
DDE: From Dewey to a Fully Dynamic XML Labeling
Scheme

Liang Xu, Tok Wang Ling, Huayu Wu, Zhifeng Bao
School of Computing

National University of Singapore
{xuliang,lingtw,wuhuayu,baozhife}@comp.nus.edu.sg

ABSTRACT
Labeling schemes lie at the core of query processing for
many XML database management systems. Designing la-
beling schemes for dynamic XML documents is an impor-
tant problem that has received a lot of research attention.
Existing dynamic labeling schemes, however, often sacrifice
query performance and introduce additional labeling cost to
facilitate arbitrary updates even when the documents actu-
ally seldom get updated. Since the line between static and
dynamic XML documents is often blurred in practice, we
believe it is important to design a labeling scheme that is
compact and efficient regardless of whether the documents
are frequently updated or not. In this paper, we propose
a novel labeling scheme called DDE (for Dynamic DEwey)
which is tailored for both static and dynamic XML docu-
ments. For static documents, the labels of DDE are the
same as those of dewey which yield compact size and high
query performance. When updates take place, DDE can
completely avoid re-labeling and its label quality is most re-
silient to the number and order of insertions compared to
the existing approaches. In addition, we introduce Com-
pact DDE (CDDE) which is designed to optimize the per-
formance of DDE for insertions. Both DDE and CDDE can
be incorporated into existing systems and applications that
are based on dewey labeling scheme with minimum efforts.
Experiment results demonstrate the benefits of our proposed
labeling schemes over the previous approaches.
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1. INTRODUCTION
The rise of XML[5] as a de facto standard for data ex-

change and representation has generated a lot of interest on
querying XML documents that conform to an ordered tree-
structured data model. Labeling schemes facilitate XML
query processing by assigning each node in the XML tree
a unique label. The structural relationships of the nodes,
such as Parent/Child (PC), Ancestor/Descendant (AD) and
document order, can be efficiently established by comparing
their labels.

Dewey[3][6][13] labeling scheme has been widely adopted
in XML query processing. A dewey label of a node rep-
resents the path from the document root to the node. In
addition to PC, AD and document order, Dewey supports
efficient determination of sibling relationships as well. More-
over, due to the path information contained in its labels,
dewey has also become the natural choice for XML keyword
query processing[16][12] which has a great interest in com-
puting the Lowest Common Ancestor (LCA) for a set of
nodes. Containment labeling scheme[17][10], which is also
popular in many applications, does not support the determi-
nation of sibling relationships or the computation of LCA.

While dewey labeling scheme works well for static XML
documents, it may suffer from high cost of re-labeling for
dynamic XML documents where nodes can be arbitrarily
inserted and deleted. ORDPATH[11], which is used in the
latest versions of Microsoftr SQL ServerTM, is based on
dewey and designed for dynamic XML documents. In OR-
DPATH labeling scheme, only odd numbers are used at ini-
tial labeling. Processing insertions with ORDPATH labels
is based on a special ‘careting in’ technique where even num-
bers are not counted as components that increase the level of
a node. While ORDPATH supports insertion of new nodes
at arbitrary positions in the XML tree, the flexibility comes
with inseparable costs even when the XML documents sel-
dom get updated: a) Compared with dewey, skipping even
numbers makes ORDPATH labels less compact; and b) The
‘careting in’ technique introduces additional complexity for
ORDPATH label processing. For example, level informa-
tion, which can be easily inferred from a dewey label, can
not be deduced from an ORDPATH label unless the parities
of all its components are checked.

Recently several encoding schemes[8][7][15] have been pro-
posed as a new approach to process updates in XML doc-
uments. An encoding scheme transforms the labels from
their original format to another format which allows dy-
namic updates without re-labeling. Compared with the pre-
vious works on labeling dynamic XML documents, the en-
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coding approach has shown better performance when the
XML documents are frequently updated[9].

However, the encoding approach is no magic bullet. First
of all, transforming labels into dynamic formats incurs extra
labeling cost. In addition, it is common for an XML repos-
itory to have XML documents that are frequently updated
and those that are not. If an encoding scheme is applied
only to those dynamic XML documents, we have to face a
situation where different documents may have different label
formats. As a result, different storage and query mechanisms
need to be enforced, making updating and querying compli-
cated. To make matters worse, the system administrator
bears the burden of deciding which of the documents are
dynamic or static. This in general is a difficult, if not im-
possible task as the updating frequency of a document can
vary according to time: a document can, for example, be fre-
quently updated for a period of time and remains unchanged
after that. To avoid this situation, it may be tempting to ap-
ply an encoding scheme to all the documents. However, this
solution leads to extra encoding cost and most importantly,
it is wasteful that the static documents have to adopt labels
in dynamic formats as they are more efficiently supported
by the static labeling schemes.

In this paper, we revisit the concept of dewey labeling
scheme. By defining a novel ordering concept, we are able
to transform dewey into a fully dynamic labeling scheme:
Dynamic DEwey (DDE). Compared with the previous la-
beling schemes, a distinguishing feature of DDE is that it
is tailored for both static and dynamic XML documents.
In particular, the labels of DDE are the same as those of
dewey if no update takes place, yielding compact size and
high query performance. Our contribution in this paper can
be summarized as follows:

• We propose a novel labeling scheme: Dynamic DEwey
(DDE) which can efficiently support queries for both
static and dynamic XML documents. DDE can com-
pletely avoid re-labeling when updating the XML doc-
uments.

• We introduce a variant of DDE, namely Compact DDE
(CDDE), to optimize the performance of DDE for in-
sertions.

• Both DDE and CDDE can be very easily incorpo-
rated into existing systems and applications that adopt
dewey labeling scheme to support efficient update and
query processing.

• Extensive experiments are conducted to demonstrate
the benefits of our proposed labeling schemes over pre-
vious approaches.

The rest of the paper is organized as follows. Section 2
introduces the background and related work. In Section 3,
we describe our DDE labeling scheme in details, illustrating
how DDE handles updates without re-labeling, followed by
the proof of correctness of our algorithm. Section 4 describes
a variant of our DDE labeling scheme which produces more
compact labels than DDE after insertions. In Section 5,
we address the problem of efficiently computing the various
relationships based on our proposed labeling schemes. We
present our experimental study in Section 6 and conclude
the paper in Section 7.
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Figure 1: Labeling an XML tree

2. BACKGROUND AND RELATED WORK
In this section, we introduce the existing works on labeling

static and dynamic XML documents with a special focus on
dewey labeling scheme which is most related to our work.

2.1 Containment labeling scheme
Containment labeling scheme is the representative of range-

based labeling schemes. As shown in Figure 1 (a), a con-
tainment label consists of three values: start, end and level
where level indicates the level of its corresponding node in
the XML tree. start and end values of a node define a
range which contains the ranges of all its descendant nodes.
For example, node 1,20,1 is an ancestor of node 7,8,3 as
1 < 7 < 8 < 20. Two nodes have PC relationship if, in addi-
tion to AD relationship, their level difference is 1. Document
order can also be efficiently deduced from two containment
labels by comparing their start values.

However, containment labeling scheme can not support
updates efficiently. As shown in Figure 1 (a), insertion of
node A after the second child of the root leads to the re-
labeling of all the five shaded nodes. In general, when a
node is inserted into an XML tree with containment labels,
all its ancestor nodes and all the nodes after this node in
document order need to be re-labeled. Leaving gaps at the
initial labeling[10] can not solve this problem as re-labeling is
still necessary after the gaps are filled. Moreover, gaps make
initial labels less compact and therefore increase their stor-
age costs. Floating point numbers have been suggested to be
used instead of integers for containment labels to avoid re-
labeling[4]. However, the precision of a floating point num-
ber is limited because its mantissa is represented by fixed
number of bits in a computer. As a result, re-labeling is still
unavoidable after the number of insertions exceeds certain
limit.

2.2 Dewey labeling scheme
Dewey labeling scheme assigns each node a dewey label

which is a concatenation of its parent’s label and its local
order. As we can see from Figure 1 (b), a dewey label is a
sequence of components separated by ‘.’ where the last com-
ponent of the sequence (the number underlined) represents
the local order of the node. The sequence of components
before the last component is called the parent label of the
node as it is inherited from its parent node. The local order
of a node is i if it is the ith child of its parent. Unlike con-
tainment labels which have level fields, the level information
is implicitly represented by a dewey label, that is, the num-
ber of components in the label. We denote the number of
components of a dewey label A as |A|.

Dewey labels are ordered by dewey order. Given two
dewey labels A : a1.a2 . . . am and B : b1.b2 . . . bn, we define
dewey order (denoted as ≺dewey) as:
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Definition 1 (Dewey order). A ≺dewey B if and only
if one of the following two conditions holds:

C1. m < n and a1 = b1, a2 = b2, . . . , am = bm.

C2. ∃k ≤ min(m, n), such that a1 = b1, a2 = b2, . . . , ak−1 =
bk−1 and ak < bk.

Let A and B be two distinct dewey labels, we have either
A ≺dewey B or B ≺dewey A. Note that dewey order can be
seen as strict lexicographical order, i.e. A ≺dewey B if and
only if A precedes B in lexicographical order and A 6= B.

The relationships of A and B can be established based on
the following properties:

P1 (AD RELATIONSHIP). A is an ancestor of B if and
only if m < n and a1 = b1, a2 = b2, . . . , am = bm, i.e.
a1.a2 . . . am is a prefix of b1.b2 . . . bn.

P2 (PC RELATIONSHIP). A is the parent of B if and
only if A is an ancestor of B and m = n − 1, i.e.
a1.a2 . . . am matches the parent label of b1.b2 . . . bn.

P3 (DOCUMENT ORDER). A precedes B in document
order if and only if A ≺dewey B.

In addition, dewey labels support determining sibling re-
lationships as well as computing Lowest Common Ancestor
(LCA) which containment labels do not.

P4 (SIBLING RELATIONSHIP). A is a sibling of B is
A’s parent label matches B’s parent label.

P5 (LCA). The LCA of A and B is C, such that C is
an ancestor of both A and B, and either (1) |C| =
min(m, n), or (2) a(|C|+1) 6= b(|C|+1).

A simple extension of sibling relationship is preceding/ fol-
lowing sibling relationship which we ignore here.

For dewey labeling scheme, insertion of a new node can
incur heavy cost of re-labeling as illustrated in Figure 1 (b).
All the four shaded nodes have to be re-labeled as a result
of inserting node A. In general, when a node is inserted into
the XML tree with dewey labels, all its following siblings as
well as their descendants need to be re-labeled.

ORDPATH [11] is based on dewey and uses only odd num-
bers at the initial labeling. Even numbers are reserved for
insertions and only used as ‘caret’s. To insert between two
ORDPATH labels whose last components are consecutive
odd numbers, the new label is generated using an additional
even number which falls between the two odd numbers. We
refer to this as the ‘careting in’ technique. For example, to
insert between two ORDPATH labels 1.3 and 1.5, we use 4
which is the even number between 3 and 5 as the ‘caret’.
The new label is 1.4.1 where 4, the caret, is not counted as
a component that increases the level of a node.

Based on the ‘careting in’ technique, each level in an OR-
DPATH label is possibly represented by a variable number
of even numbers followed by an odd number. This property
complicates the processing of ORDPATH labels and there-
fore negatively affects the query performance. For example,
computing the LCA of dewey labels is equivalent to finding
the longest common prefix of them. For ORDPATH labels,
however, extra care has be to taken to make sure the LCA is
a valid ORDPATH label. As an example, the longest com-
mon prefix of two ORDPATH labels 1.6.2.1 and 1.6.2.3.5

is 1.6.2 whereas their LCA should be 1. The complexity
introduced by the ‘careting in’ technique fundamentally af-
fects the query processing with ORDPATH labels even if no
update actually takes place.

2.3 Prime labeling scheme
Prime labeling scheme[14], unlike containment and dewey

labeling schemes, is designed to accommodate dynamic in-
sertions without re-labeling. In prime labeling scheme, each
node is associated with a unique prime number (self label).
The label of a node is a number which is the product of its
self label and the label of its parent node (parent label).
Since all self labels are distinct prime numbers, the factor-
ization of a label can be used to identify a unique path in
an XML tree. Given two nodes n and m, n is an ancestor of
m if and only if label(m) mod label(n)=0. n is the parent
of m if and only if label(n) = label(m)/self label(m).

To determine document order, prime labeling scheme uses
an SC (Simultaneous Congruence) value to derive the map-
ping from self labels to global orders. In practice, to pre-
vent the SC value from getting too large, a list of SC values
is used where each SC value maintains the global ordering
of five nodes. For large XML documents, the list of SC val-
ues can be very long, making its storage and maintenance
expensive. Whenever a node is inserted or deleted, on aver-
age half of the SC values have to be re-calculated based on
Euler’s quotient function, which has been shown to be very
time consuming[7].

2.4 The Encoding Approach
Several encoding schemes[8][7][15] have been proposed to

facilitate efficient updates in XML documents. An encod-
ing scheme is orthogonal to a particular labeling scheme and
transforms its labels from the original format to some dy-
namic format.

QED[7] encoding scheme transforms labels to QED codes.
Given the set of numbers A = {1, 2, 3} where each number
can be stored with 2 bits, a QED code is a sequence of
the elements in A that ends with 2 or 3. QED codes are
dynamic in the sense that, given any two QED codes, we can
always find another QED code which falls between them in
lexicographical order. However, the lengths of QED codes
increase very fast for skewed insertions. For example, if we
keep inserting before a QED code 32, the new QED codes
are 312, 3112, 31112. . ., with 2 bits increase in code length
per insertion. The fast increase of code lengths can have
a significant negative impact on the storage cost as well as
update and query performance of QED. CDBS[8] is similar
to QED except that the unit for lexicographical order is one
bit, that is, 0 or 1. CDBS is more compact and more efficient
to process than QED, but can encounter overflow problem
as it uses fixed bits to represent its length. Vector[15] labels
are less compact than QED, but scales better for skewed
insertions.

The application of an encoding scheme is to transform
the order-sensitive components of the original labels (e.g.
start and end in containment labels) to dynamic codes such
that the transformation is order-preserving and the result-
ing label size is as small as possible. However, the encoding
processes of existing encoding schemes can be costly for the
following reasons: a) They involve the comparison and ma-
nipulation of dynamic codes of variable lengths; b) For large
XML documents, the encoding tables created by the encod-
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Figure 2: DDE initial labeling

ing process can be of huge sizes; and c) When applying to
dewey labeling scheme, the encoding process is further com-
plicated by the fact that every component in a dewey label
needs to be encoded, each based on a possibly different en-
coding table. In summary, the encoding approach suffers
from its inherent cost of encoding which makes it less at-
tractive for documents that are not frequently updated.

3. DYNAMIC DEWEY (DDE)
In this section, we describe our DDE labeling scheme in

details.

3.1 DDE initial labeling
Every DDE label is a sequence of components that repre-

sents a unique path from the document root to a node. More
specifically, given a DDE label of the form a1.a2 . . . am, its
parent label and local order are a1.a2 . . . am−1 and am re-
spectively. We denote the number of components of a DDE
label A as |A|.

As illustrated in Figure 2, the initial labeling of our DDE
labeling scheme is the same as dewey. The DDE label of the
root node is 1, with its parent label being empty. Assume a
node in the XML tree has DDE label a1.a2 . . . am, then the
DDE label of its ith child is a1.a2 . . . am.i. We postpone the
proof of correctness of the initial labeling to Section 3.3.1.

3.2 DDE label ordering
DDE label ordering takes into consideration that the first

component of a DDE label is restricted to be a positive num-
ber. This property obviously holds for the initial labels be-
cause all of them have 1 as their first components. Moreover,
it remains to be valid after random insertions, which we will
see in Section 3.5.

First we define preorder (denoted as A ¹dde B) on DDE
labels as:

Definition 2 (Preorder). Given two DDE labels A :
a1.a2 . . . am and B : b1.b2 . . . bn, A ¹dde B if and only if one
of the following two conditions holds:

C1. m ≤ n and a1
b1

= a2
b2

= . . . = am
bm

C2. ∃k ≤ min(m, n), such that a1
b1

= a2
b2

= . . . =
ak−1
bk−1

and

ak × b1 < bk × a1.

To verify a1
b1

= a2
b2

= . . . = am
bm

, we compare a1
b1

= a2
b2

,
a1
b1

= a3
b3

,. . ., and a1
b1

= am
bm

. To take division by 0 into

account, we define a1
b1

= a2
b2

to be true if a1 × b2 = a2 × b1

(note that a1, b1 > 0). For example, 1
2

= 0
0
, but 1

2
6= 1

0
.

Preorder is both reflexive and transitive, as formalized in
the following two theorems.

Theorem 3.1 (Reflexivity of preorder). Let A :
a1.a2 . . . am be a DDE label, then A ¹dde A.

Proof. A ¹dde A because C1 in Definition 2 is satisfied,
i.e. m ≤ m and a1

a1
= a2

a2
= . . . = am

am
= 1.

Theorem 3.2 (Transitivity of preorder). Given three
DDE labels A : a1.a2 . . . al, B : b1.b2 . . . bm and C : c1.c2 . . . cn,
such that A ¹dde B and B ¹dde C, then A ¹dde C.

Proof. From Definition 2, we see that ¹dde can imply
one of two conditions. We consider the case where A ¹dde B
and B ¹dde C both imply C2. The rest of the cases are
simpler and ignored here.

Since A ¹dde B, we have ∃j ≤ min(l, m), such that a1
b1

=
a2
b2

= . . . =
aj−1
bj−1

and aj × b1 < bj × a1. B ¹dde C implies

∃k ≤ min(m, n), such that b1
c1

= b2
c2

= . . . =
bk−1
ck−1

and

bk × c1 < ck × b1. Moreover, we assume that a1
b1

= β and
b1
c1

= γ. We consider the following cases:

j<k. Given a1
c1

= a1
b1
× b1

c1
= β × γ, it follows that a1

c1
=

a2
c2

= . . . =
aj−1
cj−1

= β × γ. From aj × b1 < bj × a1 and

b1
c1

=
bj

cj
, we have aj × c1 <

bj×a1×c1
b1

=
a1×b1×cj

b1
= cj × a1.

Thus, A ¹dde C.
j=k. Given a1

c1
= a1

b1
× b1

c1
= β × γ, it follows that a1

c1
=

a2
c2

= . . . =
aj−1
cj−1

= β × γ. Then aj × b1 < bj × a1 and

bj × c1 < cj × b1 together imply aj × c1 <
bj×a1×c1

b1
<

cj×b1×a1
b1

= cj × a1. Thus, A ¹dde C.

j>k. From a1
c1

= a1
b1
× b1

c1
= β × γ, we have a1

c1
= a2

c2
=

. . . =
ak−1
ck−1

= β× γ. a1
b1

= ak
bk

and bk × c1 < ck × b1 together

imply that ak × c1 = bk×a1×c1
b1

< ck×b1×a1
b1

= ck × a1 and
therefore A ¹dde C.

In all the three cases, we have A ¹dde C.

Based on preorder, we define equivalence relation as:

Definition 3 (Equivalence relation). Two DDE la-
bels A and B have equivalence relation (denoted as A =e B)
if and only if A ¹dde B and B ¹dde A.

Lemma 3.1. Given two DDE labels A : a1.a2 . . . am and
B : b1.b2 . . . bn, A =e B if and only if m = n and a1

b1
= a2

b2
=

. . . = am
bm

.

Proof. From Definition 3, A =e B implies that A ¹dde

B and B ¹dde A, which can only be true at the same time if
they both satisfy C1 in Definition 2. That is to say, m ≤ n
and n ≤ m should hold. Consequently, we have m = n and
a1
b1

= a2
b2

= . . . = am
bm

.

Definition 4 (Inequivalent set). We say that a set
of DDE labels is inequivalent if there does not exist two DDE
labels in the set with equivalence relation.

Finally we are ready to define DDE order (denoted as
A ≺dde B):

Definition 5 (DDE order). Given two DDE labels A
and B, A ≺dde B if and only if A ¹dde B and A 6=e B.

The next lemma directly follows from Definition 5.

Lemma 3.2. Given two DDE labels A : a1.a2 . . . am and
B : b1.b2 . . . bn, A ≺dde B if and only if one of the following
two conditions holds:

C1. m < n and a1
b1

= a2
b2

= . . . = am
bm

.
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C2. ∃k ≤ min(m, n), such that a1
b1

= a2
b2

= . . . =
ak−1
bk−1

and

ak × b1 < bk × a1.

It is easy to see that the DDE order is equivalent to dewey
order when a1 = b1 > 0. Let A and B be two distinct DDE
labels from an inequivalent set of DDE labels, we have either
A ≺dde B or B ≺dde A (not both).

3.3 DDE label properties
Same as dewey, a DDE label implicitly stores the level in-

formation as the number of components in that label. This
property will remain true after random insertions and dele-
tions.

Given two DDE labels A : a1.a2 . . . am and B : b1.b2 . . . bn,
we summarize the properties of DDE labels as follows:

P1 (AD RELATIONSHIP). A is an ancestor of B if and
only if m < n and a1

b1
= a2

b2
= . . . = am

bm
. (AD test

for the case where m = 1 < n is by default true. As
m = 1 implies that A is the document root which is
the ancestor any other node.)

P2 (PC RELATIONSHIP). A is the parent of B if and
only if A is an ancestor of B and m = n− 1.

P3 (DOCUMENT ORDER). A precedes B in document
order if and only if A ≺dde B.

P4 (SIBLING RELATIONSHIP). A is a sibling of B if
and only if m = n and a1

b1
= a2

b2
= . . . =

am−1
bm−1

.

P5 (LCA). The LCA of A and B is C, such that C is
an ancestor of both A and B, and either (1) |C| =
min(m, n), or (2) a(|C|+1) × b1 6= b(|C|+1) × a1.

Considering the fact that all dewey labels have 1 as their
first components, the five properties of DDE labels can be
seen as generalizations of the corresponding properties of
dewey labels. In particular, DDE labels can be compared
exactly like dewey labels if a1 = b1 > 0, implying that all
the initial DDE labels can be treated as dewey labels. In
summary, same as dewey labeling scheme, our DDE label-
ing scheme is tailored for static XML documents because it
does not introduce any additional storage cost or processing
complexity.

3.3.1 Correctness of initial labeling

Lemma 3.3. Based on DDE labeling scheme, the set of
initial DDE labels is inequivalent.

Proof. We establish the proof by contradiction. Suppose
the set of initial DDE labels is not inequivalent, then by
Definition 4, there exist two DDE labels A : a1.a2 . . . am and
B : b1.b2 . . . bm, such that a1

b1
= a2

b2
= . . . = am

bm
. However,

since all the initial DDE labels start with 1, it follows that
a1 = b1 = 1 and therefore, a1

b1
= a2

b2
= . . . = am

bm
= 1

1
= 1.

That is, a1 = b1, a2 = b2 . . . am = bm, which means A and
B are the same. We have a contradiction here because all
DDE labels are different in initial labeling.

Since the set of initial DDE labels is inequivalent, it follows
that any two of them are comparable with respect to DDE
order. In addition, DDE order is equivalent to dewey order
for the initial DDE labels because all of them start with
1. The fact that our initial label assignment is the same as
dewey implies that document order is correct with respect to
dewey order and therefore DDE order. The same reasoning
applies to all the other properties of DDE labels.

3.4 DDE label addition
To process dynamic insertions between DDE labels while

preserving their relative order, we introduce addition oper-
ation on DDE labels. The addition operation is defined on
DDE labels with the same number of components.

Definition 6 (DDE label addition). Given two DDE
labels with the same number of components A : a1.a2 . . . am

and B : b1.b2 . . . bm, A + B is defined as:

A + B = (a1 + b1).(a2 + b2) . . . (am + bm) (1)

The following theorem shows an important property of
the addition operation.

Theorem 3.3. Given two DDE labels A : a1.a2 . . . am

and B : b1.b2 . . . bm such that A is a sibling of B and A ≺dde

B, then A ≺dde (A + B) ≺dde B

Proof. Since A and B are siblings, we have a1
b1

= a2
b2

=

. . . =
am−1
bm−1

. Therefore A ≺dde B implies am× b1 < bm×a1.

Assume a1
b1

= β and equivalently, a1 = β × b1.

First we prove A ≺dde (A+B). Given a1
a1+b1

= β×b1
β×b1+b1

=
β

β+1
, we have a1

a1+b1
= a2

a2+b2
= . . . =

am−1
am−1+bm−1

= β
β+1

. In

addition, am × (a1 + b1) = am × a1 + am × b1 < am × a1 +
bm × a1 = (am + bm)× a1. Thus, A ≺dde (A + B).

The proof of (A + B) ≺dde B is similar so we ignore it
here.

We use the following example to illustrate the properties
of DDE labels that have been introduced so far.

Example 3.1. Consider the XML tree in Figure 3, the
dotted circles represent the new nodes inserted into the XML
tree. Each new node is associated with a letter. The order in
which these new nodes are inserted follows from the alpha-
betical order of their letters. We ignore for now how their
labels are generated. Node 1.2 is an ancestor of node I as
1
3

= 2
6

and |1.2| < |I|. F is the parent of I as 3
3

= 6
6

= 5
5

and |F | = |I| − 1. H ≺dde E as 1
2

= 2
4

and 1 × 2 < 3 × 1,
so H precedes E in document order. E is a sibling of F be-
cause |E| = |F | and 2

3
= 4

6
. In addition, E ≺dde F as

2
3

= 4
6

and 3 × 3 < 2 × 5. Note that G=E+F as 5.10.8 =
2.4.3 + 3.6.5, since E is a sibling of F and E ≺dde F, we
have E ≺dde G ≺dde F based on Theorem 3.3. To verify,
E ≺dde G as 2

5
= 4

10
and 3× 5 < 2× 8, G ≺dde F as 5

3
= 10

6
and 8× 3 < 5× 5.

3.5 Processing updates
Similar to dewey labels, it is clear that the deletion of

DDE labels does not affect the order of the other labels.
The challenging part is how to handle insertions without re-
labeling. Note that, like ORDPATH, we extend the domain
of component values of DDE labels to positive number, neg-
ative number and 0. However, since ORDPATH only uses
odd numbers at initial labeling, its labels are not as compact
as DDE and dewey.

First we introduce how DDE labeling scheme processes
insertions with an example.

Example 3.2. In Figure 3, node A is inserted before the
first child of the root, we get its label 1.0 by decreasing the
local order of 1.1 by 1. Node B is then inserted before A and
its label is therefore 1.-1. Node C is inserted after the node
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Figure 3: Processing insertions with DDE labels

with label 1.4.1, we get its label 1.4.2 by adding 1 to the local
order of 1.4.1. Similarly, the label of node D is 1.4.3. Node
E is inserted between two nodes with labels 1.2.1 and 1.2.2
and its label is 2.4.3 which equals to 1.2.2+1.2.3. Likewise,
the labels of node F and G are 3.6.5 (2.4.3+1.2.2) and 5.10.8
(2.4.3+3.6.5) respectively. Next, node H is inserted as the
child of leaf node 1.2.1, its label is 1.2.1.1 which is concate-
nation of its parent’s label and 1. Node I is also inserted
below a leaf node 3.6.5 and its label is therefore 3.6.5.1.

Among the insertions shown Figure 3, we consider the
correctness of the following special cases obvious because the
resulting labels are almost the same as the initial labeling,
so proofs are ignored here.

• Leftmost insertion. When a new node is inserted
before node A : a1.a2 . . . an where A is the first child
of a node, we assign label a1.a2 . . . (an−1) to this node.

• Rightmost insertion. When a new node is inserted
after node A : a1.a2 . . . an where A is the last child of
a node, we assign label a1.a2 . . . (an + 1) to this node.

• Insertion below a leaf node. When a new node is
inserted below a leaf node A : a1.a2 . . . an, we assign
label a1.a2 . . . an.1 to this node.

In general, insertions can be made between any two con-
secutive siblings.

• Insertion between two consecutive siblings. When
a new node is inserted between two consecutive sib-
lings with labels A and B, we assign label A + B to
this node.

We prove the correctness of this case in Section 3.5.1. In
conclusion, DDE labeling scheme supports insertions at ar-
bitrary positions in an XML tree.

3.5.1 Correctness
Before we prove the correctness of DDE insertions, we

introduce the following properties of DDE labels.

Theorem 3.4 (Transitivity of DDE order). Given
three DDE labels A, B and C, such that A ≺dde B and
B ≺dde C, then A ≺dde C.

Proof. To prove A ≺dde C, we have to show that A ¹dde

C and A 6=e C. From A ≺dde B and B ≺dde C, we have
A ¹dde B and B ¹dde C, but A 6=e B and B 6=e C. Since
¹dde is transitive, A ¹dde B and B ¹dde C imply that
A ¹dde C. The remaining problem is to prove A 6=e C.
Suppose A =e C, we have C ¹dde A which, together with

A ¹dde B, imply C ¹dde B. Since we already have B ¹dde

C, it follows that B =e C. We have a contradiction here
because B 6=e C.

Lemma 3.4 (Symmetry of Sibling relationship). If
A : a1.a2 . . . am is a sibling of B : b1.b2 . . . bm, then B is a
sibling of A.

Proof. Since A is a sibling of B, a1
b1

= a2
b2

= . . . =
am−1
bm−1

= β. Equivalently, b1
a1

= b2
a2

= . . . =
bm−1
am−1

= 1
β
.

Thus, B is a sibling of A.

Lemma 3.5 (Transitivity of Sibling relationship).
If A : a1.a2 . . . am is a sibling of B : b1.b2 . . . bm and B is a
sibling of C : c1.c2 . . . cm, then A is a sibling of C.

Proof. Since A is a sibling of B, a1
b1

= a2
b2

= . . . =
am−1
bm−1

= β, similarly, b1
c1

= b2
c2

= . . . =
bm−1
cm−1

= γ. a1
c1

=
a1
b1
× b1

c1
= β × γ = a2

c2
= . . . =

am−1
cm−1

. Thus, A is a sibling of

C.

Lemma 3.6. Let A : a1.a2 . . . am be a sibling of of B :
b1.b2 . . . bm, then C = A + B is a sibling of A and B.

Proof. Given that A is a sibling of B, we have a1
b1

=
a2
b2

= . . . =
am−1
bm−1

= β. As a1+b1
b1

= a1
b1

+ 1 = β + 1, it

follows that a1+b1
b1

= a2+b2
b2

= . . . =
am−1+bm−1

bm−1
, so A + B

is a sibling of A. Consequently, A + B is also a sibling of B
from Lemma 3.5.

Lemma 3.7. Suppose A : a1.a2 . . . am and B : b1.b2 . . . bm

are siblings, if A′ : a′1.a
′
2 . . . a′n is an ancestor of A, then A′

is an ancestor of C = A + B.

Proof. Since A′ is an ancestor of A, we have n < m
and a1

a′1
= a2

a′2
= . . . = an

a′n
= β. From Lemma 3.6, A + B

is a sibling of A and therefore, a1+b1
a1

= a2+b2
a2

= . . . =
am−1+bm−1

am−1
= γ. As a result, a1+b1

a′1
= a1+b1

a1
× a1

a′1
= β×γ =

a2+b2
a′2

= . . . = an+bn
a′n

and A′ is an ancestor of C.

Lemma 3.8. Given three DDE labels A : a1.a2 . . . am, B :
b1.b2 . . . bm and C = A+B, such that A is a sibling of B and
A ≺dde B, if A′ : a′1.a

′
2 . . . a′n is a child of A, then A′ ≺dde C.

Proof. Since A′ is a child of A, we have a1
a′1

= a2
a′2

=

. . . = am
a′m

and equivalently
a′1
a1

=
a′2
a2

= . . . =
a′m
am

. From

Lemma 3.5 and Lemma 3.6, A is a sibling of C = A+B and
therefore, a1

a1+b1
= a2

a2+b2
= . . . =

am−1
am−1+bm−1

. In addition,

A ≺dde B implies that am×b1 < bm×a1. Assuming
a′1
a1

= β

and a1
a1+b1

= γ, then
a′1

a1+b1
=

a′2
a2+b2

= . . . =
a′m−1

am−1+bm−1
=

a′1
a1
× a1

a1+b1
= β × γ. On the other hand, a′m × (a1 + b1) =

am×a′1
a1

× (a1 + b1) = am × a′1 +
am×a′1×b1

a1
< am × a′1 +

bm×a1×a′1
a1

= (am + bm)× a′1 and therefore, A′ ≺dde C.

Now we are ready to prove the correctness of DDE inser-
tion between two siblings which we state as the following
theorem.

Theorem 3.5. To insert between two consecutive sibling
nodes with DDE labels: A and B where A ≺dde B, assigning
A + B to the new node is correct with respect to AD, PC,
document order, sibling relationships and LCA computation.
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Proof. We prove for each of the five properties:

P1 (AD RELATIONSHIP). AD relationship is preserved
as all the ancestors of A and B are also ancestors of
A + B (Lemma 3.7).

P2 (PC RELATIONSHIP). PC relationship is also pre-
served because AD relationship is correct after inser-
tions and level information of A+B is correctly main-
tained, i.e. |A + B| = |A| = |B|.

P3 (DOCUMENT ORDER). Document order follows from
≺dde order. From Theorem 3.3, A ≺dde (A + B) ≺dde

B. The set of nodes that precede A+B should include
A, all the nodes that precede A and all the descen-
dants of A. Theorem 3.4 implies that any node which
precedes A also precedes A + B. Moreover, any de-
scendant of A should also precede A + B from Lemma
3.8. Similarly we can show that the set of nodes that
follow A + B include B and all the nodes that follow
B.

P4 (SIBLING RELATIONSHIP). From Lemma 3.6, A+B
is a sibling of A and B. Therefore A+B is also a sibling
of any sibling of A and B based on Lemma 3.5. On
the other hand, Lemma 3.4 implies that A, B and all
their siblings are also siblings of A + B.

P5 (LCA). LCA can be computed correctly because AD
relationship is correctly maintained.

This concludes the correctness of DDE insertions.

Corollary 3.1. The set of DDE labels after arbitrary
insertions is still inequivalent.

Since document order is correctly maintained, the claim di-
rectly follows.

4. COMPACT DDE (CDDE)
In this section, we introduce a variant of DDE labeling

scheme which we call Compact DDE (CDDE). CDDE is
designed to enhance the performance of DDE for insertions.

4.1 Initial labeling
The label format of CDDE is the same as DDE which

is a sequence of components separated by ‘.’. Moreover,
the initial labeling of CDDE is the same as DDE (Figure
2), and is therefore the same as dewey. Unlike DDE labels
whose first components are restricted to be positive decimal
numbers, the first component of a CDDE label can be either
positive or negative. We refer to the CDDE labels with
positive first components as positive CDDE labels and those
with negative first components as negative CDDE labels.

Let A : a1.a2 . . . am be a positive CDDE label, we refer to
a1 as multiplier, a1.a2 . . . am−1 as parent label and am as local
order. If A : a1.a2 . . . am is a negative CDDE label, then its
multiplier, parent label and local order are a1, a2.a2 . . . am−1

and am respectively.

4.2 CDDE label to DDE label mapping
The properties of CDDE label, which include how various

relationships can be established, are different from those of
DDE. To simplify discussion, we take a shortcut by defining
a mapping from CDDE label to DDE label.

Given a CDDE label A : a1.a2.a3 . . . am−1.am, we define
a mapping fcd : CDDE label → DDE label as:

fcd(A) =





a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am

when a1 > 0
(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am

when a1 < 0

Intuitively, the mapping is to apply the ‘multiplier’ to the
parent label of the CDDE label. The multiplier is part of the
parent label for positive CDDE labels, but is followed by the
parent label for negative CDDE labels. For example, CDDE
label 2.2.3 maps to DDE label 2.(2 × 2).3=2.4.3 whereas
CDDE label -3.1.3.2.1 maps to DDE label (3×1).(3×3).(3×
2).1=3.9.6.1.

Based on fcd mapping, we define preorder (denoted as
¹cdde) on CDDE labels as:

Definition 7 (Preorder). Given two CDDE labels A
and B, A ¹cdde B if and only if fcd(A) ¹dde fcd(B).

Definition 8 (Equivalence relation). Two CDDE
labels A and B have equivalence relation if and only if fcd(A)
=e fcd(B).

Similarly, CDDE order (denoted as ≺cdde) is defined as:

Definition 9 (CDDE order). Given two CDDE la-
bels A and B, A ≺cdde B if and only if fcd(A) ≺dde fcd(B).

We summarize the properties of CDDE labels as:

• A CDDE label A is the parent/ ancestor/ sibling of
another CDDE label B if and only if fcd(A) is the
parent/ ancestor/ sibling of fcd(B).

• A CDDE label A precedes another CDDE label B in
document order if and only if A ≺cdde B.

4.2.1 Correctness of initial labeling
Given any CDDE label A : 1.a2.a3 . . . am−1.am in the ini-

tial labeling, we have fcd(A) = fcd(1.a2.a3 . . . am−1.am) =
1.a2.a3 . . . am−1.am = A, implying that the initial CDDE
labels simply map those initial DDE labels. Therefore the
correctness of CDDE initial labeling follows directly from
that of DDE initial labeling which we have proved in Sec-
tion 3.3.1.

4.3 CDDE label addition
Similar to DDE label addition, CDDE label addition ap-

plies to two CDDE labels with sibling relationship.

Lemma 4.1. Let A : a1.a2.a3 . . . am−1.am and B : b1.b2.b3

. . . bn−1.bn be two CDDE labels with sibling relationship, then
a) a1 and b1 are both positive or both negative; b) m = n;
and c) a2 = b2, a3 = b3 . . . am−1 = bm−1.

Lemma 4.1 obviously holds for the initial CDDE labels as
they are all positive labels and among them, any two siblings
have the same parent label. We will show that this lemma
remains to be valid after updates in Section 4.4.

An important difference between CDDE and DDE is how
insertions are handled. We define addition operation of
CDDE labels as:

Definition 10 (CDDE label addition). Let A : a1.a2

.a3 . . . am−1.am and A′ : a′1.a2.a3 . . . am−1.a
′
m be two CDDE

labels with sibling relationship, addition of them is defined
as:

A +c A′ = (a1 + a′1).a2.a3 . . . am−1.(am + a′m)
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Figure 4: Processing insertions with CDDE labels

Different from DDE label addition, CDDE label addition
only adds up the multipliers and local orders of two CDDE
labels. As a result, the label size of CDDE increases at a
slower rate than DDE after additions. However, the addition
operations of DDE and CDDE labels are actually equivalent,
as the following lemma implies.

Lemma 4.2. Given two CDDE labels A : a1.a2.a3 . . . am−1

.am and A′ : a′1.a2.a3 . . . am−1.a
′
m.

fcd(A +c A′) = fcd(A) + fcd(A′)

Proof. We consider two cases:
Both A and A′ are positive CDDE labels. fcd(A +c

A′) = fcd((a1 + a′1).a2.a3 . . . (am + a′m)) = (a1 + a′1).((a1

+a′1)×a2).((a1+a′1)×a3) . . . ((a1+a′1)×am−1).(am+a′m) =
a1.(a1×a2).(a1×a3) . . . (a1×am−1).am +a′1.(a

′
1×a2).(a

′
1×

a3) . . . (a′1 × am−1).a
′
m = fcd(A) + fcd(A′)

Both A and A′ are negative CDDE labels. fcd(A+c

A′) = fcd((a1 + a′1).a2.a3 . . . (am + a′m)) = (|(a1 + a′1)| ×
a2).(|(a1 + a′1)| × a3) . . . (|(a1 + a′1)| × am−1).(am + a′m) =
(|a1|×a2).(|a1|×a3) . . . (|a1|×am−1).am +(|a′1|×a2).(|a′1|×
a3) . . . (|a′1| × am−1).a

′
m = fcd(A) + fcd(A′)

In both cases, fcd(A +c A′) = fcd(A) + fcd(A′).

Lemma 4.3. Suppose A and B are two CDDE labels such
that A ≺cdde B, then A ≺cdde (A +c B) ≺cdde B.

Proof. Based on Definition 9, A ≺cdde B is equivalent to
fcd(A) ≺dde fcd(B), which in turn implies that fcd(A) ≺dde

fcd(A) + fcd(B) ≺dde fcd(B) (Theorem 3.3). By Lemma
4.2, we can replace fcd(A)+fcd(B) with fcd(A+c B), which
gives fcd(A) ≺dde fcd(A +c B) ≺dde fcd(B). Thus, A ≺cdde

(A +c B) ≺cdde B.

4.4 Processing updates
We illustrate how CDDE handles updates with an exam-

ple.

Example 4.1. As illustrated in Figure 4, leftmost inser-
tions (node A and B) and rightmost insertions (node C and
D) are processed in the same way as DDE labels. How-
ever, when inserting between node 1.2.1 and 1.2.2, the new
label for node E is 2.2.3 (1.2.1 +c 1.2.2). Likewise, the la-
bels for node F and G are 3.2.5 (2.2.3 +c 1.2.2) and 5.2.8
(2.2.3 +c 3.2.5). We postpone the discussion on the rest of
the insertions to Section 4.4.1.

Leftmost and rightmost insertions obviously do not violate
the properties of sibling relationship stated in Lemma 4.1 as

only local orders are changed. Moreover, we can see that
Lemma 4.1 still holds after insertion between two positive
CDDE labels (e.g. node E, F and G) because addition of
CDDE labels only adds up the multipliers and local orders
while their parent labels remain to be the same.

4.4.1 Processing insertion below a leaf node
We have shown how to process insertion below a leaf node

with DDE label. The new label can be generated by con-
catenating the parent’s label with 1. However, this method
does not work for CDDE labels because it will produce new
labels with incorrect parent labels. To accommodate such
insertions, we introduce another operation which is used to
get the label for the new node:

Definition 11 (CDDE label extension). The exten-
sion operation of a CDDE label A : a1.a2.a3 . . . am−1.am is
defined as:

EXT (A) →





−1.a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am.1
when a1 > 1

a1.a2.a3 . . . am−1.am.1
when a1 = 1

−1.(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am.1
when a1 < 0

The next lemma shows the usefulness of CDDE label ex-
tension.

Lemma 4.4. Given a CDDE label A : a1.a2.a3 . . . am−1.am,
fcd(EXT (A)) = fcd(A).1.

Proof. There are three cases to be considered:
a1>1. fcd(EXT (A)) = fcd(−1.a1. (a1 × a2).(a1 × a3) . . .

(a1×am−1).am.1) = a1.(a1×a2).(a1×a3) . . . (a1×am−1).am

.1 = fcd(A).1.
a1=1. fcd(EXT (A)) = fcd(1.a2.a3 . . . am−1.am.1) = 1.a2

.a3 . . . am−1.am.1 = fcd(A).1.
a1<0. fcd(EXT (A)) = fcd(−1.(|a1| × a2).(|a1| × a3) . . .

(|a1|×am−1).am.1) = (|a1|×a2).(|a1|×a3) . . . (|a1|×am−1)
.am.1 = fcd(A).1.

When inserting a node below a leaf node with label A, we
assign EXT (A) to the new label.

Example 4.2. Consider the insertion of H in Figure 4,
given that the parent of H has label 1.2.1, the label of H is
EXT (1.2.1) = 1.2.1.1. Similaly, the label of I is EXT (F ) =
EXT (3.2.5) = −1.3.6.5.1. Inserting node J is just processed
as a rightmost insertion and the new label is −1.3.6.5.2. To
insert K between I and J , the new label is derived by adding
the labels of I and J : −2.3.6.5.3 (−1.3.6.5.1 +c −1.3.6.5.2).

Lemma 4.1 still holds after insertion between two negative
CDDE labels (e.g. node K) because only their multipliers
and local orders are added up. The parent label of the new
label remains the same as the parent labels of its left and
right siblings.

4.4.2 Correctness

Theorem 4.1. To insert between two consecutive sibling
nodes with CDDE labels: A and B where A ≺cdde B, assign-
ing A+cB to the new node is correct with respect to AD, PC,
document order, sibling relationships and LCA computation.

726



1

1.1 1.2

1.3 1.4 1.5

1.2.1 1.2.2 1.4.11.2.3

2.4.3 2.4.5

2.3 2.5 2.7 2.9

Figure 5: DDE labeling after uniform insertion

Proof. Based on fcd mapping, the properties of DDE
labels can be adapted for CDDE labels. Moreover, it follows
from Lemma 4.2 that the addition operations of DDE and
CDDE labels are equivalent. Intuitively, assigning CDDE
label A +c B to the new node is equivalent to the way that
DDE labeling scheme handles insertion where the new DDE
label is fcd(A) + fcd(B). Thus, its correctness becomes the
immediate consequence of Theorem 3.5.

5. RELATIONSHIP COMPUTATION
In this section, we address the issue of how the various

relationships of DDE and CDDE labels can be computed
efficiently.

5.1 DDE labels
We have shown that DDE order, along with other prop-

erties of DDE labels, are generalized forms of dewey order
and other properties of dewey labels. Given two DDE la-
bels A : a1.a2 . . . am and B : b1.b2 . . . bm, they can be com-
pared based on dewey order without any generalization if
a1 = b1 > 0. Considering the fact that all the initial DDE
labels start with 1, the chance that we have a1 = b1 > 0
is actually very high if the number of insertions is not too
large or if the insertions are relatively uniform. As shown
in Figure 5, if the insertions are performed uniformly be-
tween every two consecutive siblings, the new labels all have
2 as their first components. Moreover, since DDE labels can
keep level information as their numbers of components after
random updates, they are able to support fixed-cost compu-
tation of DDE order and other relationships even in the case
of highly skewed insertions. In summary, the computation
of various relationships is very efficient with DDE labels.

5.2 CDDE labels
The properties of CDDE, on the other hand, are defined

by mapping CDDE labels to DDE labels. Therefore, it is
natural to compute the various relationships between two
CDDE labels by converting them to DDE labels. However,
we will show that the conversion cost can actually be avoided
from the following analysis.

Lemma 5.1. Assume A, B, A′, B′ are four DDE labels such
that A =e A′ and B =e B′, then A is an ancestor of B if
and only if A′ is an ancestor of B′. The same result holds
for PC, document order and sibling relationships. Let C be
the LCA of A and B, C′ be the LCA of A′ and B′, we have
C =e C′.

Intuitively, it follows from Lemma 5.1 that any two DDE la-
bels with equivalence relation are indeed equivalent in DDE

labeling scheme. For example, we can replace a DDE label
2.4.6 with 1.2.3 (2.4.6 =e 1.2.3), while not compromising the
correctness of DDE labeling scheme. The proof is ignored
here.

Given a CDDE label A : a1.a2.a3 . . . am−1.am, we define
a simple mapping fscd : CDDE label → DDE label :

fscd(A) =

{
1.a2.a3 . . . am−1.

am
a1

when a1 > 0

a2.a3 . . . am−1.
am
|a1| when a1 < 0

For ease of exposition and simplicity, we allow a relaxed form
of DDE labels where each component can be represented as
a fraction of two decimal numbers. Note that the relaxed
form is used for the purpose of comparison only.

Lemma 5.2. Let A be a CDDE label, we have fcd(A) =e

fscd(A).

Proof. We consider the following two cases:
A is a positive CDDE label. fcd(A) = a1.(a1 × a2).

(a1×a3) . . . (a1×am−1).am and fscd(A) = 1.a2.a3 . . . am−1.
am
a1

. Since a1
1

= a1×a2
a2

= a1×a3
a3

= . . . =
a1×am−1

am−1
= am

am
a1

=

a1, fcd(A) =e fscd(A).
A is a negative CDDE label. fcd(A) = (|a1|×a2).(|a1|×

a3) . . . (|a1| × am−1).am and fscd(A) = a2.a3 . . . am−1.
am
|a1| .

Since |a1|×a2
a2

= |a1|×a3
a3

= . . . =
|a1|×am−1

am−1
= am

am
|a1|

= |a1|,
fcd(A) =e fscd(A).

Lemma 5.1 and Lemma 5.2 together provide a very useful
alternative for computing the relationships of CDDE labels.
Give two CDDE labels A and B, their relationships can be
computed based on fscd(A) and fscd(B) instead of fcd(A)
and fcd(B).

How sibling relationships of CDDE labels can be com-
puted directly is given in Lemma 4.1. Other optimizations
are possible if we distinguish between positive and negative
CDDE labels as the following lemmas illustrate:

Lemma 5.3. Suppose A : a1.a2.a3 . . . am−1.am and B :
b1.b2.b3 . . . bn−1.bn are two positive CDDE labels, A is an
ancestor of B if m < n, a2 = b2, . . . am−1 = bm−1 and
am = bm × a1.

Proof. Since A and B are positive CDDE labels, we have
fscd(A) = 1.a2.a3 . . . am−1.

am
a1

and fscd(B) = 1.b2.b3 . . . bn−1

. bn
b1

. A is an ancestor of B if fscd(A) is an ancestor of

fscd(B), that is, m < n and 1
1

= a2
b2

= a3
b3

= . . . =
am−1
bm−1

=
am
a1
bm

. Therefore, we have a2 = b2, . . . am−1 = bm−1 and
am = bm × a1.

Lemma 5.4. Suppose A : a1.a2.a3 . . . am−1.am and B :
b1.b2.b3 . . . bn−1.bn are two negative CDDE labels, A is an
ancestor of B if m < n, a2

b2
= a3

b3
= . . . =

am−1
bm−1

= am×b1
bm×a1

.

Proof. Since A and B are negative CDDE labels, we
have fscd(A) = a2.a3 . . . am−1.

am
a1

and fscd(B) = b2.b3 . . . bn−1

. bn
b1

. A is an ancestor of B implies that fscd(A) is an ances-

tor of fscd(B) and therefore, a2
b2

= a3
b3

= . . . =
am−1
bm−1

=
am
a1
bm
b1

.

Or equivalently, a2
b2

= a3
b3

= . . . =
am−1
bm−1

= am×b1
bm×a1

.

Similarly, we can compute other relationships based on fscd

mappings. The details are ignored here.
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Dataset Size
(MB)

Total No.
of nodes

Max/average
fan-out

Max/average
depth

XMark 113 1666315 25500/3242 12/6
Nasa 23.8 476646 2435/225 10/7
Treebank 85.4 2437666 56384/1623 36/8

Table 1: Test data sets

6. EXPERIMENTAL STUDY

6.1 Experimental setup
For the comparison between different labeling schemes, we

consider the types of queries that they support as the pri-
mary factor. We focus on the comparison with dewey-based
labeling scheme as they support efficient computation of sib-
ling relationships and LCA, whereas containment labels do
not have such properties. The comparison of range-based
dynamic labeling schemes can be found in [9][15].

In addition, labeling schemes can be compared with a va-
riety of measures including label size, label generation time
and updating costs. We compare the labeling schemes pro-
posed in this paper, i.e. DDE and CDDE, with ORDPATH
and QED-Dewey (applying QED encoding scheme to dewey)
as they both are dewey-based and can avoid re-labeling when
updating the XML documents.

The evaluation of these labeling scheme was performed
with XMark Benchmark[2], Nasa[1] and Treebank[1] data
sets and their characteristics are shown in Table 1. All
the experiments were conducted on a 2.33GHz dual-core PC
with 4 GB of RAM.

6.2 Initial labeling
Initial labeling is evaluated by comparing ORDPATH and

QED-Dewey labeling schemes against our DDE and the re-
sults are shown in Figure 6. CDDE is not shown here be-
cause its initial labeling is exactly the same as DDE. The
initial labeling time for ORDPATH and DDE, as shown in
Figure 6 (a), is approximately the same as their labels can be
efficiently generated by scanning a document exactly once.
However, the initial labeling time of QED-Dewey is much
longer, as it needs to generate the dewey labels first which
are then encoded into QED format. ORDPATH, as well as
our DDE and CDDE are stored using the compressed OR-
DPATH format introduced in [11]. QED-Dewey is stored in
its own physical storage format, with 0 as the separator be-
tween every two QED codes. For all the three data sets, we
observe that DDE has the most compact initial label size,
as illustrated in Figure 6 (b).

6.3 Querying static document
We test the query performance on all the three data sets.

We present the results from Treebank data set as the other
two data sets shown similar trends. Without any updates,
the labels used for processing queries remain the same as
the initial labels. We evaluate the query performance on
initial labels by computing the most commonly used five
relationships: document order, AD, PC, sibling and LCA.
We choose the first 10000 labels from the initial labels of
Treebank data set in document order and, for each pair of
the labels, we compute all the five relationships. Note that
as pointed out in [12], the LCA of a set of nodes is effectively
the LCA of the first and the last node of the set in document
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Figure 7: Time spent on computing different rela-
tionships

order. Therefore we consider computing the LCA of two
labels as a common function instead of many labels.

In Figure 7, we observe that the performance of differ-
ent labeling schemes can be quite different for each of the
five relationships. CDDE is not shown here because its per-
formance is the same as DDE for static documents. While
QED-Dewey is more efficient than ORDPATH for comput-
ing PC and sibling relationships, it is significantly slower for
comparing document order and less efficient for AD relation-
ship and LCA computation. For all the five relationships,
our DDE outperforms ORDPATH and QED-Dewey.

6.4 Processing updates

6.4.1 Uniform Insertions
We test with insertions made uniformly between every two

consecutive siblings. How these labeling schemes respond
to uniform insertions is shown in Figure 8. The insertion
time of ORDPATH is approximately the same as our DDE
and CDDE whereas QED shows a slower updating time, as
illustrated in Figure 8 (a). In Figure 8 (b), the comparison
of label size after uniform insertions remains similar to that
for the initial labels (Figure 6 (b)), with CDDE giving the
most compact labels. The comparison of query performance,
which we ignore here, is similar to that for the initial labels
as well, since the quality of the labels is not much affected
by uniform insertions.

6.4.2 Skewed Insertions
We classify skewed insertions into two different cases that

are common in practice:

• Ordered skewed insertion refers to repeatedly in-
serting before or after a particular node.

• Random skewed insertion refers to repeatedly in-
serting between two nodes in random order.

Compared with uniform insertions, skewed insertions can
have a more significant impact on the resulting qualities of
labels. Figure 9 shows the updating cost and label size af-
ter ordered skewed insertions. The insertion time of ORD-
PATH, DDE and CDDE are negligible and their label sizes
only increase slightly. In contrast, QED-Dewey has rela-
tively higher updating time and its label size has shown a
much higher increase. This result conforms to our previous
discussions that the lengths of QED codes can increase at 1
or 2 bits per insertion in case of ordered skewed insertion,
resulting in the fast increase of the overall label size. The
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Figure 9: Ordered skewed insertions
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Figure 11: Relationship computation time after skewed insertions

results for random skewed insertions are shown in Figure 10.
The updating time and label size of ORDPATH increase at
a much faster rate than the other labeling schemes. This
is because random skewed insertions greatly increase the
amount of ‘caret’s that are needed to be used in ORDPATH
labels. For both types of insertions, our DDE and CDDE
have shown the best performance in terms of updating time
and label size. In addition, the label size of CDDE increases
at a slower rate than DDE, which is what we have expected.

6.5 Querying dynamic document
To compare the query performance on dynamic XML doc-

uments, we adopt the same settings as the static case except
the 10000 labels chosen include 2000 labels that are newly
inserted. Figure 11 (a) gives the comparison of relationship
computation time after ordered skewed insertions. Given
the fast increase of QED-Dewey label size, it conforms to
our expectation that its query response time also increases
significantly, especially for document order. The compari-
son after random skewed insertions is shown in Figure 11
(b) where the query response time of ORDPATH increases
significantly, particularly for sibling relationship. Neverthe-
less, our DDE and CDDE have demonstrated robust per-
formance regardless of the order and number of insertions.
Their query response times are least affected after both types
of skewed insertions.

7. CONCLUSION
In this paper, we studied the problem of designing effi-

cient labeling schemes for static and dynamic XML docu-
ments. We have presented a novel labeling scheme called
DDE which not only achieves compact size and high query
performance, but also completely avoids re-labeling when
updating. A variant of DDE, namely CDDE has been in-
troduced which is optimized for frequent insertions. Both
DDE and CDDE have exhibited high resilience to skewed
insertions in which case the qualities of existing labeling
schemes degrade severely. Extensive experimental evalua-
tion has demonstrated the benefits of our proposed labeling
schemes over previous approaches.
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