
Exploratory Keyword Search with Interactive Input

Zhifeng Bao + Yong Zeng ∗ H.V. Jagadish # Tok Wang Ling ∗

+RMIT University, Australia ∗National University of Singapore #University of Michigan
zhifeng.bao@rmit.edu.au zengyong@nus.edu.sg jag@umich.edu lingtw@comp.nus.edu.sg

ABSTRACT
Due to the intrinsic ambiguity of keyword queries, users usually

need to reformulate their queries multiple times to get the desired
information. Even worse, users either have no way to precisely
specify their search intention, or have limited domain knowledge
on the data to precisely express their search intention. Moreover,
they may just have a general interest to explore the data by key-
word query. Therefore, our goal is to design an exploratory search
paradigm that is able to bring humans more actively into the search
process, in order to meet various user information needs, ranging
from simple lookup to learning and understanding of the data.

Besides, keyword queries against data with structure, such as
XML, can run into multiple difficulties: how to identify the search
target; more types of ambiguity arise as a keyword can be part of
the structure as well as content of data, etc. Effectively addressing
these requires solutions to multiple challenges. While some have
been addressed to some extent individually, there is no previous
effort to develop a comprehensive system to meet these important
user needs and meet all of these challenges.

Therefore, we propose a framework called ClearMap [1] that na-
tively supports visualized exploratory search paradigm on XML
data. In particular, we offer an interactive and visualized mecha-
nism to present the outcome of the query, enable user to explore
and manipulate the underlying data to either quickly find desired
information or learn the relationship among data items, as well as
provide interactive suggestions when their expected results do not
exist in the data. A preliminary version of ClearMap and its source
code are available for try at http://xmlclearmap.comp.nus.edu.sg.

1. INTRODUCTION
The primary interaction between users and databases starts from

the traditional structured query, which assumes that users are to
some extent familiar with the content and structure of the database
and also have a clear understanding of their information needs. As
databases get larger and accessible to a more diverse and less tech-
nically oriented audience, new forms of data exploration become
increasingly more attractive [3]. Since keyword search paradigm
frees users from the hindrance of learning query syntax and database

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c⃝ 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735361.

schema, it is widely adopted as an entry to building the exploratory
search engine.

Regarding keyword search over databases, we also observed an
evolution on the granularity of users’ information needs when more
and more (semi-)structured data become available for search. They
are not merely content to simply retrieving the basic facts from
database (like most users do in web search), but desire for advanced
information needs, such as learning and understanding the results
as well as the underlying data [6]. Such advanced needs are sub-
stantial in practice for at least two reasons: (1) Users do not have
enough background knowledge on either the structure or the con-
tent of the underlying data; so a typical search cycle is actually a
process of examining and comparing results and possibly reformu-
lating queries until user’s desired information needs are met [8]. (2)
Users usually assume the thing they are looking for is out there, but
users may be stuck if the desired information does not even exist in
the database, regardless how they reformulate their queries.

Our goal is to design an exploratory search paradigm that is able
to bring humans more actively into the search process, in order to
meet various user information needs, ranging from simple lookup
to learning and understanding of the data. Specifically, we aim
to support human users’ navigational browsing and exploration of
semi-structured data, and ultimately they may not need to reformu-
late their query for resubmission many a time.

Doing so requires addressing challenges in multiple spheres, in-
cluding index design, result retrieval and result visualization. So
before we design our exploration model, it is worth having an overview
of the challenges brought by keyword search over semi-structured
data and the past endeavors made in addressing them. Compared
to web search, search over semi-structured data brings extra chal-
lenges: (1) how to identify the search target of a user query (while
in web search web page is the target); (2) more types of ambiguity
may occur, because a keyword can be part of the structure as well
as the content of data, and users may also have limited or wrong
knowledge of the schema and value of the underlying database [7];
(3) semi-structured data is usually modeled as a tree or a graph,
and the search result is a subtree or a subgraph, and two issues
remain open problems: (a) how to present the results in a human-
interpretable way and convey the relationship between data items
[4]; (b) how to find subtrees (or subgraphs) of appropriate size, in-
cluding relevant yet non-overwhelming information [2].

Over the years, we have made continuous efforts to address ev-
ery individual challenge above. E.g. we tried to identify and rank
the search targets and constraints to address the keyword ambiguity
[2], proposed visualization methods to display results at different
granularity [13], and provided suggestions (and explanations de-
riving such suggestions) to cater for the mismatch between user’s
information needs and the returned results [12]. But without inter-

action with user, these challenges cannot be addressed thoroughly
[4]. Taking search target identification as an example, even though
[2] tried to find the promising search targets for a single query, we
may not be able to guarantee that the target found fits to each in-
dividual user’s search context. More importantly, those individual
works employ individual indexing and retrieval methods to work.
Therefore, it is demanding to build a comprehensive search engine
that meets the above challenges systematically, in terms of index
design, result retrieval and result visualization.

To achieve our goal, we build a keyword search engine called
ClearMap [1], which helps users get beyond finding to understand-
ing and learning of the information resources in the database, and
ClearMap is comprehensive in that it meets all of the above chal-
lenges. In particular, we make the following contributions.

• We define a center search concept, called Visualized Search
Object (VSO), around which both structure and content of
the database can be indexed and organized by search engine,
and results in form of VSO can be manipulated by users.

• We utilize the inter-connectivity of the data in semi-structured
databases to design a novel exploration model, to allow users
to expand their manipulation from results to the whole database.

• We natively support the exploratory search paradigm with
interaction and visualization enabled by making a seamless
integration of VSO and our previous experiences [13, 2, 12].

• We design a multi-level index on VSO which can maximize
the reuse of index information by different components, as
well as providing support to visualization of huge subtree.

As a result, ClearMap has the following central characteristics:
• Interactive - It allows users to use the visual output as a visual

interface for specifying additional operations on either the
underlying data or the search results.

• Exploratory - For users who do not find their desired infor-
mation by their initial query, they can explore the visualized
data directly without reformulating their query; it also ben-
efits users who simply want to explore what is inside the
database.

• Context sensitive - It provides ways for users to specify or
choose their context (i.e. search target and constraint) when
creating the visual output that they desire.

• Diversified - It diversifies the results and groups the results
of same structure, which can satisfy different users’ search
intentions.

In the rest of this paper, we firstly introduce VSO and then illus-
trate how users can operate on VSOs to explore the database, and
how such exploratory search paradigm helps address each unique
challenge of XML search as compared to web search (in Sec. 2).
Then we present our system architecture to support different users’
information needs in terms of index design and information re-
trieval methods (in Sec. 3). Lastly, we showcase how ClearMap
helps address each of the aforementioned challenges (in Sec. 4).

2. ADDRESSING VARIOUS USER INFOR-
MATION NEEDS

In this section, we present typical scenarios that represent differ-
ent user information needs, and show how a combination of our in-
teractive exploratory search paradigm with our previous work can
help address each of them. In ClearMap, we focus on three crit-
ical yet commonly encountered scenarios: what users search for

is available in the data, users have a general interest (but no spe-
cific knowledge) to explore and learn from the database by keyword
query, and what users search for is unavailable in the data. These
three scenarios are also a snapshot of the three facets of exploratory
search: lookup, learning and understanding [9]. Accordingly, we
will showcase our solution to each problem in Sec. 4.

person

name

Mike

role

postman

movie-cast

person person

parent:

left sibling: right sibling:

target: person

coordinates on screen:

(x, y) = (3698, 726)

(a) VSO 1

movie

name

Postman

year

1998

imdb

movie movie

parent:

left sibling: right sibling:

target: movie

coordinates on screen:

(x, y) = (6227, 449)

(b) VSO 2

Figure 1: Two Sample Visualized Search Objects (VSOs)

2.1 Visualized Search Object
Before introducing various information needs and challenges,

we present a central concept called Visualized Search Object (VSO),
around which we organize, retrieve, visualize and manipulate the
results of a keyword query, and further enable an interactive ex-
ploration of the database by exploiting the inter-connectivity of all
query results in a database.

DEFINITION 1. Given a keyword query Q, a matching VSO of
Q is in form of a hierarchical tree, which includes

• an associated search target node st,

• a hierarchical subtree with structure context and the content
of each node encapsulated,

• the index information of the siblings and parent of st in the
XML data,

• the associated coordinates used for display on screen.

Note that, the search target is essentially a node type T as later
discussed in “Search Target Identification" of this section. A search
target node st is a node of type T in the XML data, and the query
result is a subtree rooted at the search target node st.

VSO forms a basic representation of the result, and possess the
following properties:

• Mergeable: VSOs with the same search target and compati-
ble structure [13] can be merged as one single VSO.

• Diversified: for any two VSOs with different structures but
matching a certain keyword query, the differences are high-
lighted for easy distinction.

• Navigational: users can do a navigational browsing to an-
other VSO which is a sibling, child or parent of the current
VSO visited. As a result, users can navigate any part of the
data due to the inter-connectivity of nodes in XML data.

EXAMPLE 1. Fig. 1 shows two sample VSOs for the keyword
query “postman" on IMDB dataset1. Fig. 1(a) and Fig. 1(b) corre-
spond to two different search targets even though they both contain
“postman"; such difference is used to diversify the search results.
1IMDB is a database containing movies’ information like title, rat-
ing, director, actor, actress, etc. http://www.imdb.com/interfaces

Note that they do not have the same target or compatible structure,
so they cannot be merged in this case. The VSO in Fig. 1(a) cor-
responds to a subtree rooted at the search target which is a person
node. Besides the target, a VSO records the subtree as well as the
index to its two sibling nodes and parent node. Such information
supports the navigational property, where users can navigate from
one VSO to another.

Since all query results are interconnected in a tree structure [13],
the structure context serves as a link among query results. More
importantly, each VSO not only visualizes a particular result sub-
tree, but also provides a mechanism for users to manipulate and
interact with that result, to further explore all related information
(in the database) connected with that result, and finally to find their
desired information without reformulating the current query. This
is achieved by maintaining for each VSO the index information of
its siblings and parent, which we will discuss in 3.1.

2.2 Scenario 1: What Users Search For is Avail-
able in the Data

First, let us look at how traditional XML keyword search han-
dles users’ queries. XML data is usually modeled as a rooted tree.
Existing works mainly focus on defining the matching semantics,
i.e. what should be returned as results, and designing efficient re-
trieval methods for a particular matching semantic. A basic one is
to find the subtree whose root node is the lowest common ances-
tor (LCA) of all query keywords, upon which various semantics
such as Smallest LCA (SLCA) [5], Exclusive LCA (ELCA) [11]
and object-oriented LCA [10] are proposed. We will present how
our proposed interactive and exploratory search paradigm enhances
the search in the following four aspects, while users do not need to
reformulate their queries.

2.2.1 Search Target Identification
The first and foremost challenge in database keyword search is

the identification of search target, while in web search it is sim-
ply the web document. Without figuring out the search target of
a user query, the matching results associated with different search
targets are messed up together, which badly annoys users in result
consumption. Since XML data contains both structural and content
information, queries usually contain various ambiguities [2]:

1. A keyword can appear both as an XML tag name and as a
text value of some other nodes.

2. A keyword can appear as the text values of different types of
XML nodes and carry different meanings.

3. A keyword can appear as an XML tag name in different con-
texts and carry different meanings.

The keyword ambiguity problem may lead to various interpre-
tations of the search target and constraint. Therefore, we first dis-
tinguish the type of a node in XML data by its prefix path from
root node, and the search target is referred as node type. Next, we
propose guidelines to capture human intuitions in measuring the
confidence of a certain node type T as the desired search target of
a query Q. A desired target node should be related to every query
keyword and contain enough relevant yet non-overwhelming infor-
mation (details can be found in [2]). As a result, we provide a list
of promising targets T for user to choose, after which we proceed
to retrieve the result as a subtree rooted at T .

2.2.2 Result Diversification
The ambiguity may cause not only various search targets, but

also various ‘search constraints’ (implicitly expressed in a key-
word query). However, existing works do not distinguish such con-
straints in result retrieval or ranking stage. Again, much user time

has to be spent on consuming results, especially when the desired
results are ranked far behind. Therefore, instead of driving users
to reformulate their queries, we can achieve better user experience
by grouping the query results by different search constraints. Since
results are of hierarchical structure, we classify and quantify differ-
ent search constraints by capturing the confidence of a node n to
be searched via (as a constraint) and the structural relationship of
nodes, as illustrated in our earlier work [2]. Then the query results
can be grouped, and users can see a high-level result group (in form
of VSOs) before they choose to zoom in to see all results matching
a certain search intention.

2.2.3 Result Visualization
We also find that existing search methods all return a list of in-

dependent subtrees as query results. However, all the data in an
XML tree are interconnected by the hierarchical structure. Each
query result thus is a part of the XML tree, and many of them may
have sibling or containment relationship in the global context of
the whole XML database. Without showing such relationship, the
results alone could be misleading or less comprehensible. For ex-
ample, suppose there is a subtree containing the information of a
pencil, such a subtree may not contain all the important information
of the pencil, like category, because category node could appear as
a parent node of that subtree in the XML database. Simply showing
subtrees as independent subtrees could be misleading, say a pencil
in make-up category is very different from a pencil in stationary
category. Therefore, how to visualize the query results for XML
keyword search properly is a crucial part in enhancing the search
experience. In particular, how to support zoom in/out for users to
view results at various granularity of details and how to dynami-
cally load the data in user’s device window are two challenges.

In order to maximize the usefulness of visualization, we combine
the VSO defined in this paper with our map-styled visualization of
the XML data [13], in order to visualize the query results within the
global context of the whole XML database. In such a manner, users
can easily tell the difference and see the relationship among the
query results. Furthermore, when visualizing all results of a query
in the screen, we merge those visualized search objects (VSO) that
are compatible (i.e. having the same search target and structure
context), by utilizing the mergeable characteristic of VSO.

2.3 Scenario 2: Interactive Result Exploration
& Data Navigation

Besides complementing the traditional lookup task in scenario
1, another important type of information need from user is to learn
from the data or the result for a better understanding of the data
they are playing with. Learning is an iterative process that requires
a search-refine paradigm, but with exploratory search facility pro-
vided, users can get rid of such reformulating process.

In particular, there are at least two cases to consider.
Case (i): Users have a general interest but no specific knowledge
on the data, and intend to explore and learn through keyword query.
For instance, they may try to learn the schema or structure of the
database from the results of their keyword query.
Case (ii): When users finish one round of search, it is also com-
mon that users may want to further explore more information of a
particular query result. For example, users who finished searching
for a particular laptop may also want to further search for the shops
selling such a laptop or other items sold by this shop.

Unfortunately, such interactive exploration is more or less ig-
nored by existing XML keyword search techniques, which usually
handle one round of “lookup" search. If users need to further ex-
plore a particular query result in the previous round of search, they

have to reformulate the original query and re-submit the new query
(at least once). In contrast, recall Definition 1 the VSO stores
the reference to its parent and siblings, which facilitates the ex-
ploration from one result to another (for case (i)); meanwhile, the
inter-connectivity of the VSOs and the aforementioned result visu-
alization module enable a natural navigation of the underlying data
(for case (ii)). For instance, the information related to a particular
result subtree appears right above it, connected by the hierarchical
tree structure of the XML data, and a simple upward navigation
operator serves the purpose.

2.4 Scenario 3: What Users Search For is Un-
available in The Data

In this scenario, a search engine may return an empty result or
even worse, return erroneous mismatch results because what users
search for is unavailable in the data. E.g., a list of mismatch results
are returned when what users search for is unavailable [12]. We
proposed to take user interaction to improve the user experience
by providing the following three categories of information to guide
users based on our earlier work [12].
(1) Notification. It is necessary to give a notification “what you
search for is unavailable" to users. Otherwise, users have to wade
through the mismatch results even to realize that what they search
for is unavailable. Existing XML keyword search semantics are all
based on LCA, which is trying to find the subtree whose root node
is the lowest common ancestor of all query keywords. As long as
all the query keywords appear in the XML data, it can always find
some subtrees as results according to the LCA semantics. Even
what users search for is unavailable in the XML data, some mis-
match results will be returned. E.g., if users want to search for a
particular laptop model Vaio W with red color by issuing a query
“Vaio W red", and somehow red color is unavailable for that laptop
model in the data. Mismatch results will be returned with “Vaio W"
matches one laptop and “red" match another laptop. We proposed a
detection approach in [12] by verifying the query results at schema
level for detecting the mismatch results.
(2) Explanation. An explanation on which keyword(s) lead to
empty result or mismatch result can greatly help users understand
how the problem occurred. E.g., if a user wants to find a laptop
model Vaio W with red color by issuing a query “Vaio W red", and
somehow red color is unavailable for that model in the data, then
it is natural to let the user know which keyword(s) lead the whole
query to empty or mismatch result, say the keyword “red". We try
to find such explanation by searching for approximate results in the
XML data [12]. Then we can discover which keyword(s) is not sat-
isfied in the approximate results and leads to the mismatch results.
(3) Suggestion. Another crucial part is suggested queries, which
should be generated based on the availability of the data and should
not lead to empty result or mismatch results. E.g., if red color is
unavailable for a product, some suggested queries by replacing red
color to some other available color will be a great help to users.
Such suggestion can be found in the approximate results discovered
in the previous step.

Following the above framework on how interactive input can
help improve XML keyword search, we built ClearMap with source
codes public for access at [1]. To the best of our knowledge, it is the
first XML keyword search system which can fulfill all the above in-
teraction mechanisms to improve the user experience and overcome
the major challenges of keyword search over XML databases.

3. SYSTEM ARCHITECTURE
The architecture of ClearMap is shown in Fig. 2. The input of

the system is a keyword query issued by users, and the output is

a set of results in the form of Visualized Search Objects (VSOs),
which provide users the visualized content as well as the structure
context of the results (see Definition 1).

Figure 2: Architecture of ClearMap

V3 V4r32 r33

V12 V13 V14

V9 V10 V11r31

V15 V16

r32

VSO

multiple VSOs

merged together

V6 V7

V1 V2

V8V5

level 1

level 2

level 3

Figure 3: Multi-level VSO index

ClearMap comprises several components, each of which is in
charge of a particular task in one of the three scenarios aforemen-
tioned. The workflow of ClearMap is as follows. First, user’s
query will be passed to Target Identifier, once the possible targets
are identified, it interacts with the user to decide the search target
that fits to his/her context. Then, it proceeds to Result Searcher,
which will generate the query results (by any existing XML key-
word search method) in the form of VSOs. Next, the query results
will be passed to Result Diversifier which will cluster the results
by different search constraints (at structure level). When results are
returned to user, they will be fed to Non-answer Detector simul-
taneously to check whether any mismatch problem occurs. If so,
it means there is no desired answer for users’ query and it will in-
form the Explanation/Suggested Query Generator to generate noti-
fication, explanation as well as suggested queries. After that, both
the suggestions and the results of the original query are passed to
Visualization Module, which is in charge of (VSO) result presenta-
tion to users in a precise, interactive and user-friendly way. When
users interact with the VSOs to either further explore the query re-
sults or navigate the databases, the interaction is captured and sent
to Exploration Module, which will retrieve the necessary data dy-
namically from the data and index at server side.

3.1 Challenges in Index Building
Since ClearMap integrates many different solutions, each of which

works on standalone indexes, it poses the first challenge, i.e. how
to build a one-size-fits-all Index Module such that relevant informa-
tion requested by different components of the system architecture
can be efficiently retrieved. To tackle the fist challenge, we analyze
each component and extract the common index information shared

Figure 4: Interactive Exploratory Search Paradigm for Scenario 1, i.e. what users
search for is available

Figure 5: Interactive Exploratory Search
Paradigm for Scenario 2, i.e. interactive result
exploration and data navigation

by more than one component. As a result, the Index Module con-
sists of three different indexes: inverted list index, statistics index
and visualization index. To further improve the performance, we
also build a buffer pool in the Index Module to buffer the retrieved
information for subsequent reuse. E.g., given a query, Target Iden-
tifier and Result Searcher may both access the inverted list index
for the same set of keywords. Therefore, we buffer the inverted lists
retrieved by Target Identifier for later reuse by Result Searcher.

The second challenge is how to visualize a VSO when a VSO
is a huge subtree. For instance, for a VSO corresponding to a
movie subtree (in IMDB dataset), it may contain hundreds of VSOs
corresponding to actor/actress information. Thus it is inappropri-
ate to show such overwhelming information under this subtree to
user. To properly visualize the movie VSO, we can merge all the
actor/actress VSOs in order to hide those similar information, by
exploiting the mergeable property of VSO. Merged VSOs will be
expanded in an interactive way according to user’s navigation op-
erator (e.g. click-through to see details, drag down, up, left, right,
etc.). In order to index the VSOs and the merged VSOs for efficient
retrieval, we build a multi-level VSO index which is similar to an
R-tree index. Fig. 3 shows a sample of the multi-level VSO index,
where merged VSO V 1 contains VSO V 6, V 7 and another merged
VSO V 5. When users navigate to expand a merged VSO, hidden
information can be retrieved following the index from level to level.
This idea originates from our previous work [13] in presenting the
same results at different granularity, but differs with [13] in that
all the output are organized, indexed and operated around VSOs
instead of nodes of XML data tree.

4. DEMONSTRATION
It is challenging in itself to define what constitutes an exploratory

search, and determine whether an exploratory search system is ef-
fective. In this section we will demonstrate how exploratory search
with user’s interactive input helps address the specific challenges
raised in XML keyword search (illustrated in Sec. 2). Since users
will undoubtedly be able to tell what works well for them, we very
welcome the audience to try our demo and provide their evalua-
tion and feedback (online or offline), for us to further improve the
usability of our exploration search paradigm.

In particular, we demonstrate the interaction and visualization
of ClearMap in three scenarios, as shown in Figures 4, 5 and 6.
Currently two datasets are available, i.e. DBLP and IMDB.
Scenario 1: what users search for is available in the data
Fig. 4 is a screenshot of the system for a query “frank" issued over
IMDB. Traditional methods will find some subtrees containing all
query keywords as results. E.g., the left pane of Fig. 4 shows a
list of direct results found by the XML search techniques adopted
by Result Searcher. They are just some name nodes containing
the keyword “frank". As we can see, simply displaying them is
far from enough to meet users’ information needs. On the right
pane in Fig. 4, the query results are shown in the form of VSO.
The relationship among the VSOs are clearly shown to users. This
is critical because the query results are actually interconnected in
the XML data. Without showing the relationship users could have
difficulty in consuming the results. E.g., from the right pane users
can know that result 1 and result 2 refer to the name of directors,
while result 3 and result 5 refer to the name of writers. Besides,
users can also tell that result 1 (director) and result 3 (writer) are
actually working for the same movie. These information is critical
for users to properly understand the query results.

Right under the search box at the top of Fig. 4, the Target Iden-
tifier helps identify the promising search targets for user to choose,
to further refine the results. E.g. in Fig. 4 we find three promis-
ing search targets for query “frank", i.e. writer, director and movie.
Since they have different targets, they are highlighted by rectan-
gles with different colors. User can designate the desired one and
the visualization will be updated to show only those results under
the designated target, otherwise we will keep all promising targets
in mind by default. Then Result Diversifier will analyze possible
search constraints and cluster the results with same constraints in
the left pane, highlighted in different colors. All in all, it comes
to how to visualize the above targets, constraints, results and even
the data itself (for exploration purpose) in an efficient and interac-
tive way. Our visualization has two features: (1) Similar to any
Geo-map, we generate several copies of the same XML data with
different degrees of detail, allowing users to zoom in/out to check
the result/data. Most XML data store many similar-structured data
at the same hierarchical level, and keep growing along the horizon-

 showing 1-5 of 600 results:

1. Answer Root: <imdb>

2. Answer Root: <imdb>

......

 (Result retrieval and ranking 0.208 seconds, after that, Non-answer component 0.01 seconds)

What you search for may not exist. Did you mean:

Sample Query Result:

Suggested Query: Inception English
(more

queries)
(why)

qu
(

Inception Japanese

Inception French

Pulp Fiction Spanish

The Godfather II Spanish

Raiders of Lost Ark Spanish Inception Chinese

(more

queries)

Other alternative suggested queries:

(a) Non-answer Notification, Explanation and Suggested Queries

 We find that the query results all miss the target.

E.g., the first query result:

 where your keyword(s):

"Inception" match a node of type "imdb/movie/title"

"Spanish" match a node of type "imdb/movie/ls/language"

Such a result’s LCA is of node type “imdb”.

But Target Node Type(TNT) of the result should be "imdb/movie",
which is defined as the Longest Common Path of the above node

types matched by each keyword.

“imdb” ≠"imdb/movie"
The result misses the target. So do all the other query

results. Therefore, what you search for may not exist.

Next we will try to find suggested queries.

(b) Explanation after clicking “why" button

Figure 6: Interactive Exploratory Search Paradigm for Scenario 3, i.e. what users search for is unavailable

tal axis. E.g., right below the imdb node, the movie items keep
growing, leading to a wide XML data tree. In order to provide
proper granularity of detail, we propose to merge/expand compat-
ible VSOs to hide/show different level of details, by utilizing the
mergeable characteristic of VSO.
Scenario 2: Interactive Result Exploration & Data Navigation
Users can explore a particular query result by clicking the result ID
in the right pane of Fig. 4. An exploration window will be popped
up, as shown in Fig. 5. Within the exploration window the whole
XML data is available for exploration with that result at the center.
The whole exploration process is formed by navigating (by drag-
ging down, up, left and right) and zooming in/out (by clicking the
suspension points to zoom in an area for hidden information). E.g.,
in Fig. 5, users can dragging the display to explore the structure in-
formation of result 1, i.e. director Frank Darabont. Users can easily
get the structure information, like Frank is a director of a movie,
what information is available for the movie, above the movie node
is the imdb database root node, etc. Besides, hidden information is
represented as suspension points in the display. Users can click the
suspension points to zoom in to that subtree, like genres, writers
and countries information of that movie. Such an operation will
lead the system to load more VSOs dynamically from the server,
supported by a R-tree liked index [13].

Besides, a dragging pad is provided for users to move left/right/up/
down, to further explore the relationship between query results and
XML data. In this way, users with different search intentions can
easily adjust the query results to meet their needs without reformu-
lating a new keyword query.
Scenario 3: what users search for is unavailable in the data
Fig. 6 is a screenshot of the system for a query “Inception Span-
ish" issued over IMDB dataset. As we can see at the left pane of
Fig. 6(a), for all results being returned, “Inception" matches movie
title and “Spanish" matches movie language. The search target is
very likely to be a movie. However, the movie Inception has no
Spanish version in our dataset. All results being returned are mis-
match results, i.e., the subtrees rooted at imdb node, because what
users search for is unavailable in the data. To detect mismatch re-
sults for XML keyword search is not an easy task, we use the Mis-
Match solution in [12] for detecting mismatch results, generating
notification, explanation and suggested queries. All these helpful
information are shown to users, as shown at the right-hand side of
Fig. 6(a). Here, one suggested query is “Inception English” that
provides an English version of the same movie. Furthermore, users
can click the “why” button to seek detailed explanations deriving
the suggestions, as shown in Fig. 6(b). Users can also find more
suggested queries by clicking the “more queries” button. All the
suggested queries are derived from the XML data and guaranteed
to have reasonable query results.

The main idea in [12] works as follows. We first infer users’
possible search targets for a query Q based on its results R; then it
will investigate each result r in R, to check whether it matches one
possible search target. If none of them can match a possible target,
we claim that Q has no available result in the data. Hereafter, to
generate suggested queries, we propose a TF*IDF-inspired scoring
measure to help find “important” keywords in the original query.
Then based on each query result r, we try to find some “approx-
imate” query results which contain these “important” query key-
words and are structurally consistent with r, while having reason-
able replacement for the “less-important” query keywords. Finally,
the suggested queries can be inferred from the approximate results.
Acknowledgement. H.V. Jagadish is supported in part by NSF
IIS-1250880 and IIS-1017296.

5. REFERENCES
[1] XML ClearMap. http://xclearmap.comp.nus.edu.sg.
[2] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML

keyword search with relevance oriented ranking. In ICDE,
pages 517–528, 2009.

[3] G. Koutrika, L. V. S. Lakshmanan, M. Riedewald, and
K. Stefanidis. Exploratory search in databases and the web.
In Workshops of the EDBT/ICDT, pages 158–159, 2014.

[4] F. Li and H. V. Jagadish. Usability, databases, and HCI. IEEE
Data Eng. Bull., 35(3):37–45, 2012.

[5] Z. Liu and Y. Chen. Identifying meaningful return
information for XML keyword search. In SIGMOD, pages
329–340, 2007.

[6] G. Marchionini. Exploratory search: From finding to
understanding. Commun. ACM, 49(4):41–46, Apr. 2006.

[7] A. Nandi and H. V. Jagadish. Guided interaction: Rethinking
the query-result paradigm. PVLDB, 4(12):1466–1469, 2011.

[8] A. Spink, B. J. Jansen, D. Wolfram, T. Saracevic, and
T. Saracevic. From e-sex to e-commerce: Web search
changes. IEEE Computer, pages 107–109, 2002.

[9] R. W. White and R. A. Roth. Exploratory search: Beyond the
query-response paradigm. Synthesis Lectures on Information
Concepts, Retrieval, and Services, 1(1):1–98, 2009.

[10] H. Wu and Z. Bao. Object-oriented XML keyword search. In
ER, pages 402–410, 2011.

[11] Y. Xu and Y. Papakonstantinou. Efficient LCA based
keyword search in XML data. In EDBT, pages 535–546,
2008.

[12] Y. Zeng, Z. Bao, T. W. Ling, H. V. Jagadish, and G. Li.
Breaking out of the mismatch trap. In ICDE, pages 940–951,
2014.

[13] Y. Zeng, Z. Bao, T. W. Ling, and L. Li. Malex: a map-like
exploration model on xml database. In KEYS, pages 32–38,
2012.

