.1.

In their paper [2], a twig pattern match in an XML database
D is defined as an n-ary tuple < d1, d2, . . . , dn > consisting
of the database nodes that identify a distinct match of the
twig pattern Q with n nodes in D. In the same paper, the
problem of twig pattern matching is defined as:

Given a twig pattern query Q, and an XML database D
that has index structures to identify database nodes that sat-
isfy each of Q’s node predicates, compute ALL the matches
to Q in D.

As an example, the matches to twig pattern Q1 of Section
1 in Fig.1 are tuples < s1, t1, p4, f3 > and < s2, t2, p2, f1 >.

In the remaining sections of this paper, we use Q to denote
a twig pattern and QA to denote the subtree of Q rooted at
node A. We use node to refer to a query node in twig pattern
and element to refer to a data node in XML data tree. We
use M or M =< e1, e2, . . . , en > to denote a match to a
twig pattern or sub-twig pattern where ei is an element in
the match tuple. We assume there is no node with identical
tag in twig pattern Q. Since an element tag corresponds to
a unique node in the twig, we use tag q and query node q
interchangeably from now on.

2.2 XML Stream Model
In our paper, each XML “stream” is a posting list (or in-

verted list) accessed by a simple iterator. An XML stream-
ing scheme is a combination of XML structural indexing
techniques and element labelling scheme. More specifically,
we partition an XML document into streams (in the termi-
nology of XML structural indexing, the corresponding term
for stream is extent). The only addition is to assign an region
coding label to each element in the streams. In this paper,
all elements in a stream are of the same tag and ordered by
their startPos. We usually use T to denote a stream. A
stream T has two parts: head(T ) which is the stream’s first
element and tail(T ) which is the rest of the stream. One



can only read the head of a stream but not the tail portion
of a stream (Fig. 2).
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Figure 2: XML Stream Model

2.3 Holistic Twig Join: TwigStack
The holistic method TwigStack,proposed by Bruno et

al[2], is CPU and I/O optimal for all path patterns and
A-D only twig patterns. It associates each node q in the
twig pattern with a stack Sq and a stream Tq containing
all elements of tag q. Each stream has an imaginary cursor
which can either move to the next element or read the ele-
ment under it. The algorithm operates in two main phases:
(1) TwigJoin. In this phase a list of element paths are out-
put as intermediate results. Each element path matches one
root-to-leaf path of the twig pattern. (2) Merge. In this
phase, the list of element paths are merged to produce the
final output.

When all the edges in the twig are A-D edges, TwigStack
ensures that each path output in phase 1 not only matches
one path of the twig pattern but is also part of a match to the
entire twig pattern. Thus the algorithm guarantees that its
time and I/O complexity is independent of the size of partial
matches to any root-to-leaf path of the descendant-only twig
pattern. In this paper, we define a twig pattern matching
algorithm is optimal if all the following three conditions are
satisfied: (1) (Scan Once) Each stream whose elements’ tag
appears in the twig pattern is scanned only once. (2) (No
redundant output) None of the intermediate paths output
in Phase 1 is redundant. (3) (Bounded space complexity)
The space required by the algorithm is bounded by a factor
which is independent of source document size.

However, with the presence of P-C edges in twig patterns,
the TwigStack method is no longer optimal.

Example 2.1. Suppose we evaluate the pattern A[/B]/C
on the XML document in Fig. 3(a). Element a1 is in match
< a1, b1, cn+1 >. However, under the tag streaming scheme,
with stream cursor positions shown in Fig. 3(b), we can
not tell from the current head elements (e.g. a1,b1,c1 ) that
a1 is indeed in a match. Indeed, we observe that under tag
streaming, the XML document in Fig. 3(c) can not be dis-
tinguished from the XML document in Fig. 3(a) because
they have exactly the same set of streams and corresponding
head elements. However, in the second document a1 is not
in any match. Consequently, for the document in Fig. 3(a)
we have to scan and stored all the elements in the stream Tc

until cn+1 before we are certain that a1 is in a match. By
doing so we violate the bounded space requirement.

Noticeably, if we change the twig pattern from A[/B]/C
to A[//B]//C and evaluate on the same document, under
tag streaming the set of head elements now form a match <
a1, b1, c1 > and the previous problem does not exist anymore.

3. XML STREAMING SCHEMES
In this section, we formally introduce various streaming

techniques used in this paper and notations about XML
streams.
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Figure 3: The problem of twig Join using Tag
Streaming

Tag Streaming A Tag Stream in the tag streaming scheme
contains all elements in the document tree with the
same tag. For example,a stream TA contains all ele-
ments of tag A.

Tag+Level Streaming The level of an element in an XML
document tree is equal to the number of nodes from
the root to the element. A Tag+Level stream contains
all elements in the document tree with the same tag
and level. A Tag+Level stream can be uniquely iden-
tified by the common tag and level of all its elements.
For example,a stream T 2

A contains all elements of tag
A and located in level 2.

Prefix-Path Streaming (PPS) The prefix-path of an el-
ement in an XML document tree is the path from the
document root to the element. A prefix-path stream
(PPS stream) contains all elements in the document
with the same prefix-path, ordered by their startPos
numbers. A PPS stream T can be uniquely identi-
fied by its label, which is the common prefix-path of
its elements. For example, a stream TABA contains all
elements of tag A and of prefix-path ABA.

Independent of the XML streaming scheme used, we call
a stream of class q if it contains elements of tag q. Identical
to the notion of refinement [15] in XML structural indexes,
we call a streaming scheme α is a refinement of streaming
scheme β if for any two elements in a stream under α, the
pair of elements are also in a stream under β. It can be
proven that Tag +Level streaming is a refinement over Tag
Streaming and PPS Streaming is a refinement of both Tag
and Tag + Level streaming.

3.1 Notions of XML Streams related to Twig
Pattern Matching

We first define the following notions of ancestor/descendant
streams and parent/child streams.

Under Tag+Level streaming, a stream T1 is an ancestor
stream of stream T2 if the level of T1 is larger than that of
that of T2. T2 is called the descendant stream of T1. T1 is
the parent stream of the level of T1 is equal to that of T2

plus 1. T2 is T1’s child stream.
Likewise under PPS streaming, a PPS stream T1 is an

ancestor stream of PPS stream T2 if label(T1) is a prefix
of label(T2). T1 is the parent stream of T2 if label(T1) is
a prefix of label(T2) and label(T2) has one more tag than



label(T2). The definitions of descendant and child stream
for PPS streaming follow.

Given an P-C or A-D edge < q1, q2 > for which q1 is
the parent node in a twig pattern Q, two streams T1 of
class q1 and T2 of class q2 is said to satisfy the structural
relationship of edge < q1, q2 >: (1) Under Tag Streaming,
the two streams automatically qualify. (2) Under Tag+Level
Streaming or PPS Streaming, T1 is the parent stream of T2

if < q1, q2 > is a P-C edge; T1 is the ancestor stream of T2

if < q1, q2 > is an A-D edge.
Intuitively, two streams are said to satisfy an edge if there

exist two elements, one from each stream, that satisfy the P-
C and A-D edge relationship. Finally we have the following
definition which is frequently used later on

Definition 3.1. (Solution streams) The Solution Streams
of a stream T of class q for q’s child edge < q, qi > in a twig
pattern Q (or soln(T, qi)) are the streams of class qi which
satisfy the structural relationship of edge < q, qi > with T .

4. PRUNING XML STREAMS IN VARIOUS
STREAMING SCHEMES

Using labels of Tag+Level or Prefix-Path streams labels,
we can prune away streams which apparently contain no
match to a twig pattern. The technique used in stream
pruning of Tag+Level and PPS streams are very similar.

The following recursive formula helps us determine the
useful streams for evaluating a twig pattern Q using the two
streaming schemes. For a stream T of class q, we define UT

to be the set of all descendant streams of T (including T )
which are useful for the sub-twig of Qq except that we only
use stream T (not any other stream of class q ) to match
node q.

UT =


{T} if q is a leaf node;
{T}

⋃
{
⋃

qi∈child(q) Ci} if none of Ci is {};
{} if one of Ci is {}.

where Ci =
⋃

Tc∈soln(T,qi)
UTc

Function child(q) returns the child nodes of q in the twig
pattern Q. Apparently, under different streaming approaches,
we just need to switch the definition of child/descendant
stream and solution streams.

The base case is simple because if q is a leaf node, any
stream of class q must contain matches to the trivial single-
node pattern Qq. As for the recursive relationship, note that
for a stream T of class q to be useful to the sub-twig Qq, for
each and every child node qi of q, there should exist some
non-empty set UTc which are useful to the sub-twig Qqi AND
the structural relationship of T and Tc satisfies the edge be-
tween q and qi. In the end the set

⋃
UTr contains all the

useful streams to a query pattern Q, where Tr is a stream of
class root(Q). Notice that the above recursive relationship
can be easily turned into an efficient algorithm using stan-
dard dynamic programming without worrying about exces-
sive re-computation. We omit the algorithm to save space.

Example 4.1. For the XML document in Fig.5(a) un-
der Tag+Level streaming there are seven streams: T 1

A :{a1},
T 2

A :{a2}, T 2
E :{e1}, T 2

B :{b2}, T 3
B :{b1}, T 3

D : {d1, d2, d3}
and T 4

C :{c1, c2}. For the twig pattern in Fig.5(b) we have
UT3

D
is {T 3

D}, UT4
C

is {T 4
C}, UT2

B
is {}, UT3

B
is {T 3

B , T 4
C},

UT1
A

is {}, UT2
A

is {T 2
A, T 3

B , T 4
C , T 3

D}.

So the final useful streams are UT2
A

⋃
UT1

A
and the two

streams T 1
A and T 2

B are pruned.

Given a twig pattern query Q and a set of streams un-
der some streaming scheme, we say those streams surviving
pruning useful streams. It is obvious that we only need
to search useful streams for matches and from now on all
the streams mentioned in the remainder of this paper are
assumed to be useful.

5. XML STREAMING SCHEMES AND TWIG
PATTERN MATCHING

As we have known, TwigStack based on Tag Streaming
is optimal for A-D only twig patterns. With the help of
more sophisticated streaming schemes, in this section we
show that a larger class of twig patterns can be processed
optimally.

5.1 XML Streaming Model and Twig Pattern
Matching

Based on the simple head-element-access-only XML stream-
ing model, we have to decide if a head element is in a match
to a given twig pattern before we can move to the next
element in the stream. However, the difficulty to devise ef-
ficient XML twig pattern matching method lies in the fact
that we can not determine only from the head elements of
various streams if any head element is in a match to a given
twig pattern. Instead, the head elements of some streams
may form a match to a given twig pattern with tail portions
of other streams. However, since we can not access the tail
portions of streams, any premature declaration saying such
head elements are indeed in some matches can result in mis-
judgement and in consequence redundant intermediate out-
put.

Example 5.1. Example 2.1 shows that none of the head
elements of the three streams in Fig. 3(b) are in matches to
A[/B]/C which consists entirely of current head elements.
Neither we can tell from the current head elements that any-
one of them is not in a match: a1, b1 may form a match
with element behind c1 (which is indeed cn+1); c1 may form
a match with element after a1 and a2 (which are indeed a2

and b2). Under such case, to store any head element may re-
sult in redundant intermediate paths whereas to discard any
head element may cause loss of matches.

If we use Tag+Level streaming (Fig. 4(a)) for the docu-
ment in Fig. 3(a), the above problem does not arise anymore
because now we have a match < a1, b1, cn+1 > which consists
of only head elements of their respective streams. Therefore
a1 is determined to be a match. Note that the documents
in Fig. 3(a) and (c) now can be distinguished by Tag+Level
streaming and we can determine for sure that a1 is not in
any match using Fig. 4(b).

Example 5.1 shows that: due to the introducing of P-C
edge in twig patterns, matches to a twig pattern may not
entirely consist of current head elements of streams under
Tag Streaming. Because of our XML stream model, matches
consisting of tail portions of streams can only be regarded
as possible but not guaranteed matches. The existence of
such possible matches means possibility of introducing of
redundant intermediate results in tag streaming scheme if
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Figure 4: Tag+Level Streaming for files in Fig. 3

we do not want to lose any matches. In the next subsec-
tion, we will define formally the concept of possible but not
guaranteed match under our XML stream model.

5.2 Possible Twig Pattern Match
Based on our XML stream model, we define possible match

to a twig pattern Q. We emphasize that a possible twig
pattern match may not be a real match and its existence is
due to the restricted access mechanism of XML stream.

Definition 5.1. (Possible match of a twig pattern Q) A
tuple t with n fields is called a possible match of a twig
pattern Q if:

1. Each field t.q of t corresponds to one node q of Q. The
value of t.q can either be head(Tq) or tail(Tq) where
Tq is a stream of class q; and

2. For each field tq, for each child (if any) qi of q, the
streams Tq and Tqi (which tqi corresponds to) satisfy
the edge < q, qi > (see the definition in Section 3.1)
and

(a) If tq and tqi are of value head(Tq) and head(Tqi),
then head(Tqi) is a parent or ancestor of head(Tq)
depending on the edge < q, qi >.

(b) If tq is of value head(Tq) and tqi is tail(Tqi), then
head(Tq).end > head(Tqi).start.

(c) If tq is of value tail(Tq) and t.qi is head(Tqi), then
head(Tq).start < head(Tqi).start.

(d) If tq is of value tail(Tq) and tqi is tail(Tqi), there
is no additional restriction.

An important difference between a possible match and a
match to a twig pattern is that the former can always be
told from the current head elements as seen from conditions
in the definition whereas the later may not. Informally, the
reason why we call the tuple satisfying the above conditions
a possible match is that the tuple can be instantiated to
matches to Q. If a possible match of Q consists of only head
elements, it is called a minimal match; otherwise it is called
a blocked match. Analogously, we can have similar definition
to possible match to a sub-twig Qq of Q rooted at node q.

For the sake of simplicity, we always use the current head
element of stream T instead of symbol head(T ) in a possible
match. We also append an imaginary “end” element (whose
startPos and endPos are all infinity) to the end of each
stream so that the definitions of head(T ) and tail(T ) can be
applied on single-element streams.

Example 5.2. For the XML document in Fig. 5(a), un-
der Tag Streaming ,suppose all streams have not advanced,

the tuple t :< a1, d1, b2, tail(T 4
C) > is not a possible match

for the query Q in Fig. 5(b) because T 2
B and T 4

C do not sat-
isfy edge B/C. However, the tuple is a possible but not min-
imal match for the query Q′ in Fig. 5(c) because b2.endPos
> c1.startPos.

As another example, the tuple t′ : < tail(T 2
A), d1, b1,

c1 > is not a possible match for Q because a2.startPos >
d1.startPos. However, it is trivial that d1 is a possible and
also minimal match for QD where QD is a sub-query of Q
rooted at D.

Example 5.3. For the XML document in Fig. 6(a), un-
der PPS streaming, there are 8 PPS streams: TA : {a1},
TAB : {b1, b2, b3}, TABA : {a2, a3, a4}, TABD : {d2}, TABAC :
{c1, c2}, TABAB : {b4, b5}, TABABD : {d1}, TABABE : {e1, e2}.

Suppose no stream has yet moved, then the tuple < b1,
tail(TABABE), tail(TABD) > is not a possible match for Q′′

B.
Suppose now we move the stream TAB to b3 and TABA to
a3. The tuple < a1, c1, b3, d2, tail(TABABE) > is a possible
match for Q′′. The tuple < a3, Tail(TABAC), b4, d1, e1 >
is also a possible match for Q′′.

5.3 Classifying Head Elements
Using the concept of possible match, we classify the cur-

rent head elements of useful streams to the following three
types with respect to a twig pattern Q:

1. (Matching element) Element e of type E is called a
matching element if e is in a minimal match to QE

but not in any possible match to QP where P is the
parent of E or E is the root of Q.

2. (Useless element) Element e is called a useless element
if e is not in any possible match to QE .

3. (Blocked element) Otherwise e is a blocked element or
we say e is blocked.

Informally, we can think a useless element as an element
that can be thrown away safely. A matching element e is
an element which is at least in a match to QE and we can
tell if it is in a match to Q in an efficient way which we will
discuss in the section 6 Algorithm.

Notice that a head element e is blocked if e is in a possible
but not in any minimal match to QE or e is in a minimal
match to QE but is some possible match to QP where P is
the parent of E. In the first case, e is not guaranteed to
be in a match. In the later case, if e is in a possible match
to QP , taking away e first can cause errors in determining
if elements which are ancestor of e are indeed in possible
matches to QP . Therefore it is unsafe to advance the stream
where e is the head.

For an optimal twig pattern matching algorithm to pro-
ceed, it should never happen that all current head elements
are blocked because in such a situation we can not advance
any stream without storing elements which are not guaran-
teed in a match.

Notice that Example 2.1 gives an example where all head
elements are blocked under Tag Streaming.

Although better than Tag Streaming, the following exam-
ple shows that there are also queries under which all head
elements are blocked under Tag+Level streaming.

Example 5.4. Under Tag+Level Streaming, for the XML
file in Fig.5(a), Q in Fig.5(b) and Q′ in Fig.5(c), suppose
no stream cursor has moved, we have
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Figure 5: A Sample XML Document and Two
Queries 
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Figure 6: A Sample XML Document for which PPS
also can’t help

Head Q Q’
a1 Useless Blocked
a2 Blocked Blocked
b1 Blocked Blocked
b2 Useless Blocked
c1 Blocked Blocked
d1 Matching Blocked

For instance, for Q′, d1 is blocked because it is in a possible
match < d1, a1, b2, tail(T 4

C) > to Q′
A.

The following example shows that PPS streaming can
avoid some all blocked situation occurring in Tag + Level
streaming but also has its limitation.

Example 5.5. Under PPS Streaming, for the XML file
in Fig.5(a) and Q′ in Fig.5(c), different from Tag+Level
streaming, we have both a1 and a2 as matching elements.
The main reason is that d1 and d2 are now in two different
PP streams TAED and TAAD and so are c1 and c2.

However, for the document in Fig.6(a) and the query in
Fig. 6(b), suppose the stream TAB advances to b3 and TABA

advances to a3. We have all head elements, namely, a1, a3,
b3, b4, d1, e1, c1 and c2 blocked.

5.4 Properties of Different Streaming Tech-
niques

The last subsection gives us some negative results and
thus limits of various streaming schemes. Now we try to
prove that for a certain class of twig pattern query, a partic-
ular streaming scheme can prevent the situation whereby all
head elements are blocked. This can be seen as a necessary
condition for optimal twig pattern matching. Now first we
introduce an auxiliary lemma

Lemma 5.1. Given two streaming schemes α and β, sup-
pose α is a refinement of β. Suppose we have a set of streams
in β being further partitioned under α, we have

1. A matching head element in β is also a matching head
element in α.

2. A useless head element in β is also a useless head ele-
ment in α.

It is easy to find example to prove that the opposite di-
rection in each of the two conclusions in the lemma is not
true.

In proving the following lemmas, we use the following im-
portant observations: a blocked or useless element for sub-
twig pattern Qq of Q is also a blocked or useless element
for Q; if e is a matching element for sub-twig pattern Qq

of Q but not in possible match to Qq, it is also a matching
element for Q.

Lemma 5.2. Under Tag Streaming, for an A-D only query
Q, there always exists a head element which is either a
matching or useless element for Q.

Proof. We use induction on the sub-queries of Q.
(Base case) Suppose a node q in Q which is the parent of

leaf nodes q1, q2, . . . , qn and Tq has not ended. Note that if
any stream Tqi has ended, head(Tq) is a useless element for
Qq and we are done. Otherwise all streams Tq1 , . . . , Tqn are
not end and it is obvious that each sub-twig Qqi for i from
1 to n has a minimal match. There are the following cases:

1. If head(Tq).endPos < head(Tqi).startPos for some qi,
then head(Tq) is a useless element for Qq.

2. Else if head(Tq).startPos > head(Tqi).startPos for
some qi, then head(Tqi) is a matching element for Qq

but is not in possible match to Qq.

3. Otherwise head(Tq) is ancestor of head(Tqi) for each
qi and head(Tq) is a matching element for Qq.

Note that in the base case we can find either a useless or
matching element w.r.t sub-twig Qq.

(Induction) Suppose a node q in Q has child nodes q1, . . . , qn,
by the induction hypothesis, if there is a node qi for which
head(Tqi) is not a matching element for Qqi , we must find ei-
ther a useless element for Qqi (which is also a useless element
for Qq) under the above case 1 or a matching element for a
sub-twig of Qqi but not in possible match to Qqi (which is
also a matching element for Qq) under case 2 and thus done.
Otherwise each head(Tqi) is a matching element for Qqi , we
proceed with the same argument (with the three cases) in
the base case. Note that the induction step ends when q
is the root of Q and in such case head(Tq) is a matching
element we are done.

Lemma 5.3. Under Tag+Level streaming, for an A-D only
or P-C only query Q, there always exists a head element
which is either a useless or matching element for Q.

Proof. (Sketch) According to Lemma 5.1, for an A-D
only twig pattern, the above statement is true.

Given a P-C only query Q with n nodes, we can partition
the streams into a few groups each of which has n streams
and contains possible matches to Q. For example, streams
T 2

A, T 3
D, T 3

B and T 4
C form a group for the query A[/D]/B/C

in Fig. 5. Notice that it is impossible that two elements from
streams of different groups can be in the same match. For
each group of n streams, we can perform the same analysis
as in the proof of Lemma 5.2 to find out either a useless or
matching element for Q.



Lemma 5.4. Under Prefix-Path streaming, for an A-D
only or P-C only and one branchnode only queries, there
always exists a head element which is either a useless or
matching element.

Proof. (Sketch)According to Lemma 5.1, for a A-D or
P-C only twig pattern, the above statement is true. For a
one branchnode only query,we first prove the special case
where the root node is also the branch node. Suppose the
PPS stream Tmin is the one whose head element with the
smallest startPos among all streams.

1. Tmin is of class q where q is not the root of Q and
L is the label of Tmin. Suppose ql is a leaf node of
Q and descendant of q. Suppose T min

ql
is a stream

of class ql having label L′ with the following proper-
ties: (1) L′ = L + L′′ and the string L′′ matches the
path query Qq (2) T min

ql
has the head element with

the minimum startPos among all streams of class ql

satisfying property (1). Now if head(Tmin) is not an
ancestor of head(T min

ql
), then head(Tmin) is a useless

element and we are done. Otherwise take any stream
Tm of class qm where qm is a node between q and ql

and having a label which is prefix of L′ and for which
L is a prefix. If for any such Tm, head(Tm).endPos <
head(T min

ql
).startPos then head(Tm) is a useless ele-

ment; otherwise head(Tmin) is a matching element.

2. Tmin is of class q where q is the root of Q. We can
consider the leaf nodes for each branch of Q and repeat
the same argument as (1) for each branch.

In the case where the branch node is not the root node,
we can reduce it to the first case. But to save space we omit
it here.

Interested readers may wonder if there is a streaming
scheme whereby the all blocked situation never occurs, we
point out that at least the costly FB−BiSimulation scheme
[11] is able to do that because the scheme is so refined that
from the label (or index node) of each stream we can tell if
all elements in the stream are in a match or not.

6. TWIG JOIN INDEXED XML DOCUMENT
In this section, we describe a twig pattern matching method

iTwigJoin applicable to any streaming schemes discussed so
far based on the notion of possible match. Our method can
work correctly for all twig patterns and meanwhile they are
also optimal for certain classes of twig patterns depending
on the streaming scheme used.

6.1 Main Data Structures
There are two important components in our twig pattern

matching algorithm, namely: (1) A stream management sys-
tem to control the advancing of various streams. (2) A tem-
porary storage system to store partial matching status and
output intermediate paths.

The role of the temporary storage system can be summa-
rized as follows: it only keeps elements from streams which
are in possible matches with elements which are still in the
streams. The elements in the temporary storage system has
dual roles: (1) they will be part of intermediate outputs (2)
when a new element e with tag E is found to be in a possible
match to sub-twig QE of twig pattern Q, we can know if e
is in a possible match to Q by checking if e has a parent

or ancestor element p in the temporary storage which is a
possible match to QP where P is the parent node of E in
Q. Similar to TwigStack, we associate each node q in a
twig pattern with a stack Sq. At any time during computa-
tion, all elements in a stack are located on the same path in
source XML documents. The property is ensured through
the following push operation: when we push a new element
e with tag E into its stack SE , all the elements in the stack
which are not ancestor of e will be pop out.

As for the stream management system, depending on dif-
ferent streaming schemes, each node q is associated with all
useful streams of class q. Each stream has the following
operations: head(T ) returns the head element of stream T ;
T.advance() moves the stream cursor to the next element.

6.2 Algorithm: iTwigJoin

6.2.1 Overview
The flow of our algorithm iTwigJoin is similar to that

of TwigStack. In each iteration, an element e is selected
by the stream management system from the remaining por-
tions of streams. To avoid redundant intermediate output,
we always try to select a matching element unless all head
elements are blocked. The element is then be used to update
the contents of stacks associated with each query node in
the twig pattern. The detail of updating process will be dis-
cussed shortly. During the update, partial matching paths
will be outputted as intermediate results. The above pro-
cess ends when all streams corresponding to leaf nodes the
twig pattern end. After that, the lists of intermediate result
paths will be merged to produce final results.

6.2.2 Algorithm Details
We divide our algorithm into two parts. One for the

stream management system (Algorithm 2) and another for
the temporary storage system(Algorithm 1).

The stream management system of iTwigJoin, in each it-
eration, discards useless elements and selects a head element
e of tag E from the remaining portions of streams with the
following two properties:

1. e is in a possible match to QE but not in a possible
match to QP where P is the parent of E in Q. (Notice
that e can be either a matching element or a blocked
element but not a useless one.)

2. e is the element with the smallest startPos among all
non-useless head elements of tag E′ where E′ is a node
in the sub-twig QE .

The first property guarantees that the element e is at least
in a possible match to QE . Equally importantly, a par-
ent/ancestor element in a match is always selected before
its child/descendant by the property. The second property
is important to ensure that the space used our temporary
storage system is bounded as we will explain in the next
section.

Before studying in detail how the stream management sys-
tem works, let us first look at the temporary storage system
in Algorithm 1. After the element e with tag E is selected
(line 3) , we first pop out elements in SE and Sparent(E)

whose endPos is smaller than e.startPos (line 5) as they
are guaranteed to have no more matches as we will prove
shortly. In line 6, we check in our temporary storage system



if there is an element in stack SP which is parent or ances-
tor of the selected element e (depending on edge < P, E >)
where P is the parent node of E. If there is such an ele-
ment, e is then pushed into SE (line 7) and if E is a leaf
node a number of intermediate paths containing e as the leaf
element are output (line 9); otherwise e is discarded.

Now we study how the stream management system works.
The function call getNext(root) (Algorithm 2) plays the role
of selecting an element from the remaining portions of the
streams with the two aforementioned properties. It works
recursively: (1) For the base case where q is a leaf node
in Q, it just returns q (line 1-2). (2) Suppose q has chil-
dren q1,q2,. . .,qn, we first call getNext(q1),. . . ,getNext(qn)
(line 5). If any of the recursive call does not return qi,
we have found the element because it satisfies the above
two properties mentioned w.r.t Qqi and is not in a pos-
sible match to Qqi ; thus it also satisfies the two proper-
ties w.r.t Qq and consequently Q. So it returns what the
call returns (line 6-7). Otherwise for each stream T j

q of
class q, for each child node qi of q from 1 to n, in line
11-12 we find the stream T min

qi
which is of class qi and

also has the smallest startPos among all solution streams
of T j

q for edge < q, qi >. Let Tmax be the stream whose

head has the largest startPos among T min
qi

for i from 1 to

n (line 14) . We next advance T j
q until head(T j

q ).endPos
> head(Tmax).startPos (line 15-17). Notice that all ele-
ments skipped are useless elements because they are not
in possible match to Qq. After the advancing, head(T j

q )
is in a possible match to Qq and can be either blocked
or matching. Finally, let T min

q be the current stream of

class q with the smallest startPos and T min
child be the stream

with the smallest startPos among ALL streams of class qc

where qc is any child node of q. If head(T min
child).startPos

< head(T min
q ).startPos, the element head(T min

child) satisfies
the two properties aforementioned: it will not be in any
possible matches to Qq because head(T min

child) .startPos <
head(T min

q ).startPos and the satisfaction of property 2 is
obvious. Thus the child node is returned. Otherwise q is re-
turned and the recursion proceeds because head(T min

q ) may
be in a match to Qparent(q).

Example 6.1. For the sample XML document in Fig.5(a)
and the twig pattern query Q′ in Fig.5c, the PPS streaming
scheme can provide an optimal solution. The following table
traces the entire matching process with the elements selected
in each iteration by getNext(root) and the corresponding
stack operation. The word “push” means an element of tag
E is pushed into its stack SE.

Note that all elements selected are matching elements.
As an example, when a1 is selected, it is in the match <
a1, d1, b2, c2 > which are all head elements of their Prefix
Path streams.

Step Selected Stack Operation
1 a1 push
2 d1 push , output a1/d1

3 a2 push
4 d2 push , pop d1,output a1/d2,a2/d2

5 b1 push
6 c1 push , output a2/b1/c1

7 b2 push
8 d3 push , pop d2, output a1/d3

9 c2 push , pop c1, output a1/b2/c2

On the other hand, for the query Q′′ in Fig. 6b and the

document in Fig. 6a, iTwigJoin based on PPS streaming
scheme is no longer optimal because Q′′ has two branchn-
odes. For example, when a1 is selected, it is only in the non-
minimal possible match < a1, c1, b3, d2, tail(TABABD) >. No-
tice that the current head element of stream TABABD is e1,
which is also in a possible match. However, if the tail(TABABD)
does not contain the element e2 , we will output two redun-
dant intermediate paths: a1/c1 and a1/b3/d2. Of course if
we just discard a1 we may lose the two paths if e2 is there
instead.

Even though our algorithm iTwigJoin is not optimal in
this case, compared with TwigStack, it still output less re-
dundant intermediate paths: note that TwigStack will also
output the redundant path a1/b2/e1 because < a1, c1, b2, e1, d1 >
is in a match to A[//C]//B[//D]//E.

Step Selected Stack Operation
1 a1 push
2 c1 push , output a1/c1

3 a3 push
4 c2 push , pop c1,output a3/c2

5 b4 push
6 e1 push , output a3/b4/e1, a1/b4/e1

7 d1 push , output a3/b4/d1

8 b3 push , pop b4

9 e2 push , pop e1, output a1/b3/e2

10 d2 push , pop d1, output a1/b3/d2

iTwigJoin, applied on Tag Streaming, is essentially iden-
tical to TwigStack. Except the definition of Solution Streams
(Algorithm 2 line 12), iTwigJoin is independent of the un-
derlying streaming scheme used. Thus given a new stream-
ing scheme (assuming elements in the stream are of the same
tag and ordered in document-order) other than the three dis-
cussed, iTwigJoin is still applicable after we work out the
new definition of solution streams which is often quite easy.

Algorithm 1 iTwigJoin

1: Prune-Streams(Q) //See Section 4
2: while ¬end(root) do
3: q = getNext(root);
4: Tmin = the stream with the smallest startPos among all

streams of class q
5: pop out elements in Sq and Sparent(q) which are not an-

cestor of head(Tmin)
6: if isRoot(q) ∨ existParAnc(head(Tmin),q) then
7: push head(Tmin) into stack Sq

8: if isLeaf(q) then
9: showSolutionWithBlocking(Sq); //See TwigStack for

details
10: end if
11: end if
12: advance(Tmin)
13: end while
14: mergeAllPathSolutions()

Function: end(QueryNode q)
1: return true if all streams associated with leaf nodes of Qq

end;
2: Otherwise return false;

Function: existParAnc (Element e, Node
q)
1: return true if e has a parent or ancestor element in stack

Sparent(q) depending on edge < parent(q), q >)

6.3 Algorithm Analysis



Algorithm 2 getNext(q)

1: if isLeaf(q) then
2: return q
3: end if
4: for for i = 1 to n do
5: qx =getNext(qi) //q1,. . .,qn are children of q
6: if qx <> qi then
7: return qx

8: end if
9: end for

10: for each stream T j
q of class q do

11: for i = 1 to n do
12: T min

qi
= min(soln(T j

q ,qi)); //See definition 3.1 for soln

13: end for
14: Tmax = max({T min

q1
,. . .,T min

qn
});

15: while head(T j
q ).endPos < head(Tmax).startPos do

16: T j
q .advance();

17: end while
18: end for
19: T min

q = min(streams(q))

20: T min
child = min(streams(q1)

⋃
. . .

⋃
streams(qn));

21: if T min
q .startPos < T min

child.startPos then
22: return q;
23: end if
24: return qc where T min

child is of class qc

Function: min(a set of streams)
1: return the stream with the smallest startPos in the set

Function: max(a set of streams)
1: return the stream with the largest startPos in the set

In this section, we first prove the correctness of our al-
gorithm. Next we are going to show that depending on
streaming schemes used, our algorithm is optimal for sev-
eral important classes of twig pattern queries.

Lemma 6.1. The getNext(root) of Algorithm iTwigJoin
returns all elements which are in matches to a given twig
pattern Q.

Essentially, we can show that the getNext(root) call of our
algorithm returns all elements e of tag E which are in possi-
ble match to sub-query QE of Q, which is a superset of ele-
ments in matches to Q. The most important observation is
that Property 1 of the element returned by getNext() guar-
antees that a parent/ancestor element in a possible match
is always returned before its child/descendant element.

Lemma 6.2. In Algorithm iTwigJoin, when an element
is popped out of its stack, all its matches have been reported.

Proof. An element e of tag E is popped out of its stack
SE because we push into SE or child stack SC (line 5 of
Algorithm 1) an element e′ and e′.startPos > e.endPos.
Suppose e has some matches yet output, there must exist a
child/descendant element c (with tag C) of e not yet be re-
turned by getNext(root). It is easy to see that e′.startPost >
c.endPos too. Since c will also be in a possible match to
QC , by the second property of the getNext(root) function, c
will be returned before e′ because c.startPos < e′.startPos.
Contradiction.

The above two lemmas show all elements in matches will
be reported by our Stream Manager and no element will
be removed from our temporary storage system before all

its matches have been reported. Thus we can come to the
follow theorem

Theorem 6.3. The algorithm iTwigJoin correctly reports
all matches to a given twig pattern .

The following lemma shows that the space complexity of
our algorithm is bounded.

Lemma 6.4. Algorithm iTwigJoin uses space bounded by
|Q| ∗ L where L is the longest path in the XML source doc-
ument and |Q| is the number of nodes in Q.

This is easy to see because all the elements in any stack
are located on the same path of the source document.

The following lemma shows the optimality of our algo-
rithm for certain classes of twig pattern queries depending
on streaming schemes. The essential idea is that under the
combination of twig pattern types and streaming schemes,
every getNext(root) call only returns an element which is a
matching element. Because a matching element e of tag E
is in a real match, no redundant intermediate results will be
outputted. The proofs can be extended from the proofs of
Lemma in Section 5.4.

Lemma 6.5. Depending on streaming schemes, our algo-
rithm iTwigJoin is optimal in the following classes of queries:

1. Tag Streaming: A-D only twig pattern.

2. Tag + Level Streaming: A-D or P-C only twig pattern.

3. Prefix-Path Streaming: A-D or P-C or one branch-
node only twig pattern.

Lemma 6.6. The CPU time of iTwigJoin is O(no streams
× |Q| × |INPUT + OUTPUT |) where no streams is the
total number of useful streams for the twig pattern query Q.

In the actual implementation, for stream T j
q of class q, we

keep a number min(T j
q , qi) for each child edge of q: < q, qi >

to keep track of the minimum startPos of head elements of
streams in soln(T j

q , qi). Notice the number is used in Line
12 of algorithm 2. Notice that when a stream advances, at
most O(no streams) min numbers will be updated.

Since each element is scanned only once, we calculate the
CPU time by bounding the time interval from the previous
element scan event to the current one. There are two places
to scan an element in the program: Line 12 of Algorithm 1
and Line 16 of Algorithm 2. Notice that if the current scan
occurs in Line 16 of Algorithm 2, the time lapse after the
previous scan event is at most O(no streams) for update
those min(T j

q , qi) of various streams and at most O(|Q|)
on lines 10 to 15 of Algorithm 2. If we scan an element
in Line 12 of Algorithm 1, the maximum time interval is
O(|Q| ∗ no streams) when the previous scan also occurs at
line 12 of algorithm 1. Therefore the total CPU time spent
is O(no streams×|Q|×|INPUT +OUTPUT |) when added
in the output size.

7. EXPERIMENTS
In this section we present experimental results. We first

apply the two streaming schemes (i.e. Tag+Level and PPS)
to XML documents with different characteristics to demon-
strate their applicability of different kinds of XML files.



XMark Treebank
Size 113MB 77MB
Nodes 2.0 million 2.4 million
Tags 77 251
Max Depth 12 36
Average Depth 5 8
No. of Streams using Tag+Level 119 2237
No. of streams using PPS 548 338740

Table 1: XML Data Sets used in our experiments

Next we conduct a comprehensive study of twig pattern pro-
cessing performances based on various streaming schemes
and the algorithms we discussed. Our experiment results
show significant advantages of new XML streaming schemes
and twig join algorithms over the original TwigStack ap-
proach and its recent variant.

7.1 Experiment Settings and XML Data Sets
We implemented all algorithms in Java 1.5. All our exper-

iments were performed on a system with 2.4GHz Pentium
4 processor and 512MB RAM running on windows XP. We
used the following real-world (i.e. TreeBank [16]) and syn-
thetic data sets (i.e. XMark [18]) for our experiments: (1)
XMark This well-known XML data set is synthetic and gen-
erated by an XML data generator. It contains information
about an auction site. Its DTD is recursive. (2) TreeBank
We obtained the TreeBank data set from the University of
Washington XML repository [16]. The DTD of Treebank
is also recursive. TreeBank consists of encrypted English
sentences taken from the Wall Street Journal, tagged with
parts of speech. The deep recursive structure of this data
makes it ideal for experiments of twig pattern matching al-
gorithms. Their main characteristics can be found in Table
1.

The reason why we select the above two XML data sets is
because they represent two important types of data: XMark
is more “information oriented” and has many repetitive struc-
tures and fewer recursions whereas TreeBank has inher-
ent tree structure because it encodes natural language parse
trees.

7.1.1 Number of Streams Generated by various Stream-
ing Techniques

Table 1 also shows the statistics of applying Tag+Levl
and Prefix-Path streaming schemes. It is easy to see that on
an information-oriented data source like XMark, the num-
bers of streams resulted from Tag+Level as well as Prefix-
Path streaming are small compared with the total number
of nodes (2 million) in the document. This shows that in the
document, most of the elements with the same tag appear
in relatively few different “contexts”. On the other hand, in
a much more deep recursive data like Treebank, Tag+Level
still results in relatively few number of streams compared
with element numbers (2.4 million). However the number
of streams under Prefix-Path streaming is so large that it is
nearly 16% of the number of elements.

The above data shows that Tag +Level can be applied to
a wider range of XML documents whereas Prefix − Path
streaming is better to use in more information-oriented XML
data.

7.2 Twig Pattern Matching on various stream-
ing schemes

XMark1 //site/people/person/name
XMark2 //site//people//person[//name][//age]//income
XMark3 //text[/bold]/emph/keyword
XMark4 //listitem[//bold]/text//emph
XMark5 //listitem[//bold]/text[//emph]/keyword
Tree1 S//ADJ[//MD]
Tree2 S[/JJ]/NP
Tree3 S/VP/PP[/NP/VBN]/IN
Tree4 S/VP//PP[//NP/VBN]/IN
Tree5 S//NP[//PP/TO][/VP/ NONE ]/JJ

Table 2: Queries used in our experiments

T+L T+L pruning PPS PPS pruning
XMark1 7 4 17 4
XMark2 9 7 19 6
XMark3 27 24 330 132
XMark4 24 19 249 144
XMark5 31 23 348 162
Tree1 62 46 12561 1714
Tree2 91 81 78109 18
Tree3 177 138 123669 474
Tree4 177 138 123669 1876
Tree5 209 175 132503 1878

Table 3: Number of Streams Before and After Prun-
ing for XMark and TreeBank Datasets

7.2.1 Queries
We select representative queries (shown in Table 2) which

cover the classes of twig pattern query that fall within and
outside the optimal sets of different streaming schemes.

The selected queries over the XMark dataset include: (1)
a Path query (XMark1) (2)an A-D only query (XMark2)
(3)a P-C only query (XMark3) (4) One branchnode (but
neither A-D nor P-C only) query (XMark4) (5) A Query
(XMark5) which does not fall in the above four types and
are not theoretically optimal under any of our streaming
schemes.

The selected queries over the TreeBank dataset include:
(1) an A-D only query (Tree1) (2) two P-C only queries
(Tree2 and Tree3) (3) two queries (Tree4 and Tree5) which
do no fall in the above two categories and are not theoreti-
cally optimal under Tag+Level streaming.

7.2.2 Performance Measures
We compare four algorithms: namely TwigStack on Tag

Streaming scheme, a recent proposed variant of TwigStack:
TwigStackLst [14] and iTwigJoin on Tag+Level and Prefix-
Path Streaming respectively. TwigStackLst is also based on
Tag Streaming. It is different from TwigStack by allowing
look ahead a limited amount of elements in a stream to avoid
redundant intermediate paths. The method is shown not be
optimal for P-C only or 1-branchnode only twig pattern. We
consider the following performance metrics to compare the
performance of twig pattern matching algorithms based on
three streaming schemes: (1) Number of elements scanned
(2) Number of intermediate paths produced (3) Running
time. We also record the number of streams whose tags ap-
pear in the twig pattern and the number of useful streams af-
ter streaming pruning for each query under different stream-
ing schemes in Table 3.
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Figure 7: Performance Comparison over XMark (a-c) and TreeBank (d-f) datasets; the number of interme-
diate paths output by Tag+Level and PPS is also the number of merge-joinable paths
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Figure 8: Performance Comparison of four algorithms over XMark of different sizes using XMark5

7.2.3 Scalability
We also test the four algorithms on data sets of different

sizes. We present in Fig. 8 the performance results tested on
XMark benchmark size of 11MB, 40MB, 80MB and 113MB
and 140MB on the twig pattern XMark5.

7.3 Performance Analysis
In terms of number of bytes scanned (Fig. 7(a) and (d)),

based on the XMark benchmark, we can see that both PPS
and Tag+Level can prune large portions of irrelevant data:
PPS from 40% to 300% and Tag+Level from 4% to 250%.
Meanwhile, PPS can prune more data than Tag+Level. As
for Treebank, Tag+Level saves fewer I/O (from 0% to 5%)
compared with PPS.

With respect to the numbers of intermediate paths output
by various algorithms (Fig. 7(b) and (e)), iTwigJoin based
on PPS and Tag+Level avoids redundant intermediate paths
produced by TwigStack and TwigStackLst based on Tag
Streaming. For XMark, the reduction ratio goes up to 25%
(XMark5) and for Treebank as high as 79800:10 (Tree2).
A somewhat surprising result is that although there are
queries which fall outside of the theoretical optimal classes
of Tag+Level and PPS (e.g. XMark3,Tree3 and Tree4 for
Tag+Level and XMark5 for PPS), the numbers of interme-
diate paths output by Tag+Level and PPS for these queries
are also the numbers of merge-joinable paths! This shows
that in real XML data sets the theoretical worse cases (which
we construct in Section 5) seldom occur.

Combining the savings in both input I/O cost and inter-

mediate result sizes, iTwigJoin in general achieves faster
running time (Fig. 7(c) and (f)). For XMark, iTwigJoin
based on PPS is always faster than that based on Tag+Level
streaming which in turn is faster than that of TwigStack.
For Treebank, iTwigJoin based on Tag+Level streaming
loses slightly (−5%) in A-D only query (Tree1) and the
query Tree5 where there are over 175 streams involved but
wins in other cases; however, except Tree2 where there are
18 streams left after pruning, iTwigJoin based on PPS
requires unacceptable running times (1412s for Tree4 and
540s for Tree5) because it needs to join too many streams.
iTwigJoin, based on Tag+Level or PPS, needs to join more
streams than that of TwigStack. This makes iTwigJoin
more CPU-intensive than that of TwigStack. Our experi-
ment results show that even the number of streams goes up
to 150, iTwigJoin still has edges over Twigstack because
of the saving in input I/O and intermediate outputs.

8. RELATED WORK
Structural join is essential to XML query processing be-

cause XML queries usually impose certain structural re-
lationships (e.g. P-C or A-D relationships). For binary
structural join, Zhang et al [20] proposed a multi-predicate
merge join (MPMGJN) algorithm based on region labelling
of XML elements. The later work by Al-Khalifa et al [1]
gave a stack-based binary structural join algorithm, called
Stack-Tree-Desc/Anc which is optimal for an A-D and P-
C binary relationship. Wu et al [17] studied the problem
of binary join order selection for complex queries. More



recently, N. Bruno et al [2] proposed a holistic twig join
algorithm, namely TwigStack, to avoid producing a large
intermediate result. TwigStack is I/O optimal for queries
with only ancestor-descendant edge. Choi et al [6] demon-
strated that no matter how elements in a Tag Streaming
stream are ordered, it is impossible to achieve optimal holis-
tic matching. Lu et al [14] proposed a look-ahead method to
reduce the number of redundant intermediate paths. Jiang
et al [10] used an algorithm based on indexes built on ele-
ment containment labels. The method can “jump” elements
and achieve sub-linear performance for twig pattern queries.
However it still does not solve the problem of redundant in-
termediate results in the presence of P-C relationship. Jiang
et al [9] considered the problem of processing twig pattern
query with and and or predicates. BLAS by Chen et al [5]
proposed a dual labelling scheme: D-Label exactly the same
as the region coding and P-Label for accelerating P-C rela-
tionship processing. The method decomposes a twig pattern
into several P-C only path queries and then join the results.

Our XML streaming schemes follows another line of XML
research on XML structural indexing. The PPS scheme is
indeed a special case of Dataguide [7] used in tree-structured
XML data. Milo et al [15] proposed 1-Index to compute
simulation and bisimilation sets of graph to partition data
nodes. Kaushik et al [11] proposed the use of Forward and
Backward bisimilation as a covering index for XML branch
queries. Kaushik et al [13] gave a k-bisimilation partition
method based on local similarity to reduce the index graph
size. Chen et al [3] and He et al [8] further reduced the index
graph sizes.

Recently Kaushik et al [12] proposed to process XML Path
queries by integrating structural indexes and region label.
However the approach still stores all elements of the same
tag in a list and does not use holistic matching technique.
Chen et al [4] first proposed to perform holistic twig pat-
tern matching on XML document partitioned using PPS
scheme and show its optimality in A-D only, P-C only and
1-Branchnode only twig patterns. However the method can
only be applied to the above three classes of twig patterns.

9. CONCLUSIONS
In this paper, we apply XML structural indexing tech-

niques to increase the amount of “holism” in XML twig
pattern matching. We have developed theory to explain
the optimal classes as well as limits of streaming schemes
like Tag Streaming, Tag+Level Streaming and Prefix-Path
Streaming: Tag+Level Streaming can be optimal for both
A-D and P-C only twig patterns whereas PPS streaming can
be optimal for A-D only, P-C only and one branchnode only
twig patterns assuming there is no repetitive tag in the twig
patterns. In general, we argue that a more refined streaming
scheme can provide optimal solution for a larger class of twig
patterns. We have developed a unified framework to perform
twig pattern matching on all three streaming schemes dis-
cussed and we comment our algorithm is also applicable to
all streaming schemes as long as the elements in a stream
are ordered by document order. Our method reduces both
input I/O cost and redundant intermediate result sizes and
can achieve good performance.
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