
The VLDB Journal manuscript No.
(will be inserted by the editor)

Efficient updates in dynamic XML data: from binary string to

quaternary string

Changqing Li1, Tok Wang Ling1, Min Hu2

1 Department of CS, National University of Singapore, Singapore;
e-mail: lichangq@comp.nus.edu.sg or chqli2001@yahoo.com, lingtw@comp.nus.edu.sg

2 Department of COFM, National University of Singapore, Singapore;
e-mail: g0406391@nus.edu.sg

Received: date / Revised version: date

Abstract XML query processing based on labeling
schemes has been thoroughly studied in the past sev-
eral years. Recently efficient processing of updates in dy-
namic XML data has gained more attention. However,
all the existing techniques have high update cost, they
can not completely avoid re-labeling in XML updates,
and they will increase the label size which will influence
the query performance. Thus in this paper we propose a
novel Compact Dynamic Binary String (CDBS) encod-
ing to efficiently process updates. CDBS has two impor-
tant properties which form the foundations of this paper:
(1) CDBS supports that CDBS codes can be inserted be-
tween any two consecutive CDBS codes with orders kept
and without re-encoding the existing codes; (2) CDBS is
orthogonal to specific labeling schemes, thus it can be ap-
plied broadly to different labeling schemes or other appli-
cations to efficiently process updates. Moreover, because
CDBS will encounter the overflow problem, we improve
CDBS to Compact Dynamic Quaternary String (CDQS)
encoding which can completely avoid re-labeling in XML
leaf node updates no matter what the labeling schemes
are. Meanwhile we also discuss how to efficiently process
internal node updates. We report the experimental re-
sults to show that our CDBS and CDQS are superior
to previous approaches to process both leaf node and
internal node updates.

1 Introduction

XML [9] has become a standard to represent and ex-
change data on the web. In the definition of XML, one
element is allowed to refer to another, therefore theoret-
ically an XML document is a graph. However for sim-
plicity, most of the research work [1,14,26,30,38,43,45]
process queries over the XML data that conform to an
ordered tree-structured data model. Figure 1 shows an
ordered XML tree.

 book

title author chapter chapter

Rose Tom section section

Fig. 1 An ordered XML tree

Elements in XML data can be labeled according to
the structure of the document to facilitate query pro-
cessing. Many labeling schemes have been proposed in
the literature (see Section 2 for a survey).

The labeling schemes, such as containment scheme
[3,15,26,43,45], prefix scheme [14,30,35,36] and prime
scheme [38], can determine the ancestor-descendant (A-
D), parent-child (P-C) etc. relationships efficiently in
XML query processing if XML data are static.

However when XML data become dynamic, how to
efficiently update the labels of the labeling schemes be-
comes to an important research topic.

[14,34,35,39] can process updates (inserts or deletes
nodes) efficiently if the order of XML is not taken into
consideration. However as we know, the elements in XML
are intrinsically ordered, which is referred to as the docu-
ment order (the element sequence in XML). The relative
order of two paragraphs in XML is important because
the order may influence the semantics of XML. In addi-
tion, the standard XML query languages XPath [7] and
XQuery [8] include both ordered and un-ordered queries.
Thus it is very important to maintain the document or-
der when XML is updated.

Some research work [5,14,24,30,33,35,38] has been
done to maintain the document order in XML updating.

The naive approach to maintain the document or-
der is to leave gaps between adjacent labels in advance
[26]. Whenever the gaps are filled, i.e. the values left
in advanced are used up, the labeling schemes have to
re-label. This naive approach is suggested in many ex-

2 Changqing Li et al.

isting systems, e.g. [18,19]. But obviously the update
cost of this naive approach is expensive, especially when
updates frequently happen.

Amagasa et al [5] use float-point numbers instead of
integers to store labels. However, the number of distinct
values is limited by the number of bits used in the repre-
sentation of float-point values in a computer. Thus due
to the float-point precision, the method in [5] still can
not avoid re-labeling.

OrdPath [30] is a prefix labeling scheme which uses a
clever “careting-in” scheme to support insertions. Though
OrdPath [30] is dynamic to some extent to process up-
dates (will encounter the overflow problem; see Example
8.1), its update cost is not so cheap and it will reduce
the query performance.

All the existing techniques have high update cost;
they can not completely avoid re-labeling in XML up-
dates, and they will increase the label size which will
influence query performance. Thus in this paper we pro-
pose a novel Compact Dynamic Binary String (CDBS)
encoding (used to store labels in labeling schemes) and a
Compact Dynamic Quaternary String (CDQS) encoding
to efficiently process order-sensitive updates. Our CDBS
is the most compact, and its update cost is the cheap-
est compared to all other techniques. Our CDQS is the
only technique which can completely avoid re-labeling in
XML leaf node updates.

In addition, none of the existing techniques can effi-
ciently process internal node updates, therefore we also
propose techniques to much more efficiently process in-
ternal node updates though we can not completely avoid
re-labeling in internal node updates.

1.1 Our contributions

The main contributions of this paper are summarized as
follows:

– We propose a novel Compact Dynamic Binary String
(CDBS) encoding, which supports that CDBS codes
can be inserted between any two consecutive CDBS
codes with orders kept and without re-encoding the
existing codes. CDBS is orthogonal to specific label-
ing schemes, thus it can be applied broadly to differ-
ent labeling schemes.

– We design algorithms to implement our CDBS and
formally analyze the total code size of our CDBS,
which shows that our CDBS encoding is the most
compact, yet it efficiently supports updates. The up-
date cost of CDBS is the cheapest compared with all
existing techniques.

– Furthermore we propose the Compact Dynamic Qua-
ternary String (CDQS) encoding which can address
the overflow problem of CDBS, thus CDQS can com-
pletely avoid re-labeling in leaf node updates.

– We propose techniques to efficiently process internal
node updates.

– We conduct comprehensive experiments to demon-
strate the benefits of our CDBS and CDQS over the
previous approaches to process updates.

1.2 Roadmap

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work. In Section 3, we illus-
trate that the most important feature of this paper is
that we compare labels based on the lexicographical or-
der ; an algorithm that can insert a binary string be-
tween two binary strings with the orders kept is also
proposed in this section which is the first foundation of
this paper. We propose our Compact Dynamic Binary
String (CDBS) encoding in Section 4. In Section 5, we
indicate that our CDBS encoding can be applied broadly
(the second foundation) to different labeling schemes. We
discuss how to process the leaf node updates, internal
node updates and subtree updates of XML in Section 6.
In Section 7, we describe how to control the increase
in label size. Section 8 thoroughly discusses that CDBS
will encounter the overflow problem, therefore we further
improve CDBS to CDQS which can completely avoid re-
labeling in XML leaf node updates. The experimental
results are reported in Section 9, and we conclude in
Section 10.

This paper is an extension of our previous work about
the dynamic binary string [25] and dynamic quaternary
string [24] to efficiently process XML updates. Compared
to the work in [24,25], the work in Sections 6.2, 6.3, 7,
8.3, 9.2.4, 9.3.2, and 9.3.3 of this paper are new and
all the parts of this paper are in more detail than [24,
25]. This paper is a complete work of our approaches to
process updates.

2 Background and related work

XML queries can be expressed as linear paths [2,16,17,
21,44] or twig patterns [10,12,27,31].

The difference between linear path query and twig
pattern query is not an emphasis of this paper. Instead,
we focus on the updates based on labeling schemes. After
updating, the labeling schemes still supports different
queries efficiently since both the linear path query and
twig pattern query are based on labeling schemes.

Section 2.1 is about labeling schemes, Section 2.2 dis-
cusses how to store labels based on different encodings,
and Section 2.3 reviews the related work on processing
XML updates.

2.1 Background: labeling schemes

Here we present three families of labeling schemes, i.e.
containment scheme [3,15,26,43,45], prefix scheme [14,
30,35,36] and prime scheme [38].

Efficient updates in dynamic XML data: from binary string to quaternary string 3

Containment scheme.

The containment labeling scheme is first suggested by
Santoro and Khatib [32]. Yoshikawa and Amagasa [43]
also proposed a variant of containment labeling scheme.
To label the XML tree based on the containment scheme,
different tree traversal methods (e.g. pre-and-postorder
[15], extended preorder [26], multilevel recursive UID
[22,23]) are used.

Zhang et al [45] use a labeling scheme in which every
node is assigned three values: “start”, “end” and “level”.
For any two nodes u and v, u is an ancestor of v iff u.start
< v.start and v.end < u.end. In other words, the interval
of v is contained in the interval of u. Node u is a parent
of node v iff u is an ancestor of v and v.level - u.level =
1. Node u is a sibling of node v iff the parent of node u is
also a parent of node v. Node u is a preceding (following)
node of node v iff u.start < (>) v.start. Figure 2 shows
Zhang’s containment labeling scheme [45].

 1,18,1

2,3,2 4,9,2 10,11,2 12,17,2

5,6,3 7,8,3 13,14,3 15,16,3

Fig. 2 Containment scheme

Prefix scheme.

In prefix labeling schemes, the label of a node is the label
of its parent’s label (prefix label) concatenated with its
own label (self label). For any two nodes u and v, u is an
ancestor of v iff label(u) is a prefix of label(v). Node u is a
parent of node v iff label(v) has no prefix when removing
label(u) from the left side of label(v). Node u is a sibling
of node v if they have the same prefix label. Node u
is a preceding (following) node of node v iff label(u) is
smaller (larger) than label(v) lexicographically.

DeweyID [35] labels the nth child of a node with an
integer n, and this n should be concatenated to the pre-
fix (its parent’s label) and delimiter (e.g. “.”) to form
the complete label of this child node. Figure 3 shows
DeweyID.

1 2 3 4

2.1 2.2 4.1 4.2

Fig. 3 DeweyID prefix scheme

Prime scheme.

Wu et al [38] use Prime numbers to label XML trees.
The root node is labeled with “1” (integer). Based on a
top-down approach, each node is given a unique prime
number (self label) and the label of each node is the
product of its parent node’s label (parent label) and its
own self label. For any two nodes u and v, u is an ances-
tor of v iff label(v) mod label(u) = 0. Node u is a par-
ent of node v iff label(v)/self label(v) = label(u). Node
u is a sibling of node v iff label(u)/self label(u) = la-
bel(v)/self label(v). Prime uses the SC (Simultaneous
Congruence) values in Chinese Remainder Theorem [6,
38] to decide the document order, i.e. SC mod self label
= document order, then it compares the document or-
ders of two nodes.

Example 2.1 Prime labels the root firstly, then the child
of the root, and next the grandchild of the root. We con-
sider one label in Figure 4. The 3rd (document order; the
number above the node) node is labeled with “33” (the
right number), which is the product of its parent label
“3” and its self label “11”.

Prime uses the SC (Simultaneous Congruence) value
in Chinese Remainder Theorem [6,38] to decide the node
order.

Example 2.2 The SC value for the 8 nodes (except the
root) in Figure 4 is 8965025. That is to say, 8965025
mod 2 = 1 (here 2 is the self label and 1 is the document
order), 8965025 mod 3 = 2, . . . , 8965025 mod 17 =
7, and 8965025 mod 19 = 8. Prime only needs to store
this SC value and the self labels rather than store the
document order.

2 3 5 7
(1́ 2)

(1́ 3)

(1́ 5)

(1́ 7)

 3 4 7 8

1 2 5 6

0
1

33 39 119 133
(3́ 11) (3́ 13) (7́ 17) (7́ 19)

Fig. 4 Prime scheme

2.2 Encoding approaches

Binary number encoding.

In implementation, the containment labels are stored as
binary numbers in a computer. Further, the binary num-
bers can be stored with either variable lengths or fixed
lengths. Because the binary number encoding for inte-
gers is trivial, we do not discuss the details (see Section 4
for variable and fixed length binary number encodings).

4 Changqing Li et al.

Table 1 UTF8 encoding

Value Physical representation of self label

N < 128(27) 0xxxxxxx
27 < N < 211 110xxxxx 10xxxxxx
211 < N < 216 1110xxxx 10xxxxxx 10xxxxxx
216 < N < 221 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
221 < N < 226 111110xx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx
226 < N < 231 1111110x 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx

UTF8 and OrdPath encodings to process delim-
iters.

It should be noted that when implementing prefix label-
ing schemes, the delimiter “.” can not be stored together
with the labels (numbers). To process the delimiters, dif-
ferent encodings are proposed.

DeweyID uses UTF8 [41] encoding to process delim-
iters. In UTF8, a variable number of bytes are used
to encode different integer values. If the integer value
is smaller than 128 = 27, it is encoded with one byte
0xxxxxxx where x represents the bits used for the in-
teger value. If the integer value is between 27 and 211,
it is encoded with 2 bytes 110xxxxx 10xxxxxx. See Ta-
ble 1 for more details. To represent an entire Dewey path
with UTF8, each component of the path is encoded in
UTF8 and then concatenated (without delimiter). The
indicator bits “0”, “110”, “1110”, etc in the first byte
(see Table 1) determine how many bytes are used and
separate different components.

Example 2.3 Consider a DeweyID label “1.129”. Since
“1” is less than 128, “00000001” will be the UTF8 code
of “1”. Since 129 is larger than 27 and less than 211, the
11 bit binary encoding of 129 is “10000000001”, then the
first five bits “10000” will be concatenated after “110”,
and the rest six bits “000001” will be concatenated af-
ter “10” (see the third row of Table 1). The UTF8 code
of 129 is “11010000 10000001”. Finally, the DeweyID
“1.129” will be “000000011101000010000001”. Based
on the indicators “0” and “110”, we know that the first
component is stored with 1 byte, and the second compo-
nent is stored with 2 bytes. In this way, DeweyID can
separate different components without using the delim-
iter “.”.

After processing the delimiter of DeweyID, we call it
DeweyID(UTF8).

OrdPath [30] has two kinds of encodings which are
similar to UTF8 encoding. Compared with UTF8, the
OrdPath [30] encodings are more compact. However, Or-
dPath needs more time to decode.

Binary string and quaternary string encodings.

Cohen et al [14] use Binary String to store the prefix
labels, called BinaryString in this paper. The root of the

tree is labeled with an empty string. The first child of
the root is labeled with “0”, the second child with “10”,
the third with “110”, and the fourth with “1110” etc.
Similarly for any node u, the first child of u is labeled
with label(u).“0”, the second child of u is labeled with
label(u).“10”, and the ith child with label(u).“1i−10”.
The “0” in the labels can be used as the delimiter to
separate different components of a label.

The main part of this paper is about encodings. Our
encodings are based on binary strings and quaternary
strings. Compared with the binary string in [14], our bi-
nary string is compact and dynamic, and the quaternary
string encoding in this paper is novel. The dynamic bi-
nary and quaternary string encodings in this paper can
be applied broadly to different labeling schemes to effi-
ciently process order-sensitive updates.

2.3 Existing approaches to process updates

In this section, we discuss the approaches to process up-
dates in labeling schemes.

Float-point [5].

It should be noted that re-labeling in the containment
scheme is not only to maintain the document order. If
XML trees are not re-labeled after a node is inserted, the
containment scheme can not work correctly to determine
the ancestor-descendant, parent-child etc. relationships.

To solve the re-labeling problem, [5] uses Float-point
values for the “start” and “end” of intervals. It seems
that Float-point solves the re-labeling problem [35]. But
in practice, the Float-point is represented in a computer
with a fixed number of bits [5,35]. As a result, at most 18
nodes [5] can be inserted at a fixed place since [5] uses the
consecutive integer values at the initial labeling. Even
if [5] uses values with large gaps, it still can not avoid
re-labeling due to the float-point precision. Therefore,
using real values instead of integers only provides limited
benefits for the label updating [35,38].

OrdPath [30].

To keep the document order, the DeweyID(UTF8) and
BinaryString prefix schemes need to re-label the sibling
nodes after the inserted node and the descendants of
these siblings.

OrdPath [30] is a labeling scheme that can essentially
process order-sensitive updates. OrdPath is similar to
DeweyID, but it only uses odd numbers at the initial
labeling (see Figure 5). When the XML tree is updated,
it uses the even number between two odd numbers to
concatenate another odd number.

Example 2.4 Given three DeweyID labels “1”, “2” and
“3”, we can easily know that they are siblings. In addi-
tion, given two DeweyID labels “2” and “2.1”, we can

Efficient updates in dynamic XML data: from binary string to quaternary string 5

1 3 5 7

3.1 3.3 7.1 7.3

Fig. 5 OrdPath prefix scheme

easily know that “2” is a parent of “2.1”. But for Or-
dPath (see Figure 5), its labels are “1”, “3”, “5” etc.;
when inserting a label between “1” and “3”, it uses the
even number between “1” and “3” i.e. “2” to concatenate
another odd number i.e. “1” as the label of this inserted
node, i.e. the inserted label is “2.1”. In OrdPath, “2.1”
is at the same level as “1”, “3” etc., i.e. “2.1” is a sibling
of “1” and “3”. Furthermore, when inserting one more
node between “1” and “2.1”, OrdPath uses “2.-1” as the
inserted label and “2.-1” is also the sibling of “1”, “2.1”
and “3”. In this way, OrdPath need not re-label the ex-
isting nodes in insertions, however this makes OrdPath
slow in determining the sibling, parent-child etc. rela-
tionships in XML query processing. Therefore OrdPath
gets better update performance by reducing the query per-
formance. This is not desirable.

OrdPath can avoid the re-labeling to some extent,
but it reduce the query performance and its update cost
is expensive.

(1) It wastes half of the total numbers compared to
DeweyID (wastes the even numbers; even after insertion,
it still wastes the even number, e.g. “2.0” between “2.-1”
and “2.1” is still not used after insertion).

(2) Though OrdPath1 and OrdPath2 encodings can
reduce the label size compared to UTF8 encoding, it is
slow for OrdPath1 and OrdPath2 to get back the num-
ber. This will influence both the query and update per-
formance.

(3) It can be seen from Example 2.3 that “1”, “2.-1”,
“2.1” and “3” are at the same level, i.e. they are siblings.
OrdPath needs more time to determine this based on the
even and odd numbers (the even number is not a level)
which will reduce its query performance.

(4) OrdPath needs the addition and division oper-
ations to calculate the even number between two odd
numbers which is expensive in updating. It is also pos-
sible that OrdPath only uses the addition operation to
get the even number, but if there are many deletions, the
insertion with only addition operation is a bias and the
label size will increase fast. Moreover, even if OrdPath
only uses the addition operation in processing updates,
the addition operation is not so cheap.

SC value in prime scheme.
When the document order is changed, Prime only needs
to re-calculate the SC values instead of re-labeling.

Example 2.5 When a new sibling node is inserted be-
fore the 1st node (see Figure 4; the inserted node is now

the first child of the root), the next available prime num-
ber is 23, then the label of the new inserted node is 23 (1
× 23). This new inserted node becomes now the 1st node
(document order), and the orders of the nodes after this
inserted node should all be added with 1 (the old orders
are calculated based on the old SC value). Prime calcu-
lates the new SC value for the new ordering, which is
28364406 such that 28364406 mod 23 = 1, 28364406
mod 2 = 2, 28364406 mod 3 = 3, . . . , 28364406 mod 17
= 8, and 28364406 mod 19 = 9.

BOX [33].

The work in [42] is used for incremental maintenance
of XML structural indexes [28] rather than maintenance
of labels in labeling schemes. Silberstein et al [33] use
Weight-Balanced B-Tree (W-BOX) and Back-Linked B-
Tree (B-BOX) to provide a nice tradeoff between update
and lookup costs for labeling schemes: W-BOX has log-
arithmic amortized update cost and constant worst-case
lookup cost, while B-BOX has constant amortized up-
date cost and logarithmic worst-case lookup cost.

The objective of BOX [33] is to provide a good trade-
off between update and lookup costs. On the other hand,
the objective of this paper and the work in Float-point
[5], OrdPath [30] and Prime [38] are trying to avoid re-
labeling in XML updates.

Comparisons.

Although Prime supports order-sensitive updates with-
out re-labeling the existing nodes, it needs to re-calculate
the SC values based on the new ordering of nodes. The
re-calculation is much more time consuming.

The main idea of other labeling schemes [5,26] (ex-
cept Prime) is to leave some unused values for future
insertions. When the unused values are used up later,
they have to re-label the existing nodes, i.e. they can
not completely avoid re-labeling in XML leaf node up-
dates.

Though OrdPath [30] is dynamic to some extent to
process the updates (will encounter the overflow prob-
lem; see Example 8.1), it needs to decode its codes and
use the addition and division operations to calculate the
even number between two odd numbers, which make its
update cost not so cheap.

In addition, the better update performance of Ord-
Path does not come without a cost. It wastes a lot of
even numbers which makes its label size larger, and it
needs more time to determine the prefix levels based on
the even and odd numbers in XML query processing.

The objective of BOX [33] is to provide a nice tradeoff
between update and lookup cost rather than avoid re-
labeling.

In this paper, we propose a novel Compact Dynamic
Binary String (CDBS) encoding (CDBS is completely
different from the encoding in [14]; the only common
point is that they both use binary strings). The size of

6 Changqing Li et al.

our CDBS is as small as the binary number encoding
of consecutive decimal numbers. As we know, there is
no gap between two consecutive decimal numbers; that
means our CDBS is the most compact and it need not
leave unused values for future insertions. Yet our CDBS
supports that CDBS codes can be inserted between any
two consecutive CDBS codes. This is the most impor-
tant benefit of our CDBS over the previous approaches.
In addition, our CDBS can be applied broadly to differ-
ent labeling schemes to process updates. Also our CDBS
does not reduce the query performance. Moreover, to
solve the overflow problem of CDBS, we improve CDBS
to a Compact Dynamic Quaternary String (CDQS) en-
coding which can completely avoid re-labeling in XML
leaf node updates.

It seems that our CDBS is in the same family as Or-
dPath, but in fact independently; the idea of our CDBS
comes from the division of numbers by 2. For example,
given numbers 1 and 2, find the middle number between
1 and 2. CDQS which comes from the division by 4 is an
extension of CDBS to solve the overflow problem.

3 Lexicographical order

The most important feature of our approach is that we
compare labels based on the lexicographical order rather
than the numerical order.

Definition 3.1 (Lexicographical order ≺) Given two
binary strings SL and SR (SL represents the left binary
string and SR represents the right binary string), SL is
said to be lexicographically equal to SR iff they are exactly
the same. SL is said to be lexicographically smaller than
SR (SL ≺ SR) iff

(a) the lexicographical comparison of SL and SR

is bit by bit from left to right. If the current
bit of SL is 0 and the current bit of SR is 1,
then SL ≺ SR and stop the comparison, or

(b) SL is a prefix of SR.

Next based on Algorithm 1, Theorem 3.1 and Ex-
ample 3.2, we illustrate how to insert a binary string
SM (SM represents the middle binary string) between
two lexicographically ordered binary strings SL and SR

such that SL ≺ SM ≺ SR lexicographically. Based on
Algorithm 1, our CDBS encoding in Section 4 does not
require re-labeling.

Note that the last bit of SL and SR in Algorithm 1
is required to be 1. We use an example to show why we
require the last bit of the binary string to be “1”.

Example 3.1 Suppose there are two binary strings “0”
and “00”. “0” ≺ “00” lexicographically because “0” is
a prefix of “00”, but we can not insert a binary string
SM between “0” and “00” such that “0” ≺ SM ≺ “00”.
Accordingly we require the binary strings to be ended with
“1”.

Algorithm 1: AssignMiddleBinaryString(SL, SR)

Input: SL ≺ SR; SL and SR are both ended with “1”
Output: SM (ended with 1) such that SL ≺ SM ≺ SR

lexicographically
if size(SL) ≥ size(SR) then1

//Case (a)

SM = SL ⊕ “1”; //⊕ means concatenation2

else if size(SL) < size(SR) then3

//Case (b)

SM = SR with the last bit “1” changed to “01”;4

end5

return SM ;6

Theorem 3.1 Given any two binary strings SL and SR

which are both ended with “1” and SL ≺ SR, we can
always find a binary string SM based on Algorithm 1
such that SL ≺ SM ≺ SR lexicographically.

Proof:

Case (a): If size(SL) ≥ size(SR), we process SM based
on lines 1 and 2 in Algorithm 1, i.e. SM = SL ⊕ “1”.

(a1): SM is that SL concatenates one more “1”, thus
SL is a prefix of SM . According to condition (b) in Def-
inition 3.1, SL ≺ SM lexicographically.

(a2): Since size(SL) ≥ size(SR) and SL ≺ SR, condi-
tion (a) in Definition 3.1 must be satisfied. That means
there is a position; the bit of SL at this position is “0”,
and the bit of SR at this position is “1”. Therefore when
we concatenate one more “1” after SL i.e. SM , SM is
still smaller than SR lexicographically (the lexicograph-
ical comparison is from left to right), i.e. SM ≺ SR.

Based on (a1) and (a2), SL ≺ SM ≺ SR lexicograph-
ically when size(SL) ≥ size(SR).

Case (b): If size(SL) < size(SR), we process SM based
on lines 3 and 4 in Algorithm 1, i.e. SM = SR with the
last bit “1” changed to “01”.

(b1): If the first (size(SR)-1) bits of SR are larger
than SL lexicographically, SL ≺ SM because SM is the
first (size(SR)-1) bits of SR ⊕ “01”. If the first (size(SR)-
1) bits of SR are exactly the same as the SL, SL ≺ SM

because SM is SL ⊕ “01” (SL is the same as the first
(size(SR)-1) bits of SR; SL is a prefix of SM). Note that
the first (size(SR)-1) bits of SR can not be smaller than
SL lexicographically, otherwise SL will be larger than SR

lexicographically (conflict to the condition in Theorem
3.1). Thus SL ≺ SM .

(b2): If we do not consider the last two bits “01” of
SM and the last bit “1” of SR, SM is exactly the same as
SR, and “01” ≺ “1” lexicographically. Thus SM ≺ SR.

Based on (b1) and (b2), SL ≺ SM ≺ SR lexicograph-
ically when size(SL) < size(SR).

Therefore Theorem 3.1 holds.

Example 3.2 To insert a binary string between “001”
and “01”, the size of “001” is 3 which is larger than
the size 2 of “01”, therefore we directly concatenate one
more “1” after “001” (see lines 1 and 2 in Algorithm 1).

Efficient updates in dynamic XML data: from binary string to quaternary string 7

The inserted binary string is “0011” and “001” ≺ “0011”
≺ “01” lexicographically. To insert a binary string be-
tween “01” and “011”, the size of “01” is 2 which is
smaller than the size 3 of “011”, therefore we change the
last “1” of “011” to “01”, i.e. the inserted binary string
is “0101” (see lines 3 and 4 in Algorithm 1); obviously
“01” ≺ “0101” ≺ “011” lexicographically.

Algorithm 1 is the foundation of this paper which
can help to process updates efficiently.

When the labeling scheme is a prefix scheme, based
on Theorem 3.1, we can insert one label between two
labels without re-labeling the existing nodes. When the
labeling scheme is a containment scheme, we may need
to insert the “start” and “end” two values at one place.
The following Corollary 3.3 guarantees that two labels
can be inserted between two labels without re-labeling.

Lemma 3.2 The SM in Theorem 3.1 returned by Algo-
rithm 1 is ended with “1”.

Proof: This is obvious when we check Algorithm 1.
Lines 1 and 2 indicate that the end bit of SM is “1” when
size(SL) ≥ size(SR), and lines 3 and 4 indicate that the
end bit of SM is “1” when size(SL) < size(SR), therefore
SM is ended with “1”.

Corollary 3.3 Given any two binary strings SL and SR

which are both ended with “1” and SL ≺ SR, we can
always find two binary strings SM1 and SM2 such that
SL ≺ SM1 ≺ SM2 ≺ SR lexicographically.

Proof: Based on Theorem 3.1, we can insert a binary
string SM between SL and SR. Based on Lemma 3.2, we
know that SM is also ended with “1”. Therefore based
on Theorem 3.1, we can insert another binary string be-
tween SL and SM , or between SM and SR. Therefore
Corollary 3.3 holds.

We can further insert binary strings among SL, SM1,
SM2 and SR.

Theorem 3.1 and Corollary 3.3 guarantee that we
have low update cost in XML updating.

Algorithm 1 proposed in this paper is dynamic and
can be applied to any two ordered binary strings (ended
with “1”) for insertions. On the other hand, to maintain
the high query performance, we should not increase the
label size when decreasing the update cost. In Section 4
we further propose a Compact Dynamic Binary String
encoding, called CDBS. All the codes (binary strings)
of CDBS are ended with “1” and CDBS encoding is as
compact as the traditional binary number encoding (see
Section 4).

4 A compact dynamic binary string encoding

In this section, we propose a Compact Dynamic Binary
String encoding (CDBS), and based on Algorithm 1,
CDBS supports updates efficiently.

We firstly use an example to illustrate how our CDBS
encodes a set of numbers, and use examples to simply

Table 2 Binary and our CDBS encodings

Decimal
number

V-
Binary

V-
CDBS

F-
Binary

F-CDBS

1 1 00001 00001 00001
2 10 0001 00010 00010
3 11 001 00011 00100
4 100 0011 00100 00110
5 101 01 00101 01000
6 110 01001 00110 01001
7 111 0101 00111 01010
8 1000 011 01000 01100
9 1001 0111 01001 01110
10 1010 1 01010 10000
11 1011 10001 01011 10001
12 1100 1001 01100 10010
13 1101 101 01101 10100
14 1110 1011 01110 10110
15 1111 11 01111 11000
16 10000 1101 10000 11010
17 10001 111 10001 11100
18 10010 1111 10010 11110

Total size
(bits)

64 (118
total)

64 (118
total)

90 (93
total)

90 (93
total)

analyze the total size of the CDBS codes. Next the for-
mal encoding algorithm in Section 4.1 and the formal
size analysis in Section 4.2 will be easier to understand.

Table 2 shows the binary number encoding (V-Binary
and F-Binary) and our CDBS (V-CDBS and F-CDBS)
encoding of 18 numbers. We choose 18 as an example
because the total “start” and “end” values in Figure 2
are 18. In fact, CDBS can encode any number (not only
18; see the formal algorithm in Section 4.1).

When encoding 18 decimal numbers in binary, they
are shown in Column 2 (V-Binary Column) of Table 2
which have Variable lengths, called V-Binary.

Now let us discuss how to encode the 18 decimal
numbers based on our CDBS encoding. Column 3 (V-
CDBS Column) of Table 2 shows our CDBS, which is
called V-CDBS because it is also encoded with Variable
lengths. The following steps show the details of how to
get the V-CDBS codes (binary strings) and these steps
are examples for the formal algorithm in Section 4.1.

Step 1: In the encoding of the 18 numbers, we suppose
there is one more number before number 1, say number
0, and one more number after number 18, say number
19.

Step 2: We firstly encode the middle number with bi-
nary string “1” . The middle number is 10 where 10
is calculated in this way, 10 = round(0+(19-0)/2). The
V-CDBS code of number 10 is “1” (see Table 2).

Step 3: Next we encode the middle number between 0
and 10, and between 10 and 19. The middle number be-
tween 0 and 10 is 5 (5=round(0+(10-0)/2)) and the mid-

8 Changqing Li et al.

dle number between 10 and 19 is 15 (15=round(10+(19-
10)/2)).

Step 4: To encode number 5, the code size of number
0 is 0 (the V-CDBS code of number 0 corresponding to
SL in Algorithm 1 is empty now), and the code size of
number 10 is 1 (the V-CDBS code of number 10 cor-
responding to SR in Algorithm 1 is “1” now with size
1 bit). This is Case (b) where size(SL) < size(SR)
(see Algorithm 1). Thus based on lines 3 and 4 in Algo-
rithm 1, the V-CDBS code of number 5 is “01” (“1” →

“01”).

Step 5: To encode number 15, the 10 th code (SL) is “1”
now with size 1 bit, and the 19 th code (SR) is empty
now with size 0. This is Case (a) where size(SL) ≥

size(SR) (see Algorithm 1). Therefore based on lines 1
and 2 in Algorithm 1, the V-CDBS code of number 15
is “11” (“1” ⊕ “1” → “11”).

Step 6: Next we encode the middle numbers between
0 and 5, between 5 and 10, between 10 and 15, and
between 15 and 19, which are numbers 3, 8, 13 and 17
respectively. The encodings of these numbers are still
based on Case (a) or Case (b) in Algorithm 1.

In this way, all the numbers except 0 will be encoded
because the round function will reach the larger value
(divided by 2), and we need to discard the V-CDBS code
for number 19 since number 19 does not exist actually.

With Step 1, we find that the total size of V-CDBS
is equal to the total size of V-Binary (without Step 1,
their total sizes are not always equal).

Also the decimal numbers 1-18 can be encoded with
Fixed length binary numbers, called F-Binary (F-Binary
Column of Table 2). Since 18 needs 5 bits to store, zero
or more “0”s should be concatenated before each code
of V-Binary. On the other hand, when representing our
CDBS using Fixed length, called F-CDBS, we concate-
nate “0”s after the V-CDBS codes (F-CDBS Column
of Table 2).

With Step 1 to Step 6 above, the formal encoding
algorithm in Section 4.1 will be easier to understand,
and with the following example illustration for the total
code size, the formal size analysis in Section 4.2 will be
easier to understand.

Example 4.1 It can be seen from Table 2 that V-Binary
has one code “1” with size 1 bit, two codes “10” and
“11” with sizes 2 bits, four codes “100”, “101”, “110”
and “111” with sizes 4 bits, etc., and the total size of
V-Binary is 64 bits. Also we can see that our V-CDBS
has one code “1” with size 1 bit, two codes “01” and
“11” with sizes 2 bits, four codes “001”, “011”, “101”
and “111” with sizes 4 bits, etc., and the total size of
V-CDBS is also 64 bits. This means that our V-CDBS
is as compact as the traditional binary number encoding.
It is similar for F-Binary and F-CDBS (they both have
size 90 bits).

Example 4.2 Table 2 shows that V-Binary has smaller
total code size than F-Binary. However, we also need to
store the size of each V-Binary code, the maximal size
for a code is 5, e.g. the size of “10010” is 5 bits. We
need to store this 5 using fixed length of bits (“101”; 3
bits). The sizes of other codes should also be stored using
fixed length of bits (3 bits), therefore the total code size
for V-Binary is 3×18+64=118 bits which is larger than
the bits required by F-Binary. It is similar for V-CDBS
and F-CDBS.

4.1 V-CDBS encoding algorithm

Because F-CDBS is that some “0”s are concatenated
after the V-CDBS codes, we focus on V-CDBS to intro-
duce the algorithm.

Algorithm 2 is the V-CDBS encoding algorithm. We
use the procedure V-CDBS SubEncoding to get all the
codes of the numbers. Finally number 0 and number
(TN+1) should be discarded since they do not exist ac-
tually.

Algorithm 2: V-CDBS Encoding (TN)

Input: A positive integer TN

Output: The V-CDBS codes for numbers 1 to TN

Suppose there is one more number before the first1

number, called number 0, and one more number after
the last number, called number (TN + 1);
Define an array codeArr[0, TN + 1] //the size of2

//codeArr is TN+2; each element of the codeArr is
//empty at the beginning;
V-CDBS SubEncoding(codeArr, 0, TN + 1);3

Discard the 0 th and (TN+1)th elements of codeArr;4

Procedure V-CDBS SubEncoding (codeArr, PL, PR)

/*V-CDBS SubEncoding is a recursive procedure;

codeArr is an array, PL is the left position,

and PR is the right position*/

PM = round((PL+PR)/2);5

if PL + 1 < PR then6

codeArr[PM]=assignMiddleBinaryString(codeArr[PL],7

codeArr[PR]);
V-CDBS SubEncoding(codeArr,PL, PM);8

V-CDBS SubEncoding(codeArr,PM , PR);9

end10

V-CDBS SubEncoding is a recursive procedure, the
input of which is an array codeArr, the left position “PL”
and the right position “PR” in array codeArr. This proce-
dure assigns codeArr[PM] (corresponding to SM in Algo-
rithm 1) using the AssignMiddleBinaryString algorithm
(Algorithm 1), then it uses the new left and right posi-
tions to call the V-CDBS SubEncoding procedure itself,
until each (except the 0 th) element of the array codeArr
has a value.

Efficient updates in dynamic XML data: from binary string to quaternary string 9

Note that SL and SR in the input of Algorithm 1 can
be empty when it is called by V-CDBS SubEncoding here.
If SL and SR are both empty, their sizes are both equal
to 0, and SM is “1” based on lines 1 and 2 in Algorithm 1.
If SL is empty and SR is not empty, size(SL) < size(SR),
and we process SM based on lines 3 and 4 in Algorithm 1
(SM ≺ SR). If SL is not empty and SR is empty, size(SL)
> size(SR), and we process SM based on lines 1 and 2
in Algorithm 1 (SL ≺ SM).

Theorem 4.1 Given a positive integer TN, Algorithm 2
can encode all the numbers from 1 to TN with V-CDBS
codes.

Proof (Sketch): We simply illustrate why Theorem
4.1 holds. The V-CDBS encoding is like the binary search.
As we know, the binary search will not miss any values
in the search, therefore Algorithm 2 can encode each
number without missing.

Example 4.3 The V-CDBS codes in Table 2 are lexico-
graphically ordered from top to bottom.

The CDBS codes are ended with “1”, and lexico-
graphically ordered, therefore we can insert without re-
labeling in updates based on CDBS.

4.2 Size analysis

We analyze the size1 of different encodings.

V-Binary For V-Binary, one number is stored with one
bit (“1”; see Table 2), two numbers are stored with 2
bits (“10” and “11”), four numbers are stored with 3
bits (“100”, “101”, “110” and “111”), . . . , therefore the
total size of V-Binary is

1 × 1 + 2 × 2 + 22
× 3 + 23

× 4 + . . . + 2n
× (n + 1)

= n × 2n+1 + 1 (1)

See Appendix for how to get formula (1).

Suppose the total number is N , which should be
equal to 20 +21 +22 + . . .+2n = 2n+1−1. Thus formula
(1) becomes to

Nlog(N + 1) − N + log(N + 1) (2)

V-CDBS When considering our V-CDBS, it has one
code (“1”) stored with one bit, two codes (“01” and
“11”) stored with two bits, four codes (“001”, “011”,
“101” and “111”) stored with three bits, . . . , therefore
our V-CDBS has the same code size as V-Binary.

In addition, since V-Binary and our V-CDBS have
variable lengths, we need to store the size of each code.
A fixed-length number of bits are used to store the size
of the codes. The maximal size for a code is log(N). To

1 The size in this paper refers to bits, the log in this paper
is used as the logarithm to base 2, and the log3 in this paper
is used as the logarithm to base 3.

store this size, the bits required are log(log(N)), and the
total bits required to store the sizes of all the variable
codes are Nlog(log(N)). When taking formula (2) into
account, the total sizes of V-Binary and V-CDBS are
both

Nlog(N + 1) + Nlog(log(N))− N + log(N + 1) (3)

F-Binary To store N numbers with fixed lengths, the
size required is

Nlog(N) (4)

The size of the F-Binary code also needs to be stored,
but needs to be stored only once with size log(log(N)).
Therefore the total size for F-Binary is

Nlog(N) + log(log(N)) (5)

F-CDBS has the same total code size as formula (5).

Theorem 4.2 V-CDBS and F-CDBS are the most com-
pact variable and fixed length dynamic binary string en-
codings.

Proof (Sketch): As we know, the V-Binary and F-
Binary are encodings for the consecutive decimal num-
bers and there are no gaps between any two consecutive
numbers, thus V-Binary and F-Binary are the most com-
pact encodings. In addition, from the above size analy-
sis, we know that our V-CDBS and F-CDBS have the
same total sizes as V-Binary and F-Binary respectively2.
Therefore, our V-CDBS and F-CDBS are also the most
compact.

Though the size of F-CDBS is smaller than the size
of V-CDBS, it is easier for F-CDBS to encounter the
overflow problem. See Section 8 for the overflow problem.

5 Applying CDBS to different labeling schemes

We firstly describe a property which is the second foun-
dation of this paper (the first one is Theorem 3.1).

Property 5.1 Our V-CDBS and F-CDBS are orthogo-
nal to specific labeling schemes, thus they can be applied
to different labeling schemes or other applications which
need to maintain the order in updates.

In this section, we mainly illustrate how our V-CDBS
can be applied to different labeling schemes. F-CDBS
is similar since it only concatenates zeros to V-CDBS
codes.

2 We assume the consecutive numbers starting from 1. If
the consecutive numbers start from 0, our approach can use
“0” as one code in the encoding, then our approach still has
the same size as Binary, but each time when we want to insert
a code before “0”, we need to insert a code before the second
code, and always put “0” as the first code.

10 Changqing Li et al.

When we replace the “start” and “end” values 1-18
of the containment scheme [45] (similar for other con-
tainment schemes [3,15,26,43]) in Figure 2 with the V-
CDBS codes in Table 2 and based on the lexicographi-
cal comparison, a V-CDBS based containment labeling
scheme is formed, called V-CDBS-Containment.

Similarly, we can replace the decimal numbers (see
Figure 3) in the prefix labeling scheme with our V-CDBS
codes, then a V-CDBS based prefix labeling scheme is
formed, called V-CDBS-Prefix. We use the following ex-
ample to show V-CDBS-Prefix.

Example 5.1 From Figure 3, we can see that the root
has 4 children. To encode 4 numbers based on Algo-
rithm 2, the V-CDBS codes will be “001”, “01”, “1” and
“11”. Similarly if there are two siblings, their self labels
are “01” and “1”. Figure 6 shows V-CDBS-Prefix.

001 01 1 11

01.01 01.1 11.01 11.1

Fig. 6 V-CDBS-Prefix scheme (for Figure 3)

Similarly we can apply our V-CDBS to the prime
labeling scheme to record the document order. But be-
cause Prime employs the modular and division opera-
tions to determine the ancestor-descendant etc. relation-
ships, its query efficiency is quite bad (see Section 9 for
the experimental results). Therefore we do not discuss
in detail how V-CDBS is applied to Prime.

It may be argued that V-CDBS only has the orders
but does not have the exact position of each code, which
seems a deficiency when compared to the V-Binary codes.
For example, from a V-Binary code “110”, we can im-
mediately know that “110” corresponds to the decimal
number 6. However, if we delete the V-Binary codes
“100” and “101”, “110” is now not the 6 th number but
the 4 th number in order. In this paper, we focus on the
dynamic XML data in which there are a lot of deletions
and insertions, therefore V-Binary does NOT have mer-
its over our V-CDBS in processing the nth position label.
V-Binary and our V-CDBS both need to sort and get the
position in the dynamic environment of XML.

In addition, it is not to say that our V-CDBS can not
immediately get the exact position. Based on an inverse
processing of Algorithm 2, we can get the exact position
of each V-CDBS code by calculations only. However, if
the XML is static, we can directly use V-Binary rather
than V-CDBS. If the XML is dynamic, none of them can
calculate the positions immediately.

6 Processing of updates

6.1 Leaf node updates

The deletion of nodes will not affect the relative orders
of the nodes in XML. Hence we mainly discuss how to
process the insertions based on V-CDBS.

In this section, we use examples to show how to pro-
cess the leaf node insertion based on our V-CDBS-Prefix
and V-CDBS-Containment.

Example 6.1 If we want to insert a sibling node before
“01.01” in Figure 6, the self label of the inserted node
is “001” (see lines 3 and 4 in Algorithm 1; the complete
label is “01.001”). Theorem 3.1 guarantees that we need
not re-label the existing nodes but we can keep the orders.
The insertions at other places also need not re-label the
existing nodes.

Example 6.2 Similarly if we insert a sibling node before
“5,6,3” in Figure 2, we should insert two values (“start”
and “end”) between the start of “4,9,2” i.e. “4” and the
start of “5,6,3” i.e. “5”. The existing schemes can not
insert a number between “4” and “5”, but our V-CDBS
codes for “4” and “5” are “0011” and “01” (see Table 2),
and Corollary 3.3 guarantees that we can insert two bi-
nary strings between “0011” and “01” with the orders
kept (the inserted two binary strings are “00111” and
“001111”). That means we need not re-label the existing
nodes, but we can keep the containment scheme working
correctly.

After insertion, we can further insert other nodes be-
fore the inserted node.

6.2 Internal node updates

In [38], the internal node insertion problem has been
studied, but all the existing labeling schemes have ex-
pensive internal node update cost.

When inserting an internal node, the traditional con-
tainment scheme needs to re-label all the nodes after
this inserted node in document order, all prefix schemes
need to re-label the descendant nodes of the inserted
node, and Prime also needs to re-label all the descen-
dant nodes with the new inserted label multiplying all
the labels of the descendants, in addition Prime needs
to re-calculate the SC values.

Furthermore, when deleting an internal node from
the XML tree, all the containment, prefix and prime la-
beling scheme should re-label all the descendant nodes.

That is to say, all the existing labeling schemes are
not appropriate to process the internal node updates.
When our V-CDBS are applied to the existing labeling
schemes, V-CDBS-Containment can process the “start”
and “end” values efficiently, but because the level val-
ues of all the descendants should be added with 1, the
update cost is not so cheap. This is the drawback of the

Efficient updates in dynamic XML data: from binary string to quaternary string 11

existing containment schemes, but not the drawback of
our CDBS encoding approach.

To decrease the internal node update cost, we pro-
pose the P-Containment scheme.

Rather than storing the “level” value in the contain-
ment scheme, P-Containment scheme stores the “par-
ent start” value, which is the “start” value of the parent
of this node.

With the “parent start”, the parent-child relation-
ship can be determined faster and the sibling relation-
ship can be determined much faster. Note that to de-
termine the sibling relationship, the traditional contain-
ment scheme should search the parent (need a lot of
parent-child determinations) of a node, then determine
whether another node is the child of this parent which
is very expensive. The ancestor-descendant and order-
ing relationship determinations based on P-Containment
are the same as the traditional containment labeling
schemes. Figure 7 shows P-Containment.

Example 6.3 In Figure 7, the “4” in “5,6,4” is the
“parent-start” value, and it is equal to the “start” value
of its parent, i.e. the “4” in “4,9,1”, therefore “4,9,1”
is the parent of “5,6,4”. “5,6,4” is a sibling of “7,8,4”
because their “parent start” values are both equal to “4”.

 1,18,-

2,3,1 4,9,1 10,11,1 12,17,1

5,6,4 7,8,4 13,14,12 15,16,12

Fig. 7 P-Containment scheme

Theorem 6.1 P-Containment scheme requires that the
“start” value of each node should be unique.

Proof (Sketch): If the “start” of P-Containment is
not unique, P-Containment may determine the parent-
child etc. relationships wrongly.

When V-CDBS is applied to P-Containment scheme,
we call it V-CDBS-P-Containment. More important, the
following Properties 6.1 and 6.2 show that our V-CDBS-
P-Containment has much cheaper internal node update
cost.

Property 6.1 Based on V-CDBS-P-Containment,
when an internal node is inserted into the XML tree,
the “parent start” of the inserted internal node should
refer to the “start” of the parent of this internal node,
the “parent start”s of the children of the inserted inter-
nal node should be modified to refer to the “start” of
the inserted internal node, and the “parent start”s of all
the descendants of the inserted internal node (except the
children) need not be changed.

Example 6.4 When we replace the decimal numbers for
the “start”, “end” and “parent start” values in Figure 7
with our V-CDBS codes (see Table 2 for the mappings),
Figure 8 shows the V-CDBS-P-Containment scheme. Fig-
ure 8 also shows that an internal node “u” is inserted.
We should insert a binary string between the “start” of
the root and the “start” of the first child of the root,
i.e. between “00001” and “0001”, as the “start” of node
“u”. Based on Algorithm 1, the “start” of node “u” will
be “000011”. Similarly the “end” of node “u” should
be between “10001” and “1001” (see Figure 8; do not
consider the insertion of the subtree now; Section 6.3 is
about the insertion of a subtree) which will be “100011”.
The “parent start” value of node “u” should be equal to
the “start” value of the root, i.e. “00001”. The “par-
ent start” of “0001,001,00001”, “0011,0111,00001” and
“1,10001,00001” should be changed to refer to the “start”
value of node “u”, i.e. change them to “000011”. The
“start”, “end” and “parent start” values of the descen-
dant nodes (of the children of node “u”) “01,01001,0011”
and “0101,011,0011” need not be changed.

Theorem 6.2 The “parent start” in P-Containment can
not decrease the internal node insertion cost when the
decimal numbers in the containment scheme are stored
with V-Binary or F-Binary encodings.

Proof: The “start” values of the descendants based
on V-Binary and F-Binary need to be changed when
inserting an internal node, therefore if we use the “start”
of the parent as the “parent start” of the child, we still
need to change the “parent start” values. The insertion
cost will not be decreased.

Only our V-CDBS-P-Containment (or F-CDBS-P-
Containment) is efficient to process the internal node
insertion.

The following property shows that our V-CDBS-P-
Containment has cheaper cost in processing the internal
node deletions.

Property 6.2 When an internal node is deleted from
the XML tree, V-CDBS-P-Containment only needs
to modify the “parent start” values of the child nodes
of the deleted node to refer to the “start” value of the
parent of the deleted node, but need not modify the “par-
ent start” values of the descendant nodes of these child
nodes.

Our V-CDBS-P-Containment can greatly decrease
the number of nodes to re-label in internal node up-
dates. In addition, the “parent start” in P-Containment
scheme can help to determine the parent-child relation-
ship, especially the sibling relationship very fast. More-
over, the “parent start” is useful later in Section 8 to
completely avoid re-labeling in leaf node updates.

Prefix and prime schemes cannot be directly improved
to process internal node updates efficiently as all the de-
scendant labels themselves need to be modified.

12 Changqing Li et al.

 00001,1111,00001

0001,001,00001 0011,0111,00001 1,10001,00001 1001,111,00001

101,1011,1001 11,1101,1001

u

01,01001,0011 0101,011,0011

subtree

Fig. 8 V-CDBS-P-Containment scheme, internal node insertion, and subtree insertion

6.3 Subtree updates

The deletion of a subtree will not affect the relative or-
ders of the rest nodes in the XML, hence we mainly
discuss how to process the insertion of a subtree based
on V-CDBS in this section.

When a subtree is inserted into the XML tree, we
can process the insertion of this subtree as the inser-
tion of nodes one by one. However, this kind of insertion
will make the label size increase fast (see Section 6.4 for
more details). That is not what we expected. We use the
following method to process the insertion of a subtree.

Example 6.5 Figure 8 also shows that a subtree is in-
serted into the XML tree. For the subtree, we need to
insert 8 binary strings (4 nodes; 8 “start” and “end” val-
ues) between the V-CDBS codes “10001” and “1001”
in Figure 8. We use Algorithm 2 to process the inser-
tion of the 8 binary strings, and “10001” and “1001”
can be viewed as the V-CDBS codes for number 0 and
number (TN+1)=(8+1)=9 in Algorithm 2. The mid-
dle number is the 5th number where 5 = round(0+(9-
0)/2). The SL is “10001” with size 5 bits, and the SR

is “1001” with size 4 bits, hence according to lines 1
and 2 in Algorithm 1 (called by Algorithm 2), the V-
CDBS code of the 5th number is “100011”. Similarly
we can insert the V-CDBS codes for the rest 7 num-
bers. Finally the V-CDBS codes for these 8 numbers
are “100010001”, “10001001”, “1000101”, “10001011”,
“100011”, “10001101”, “1000111” and “10001111”. The
inserted codes are ordered between “10001” and “1001”
lexicographically. The “start” and “end” values of the
four nodes of the subtree are “100010001, 10001111”,
“10001001, 1000101”, “10001011, 100011”, and
“10001101, 1000111”. We can get the “parent start”
value of each node of the inserted subtree further.

In this way, the label size will increase slower when
inserting a subtree compared to the node by node inser-
tions (see Section 9.3.3 for the experimental results).

Similarly, we can use this method to process the in-
sertion of a subtree based on the prefix scheme.

6.4 Uniformly and skewed insertions

The size analysis in Section 4.2 is based on the initial en-
coding. Algorithm 2 shows that our encoding algorithm
is step by step insertions of nodes evenly at different

places. Therefore if a sequence of nodes are inserted ran-
dom at different places of the XML tree, the size analysis
in Section 4.2 is still valid, and the query performance
will not be reduced.

For the case that nodes are always inserted at a fixed
place (we call it skewed insertion) of the XML tree, the
size of our V-CDBS increases fast. [14] proves that any
deterministic labeling scheme which does not re-label
nodes must assign one label with size O(N) in the worst
case where N is the size of the XML tree. Our V-CDBS
can not escape from this claim also, i.e. the label size of
our V-CDBS increases linearly in the worst case. O(N)
is the upper bound of the size of our V-CDBS. OrdPath
[30] also has this skewed insertion problem. [33] uses B-
tree to provide a tradeoff between update and lookup
costs.

The study in [11] shows that the insertions in XML
data are often segments e.g. subtrees, and the insertion
of single node seldom happens. As we can see from Sec-
tion 6.3, the insertion of a subtree will not cause the label
size increase fast. The above analysis also shows that our
CDBS at least works very well when the insertions are
random at different places of the XML tree. Even in the
skewed insertion environment, our CDBS still works the
best to answer queries (see the experimental results in
Section 9.4).

7 Controlling the increase in label size

In this section, we discuss how to control the increase in
label size. If there are only insertions in updates, Algo-
rithm 2 guarantees that the inserted code has the small-
est size at that place, however if there are deletions as
well, Algorithm 2 can not guarantee that the inserted
code has the smallest size. Thus in Section 7.1, we design
an algorithm which can find the code with the smallest
size between two codes in the update environment with
both insertions and deletions. Next in Section 7.2, we
discuss some techniques to process the skewed insertion
problem (see Section 6.4).

7.1 Finding the codes with the smallest size between two
codes (Reuse deleted codes)

We firstly use an example to show why Algorithm 2 can
not guarantee that the inserted binary string has the
smallest size if there are deletions.

Efficient updates in dynamic XML data: from binary string to quaternary string 13

Algorithm 3: AssignMiddleBinaryStringWithSmallestSize(SL, SR)

Input: SL ≺ SR; SL and SR are both ended with “1”
Output: SM such that SL ≺ SM ≺ SR lexicographically, and SM has the smallest size

Case 1 SL is empty but SR is NOT empty, i.e. insert a code before the first code;1

denote the position of the firstly encountered “1” in SR as P ; //there must be a “1” in SR.2

ST = substring(SR, 1, P); //ST is the temporarily inserted binary string.3

if ST ≺ SR lexicographically then4

SM = ST ; //Case 1(a)5

else6

SM = substring(SR, 1, P-1) ⊕ “01”; //change the firstly encountered “1” to “01” //Case 1(b)7

end8

Case 2 SL is NOT empty but SR is empty, i.e. insert a code after the last code;9

if all the bits of SL are “1” then10

SM = SL ⊕ “1”; //Case 2(a)11

else12

//Case 2(b)

denote the position of the firstly encountered “0” in SL as P ;13

SM = substring(SL, 1, P-1) ⊕ “1” //change the firstly encountered “0” to “1”;14

end15

Case 3 SL is a prefix of SR; both SL and SR are not empty. Insert a code between two codes;16

ST = substring(SR, length(SL)+1, length(SR)); //ST is the temporarily inserted binary string when17

//removing SL from the left side of SR.

denote the position of the firstly encountered “1” in ST as P //there must be a “1” in ST ;18

ST2 = substring(ST , 1, P) //ST2 is another temporarily inserted binary string;19

if ST2 ≺ ST lexicographically then20

SM = SL ⊕ ST2; //Case 3(a)21

else22

SM = SL ⊕ substring(ST , 1, P -1) ⊕ “01” //change the firstly encountered “1” to “01”; //Case 3(b)23

end24

Case 4 SL is not a prefix of SR; both SL and SR are not empty. Insert a code between two codes;25

denote the first difference position of SL and SR as P ;26

ST = substring(SL, 1, P-1); //ST is the temporarily inserted binary before the first different27

//positions in SL and SR, i.e. SL = ST ⊕ ‘‘0" ⊕ ‘‘***", and SR = ST ⊕ ‘‘1" ⊕ ‘‘***".

//Note that ‘‘***" is the rest binary string symbols.

if length(SR) > P then28

SM = ST ⊕ “1”; //Case 4(a) the P here is the P at line 2629

else30

//i.e. length(SR) = P; note that length(SR) can not be smaller than P

ST2 = substring(SL, P+1, length(SL)); //ST2 is the temporarily inserted binary string from31

//position P+1 to the end position of SL.

if all the bits of ST2 are “1” then32

SM = SL ⊕ “0” ⊕ ST2 ⊕ “1”; //Case 4(b)33

else34

//Case 4(c)

denote the position of the firstly encountered “0” in ST2 as P2 ;35

SM = ST ⊕ “0” ⊕ substring(ST2, 1, P2-1) ⊕ “1” //change the firstly encountered “0” in ST2 to “1”;36

end37

end38

Example 7.1 For the first three V-CDBS codes “00001”,
“0001” and “001” in Table 2, if we use Algorithm 1 to
insert a binary string between “00001” and “0001”, the
inserted binary string is “000011”. We can not find any
other binary strings which are ended with “1”, are be-
tween “00001” and “0001” lexicographically, and have
sizes smaller than or equal to 6 bits, i.e. the size of

“000011”. That is to say, if there are only insertions,
Algorithm 1 guarantees that the inserted binary string
always has the smallest size. On the other hand, if there
are deletions also, Algorithm 1 can not guarantee that
the inserted binary string has the smallest size. Sup-
pose that we delete the “0001” between “00001” (SL)
and “001” (SR). Now if we want to insert a binary

14 Changqing Li et al.

string between “00001” and “001”, the inserted binary
is “000011” based on Algorithm 1. Obviously “000011”
is not the binary string with the smallest size between
“00001” and “001” because the size of the new code is 6
which is larger than the size of the deleted code “0001”.
Therefore we design a new algorithm (Algorithm 3) to
find the binary string with the smallest size between two
binary strings in the update environment with both in-
sertions and deletions.

The main idea of Algorithm 3 is that we compare SL

and SR bit by bit from left to right to find SM such that
SM is ended with “1”, and SM has the smallest size in
all the codes between SL and SR lexicographically.

Now we use some intuitive examples to illustrate the
different cases in Algorithm 3.

(I) Case 1 in Algorithm 3
Case 1 is used to insert a code before the first code. The
following intuitive example shows how Case 1 works.

Example 7.2 Case 1(a), suppose we delete the first
three V-CDBS codes in Table 2, and want to insert a
binary string before the current first code “0011”. The
firstly encountered “1” in “0011” is at the third posi-
tion; thus ST = “001” (see Algorithm 3), and because
ST ≺ SR, SM = ST = “001”. “001” is the binary string
with the smallest size which is smaller than “0011” lex-
icographically. Case 1(b): suppose we delete the first V-
CDBS code in Table 2 and want to insert a binary string
before the current first code “0001”. The firstly encoun-
tered “1” in “0001” is at the fourth position; thus ST =
“0001”, but because ST is not lexicographically smaller
than SR, i.e. the first code “0001”, we have to change the
last “1” in ST to “01” as the final inserted binary string,
i.e. the SM = “00001” (“0001” → “00001”). “00001” is
the binary string with the smallest size which is smaller
than “0001” lexicographically.

(II) Case 2 in Algorithm 3
Case 2 is used to insert a code after the last code. The
following intuitive example shows how Case 2 works.

Example 7.3 Case 2(a), suppose we delete the last V-
CDBS code “1111” in Table 2 and want to insert a bi-
nary string after the current last code “111”. Because all
the bits of “111” are “1”s, SM = SL ⊕ “1” = “1111”
(see Algorithm 3). It can be seen that “1111” is the bi-
nary string with the smallest size which is large than
“111” lexicographically. Case 2(b), suppose we delete the
13th to 18th V-CDBS codes in Table 2, and want to in-
sert a binary string after the current last code “1001”.
We change the firstly encountered “0” to “1”. The firstly
encountered “0” in “1001” is at the second bit; we change
this “0” to “1”, and the inserted binary string is the first
two bits of “1001” with “0” changed to “1”, i.e. SM =
“11”. In this way, we guarantee that the inserted binary
string is lexicographically larger than the last code and
has the smallest size.

(III) Case 3 in Algorithm 3
Case 3 is used to insert a code between two codes. In
Case 3, SL is a prefix of SR. The following intuitive ex-
ample shows how Case 3 works.

Example 7.4 Case 3(a), suppose we delete the two V-
CDBS codes between “11” (SL) and “1111” (SR) in Ta-
ble 2, and want to insert a new binary string between
SL “11” and SR “1111”. “11” ≺ “1111” lexicographi-
cally because “11” is a prefix of “1111”, therefore this is
Case 3. ST = “11”, i.e. the last two bits of SR “1111”
(see Algorithm 3). The firstly encountered “1” in ST is
at the first position; thus ST2 = “1” i.e. we assume that
the temporarily inserted binary string is the first bit of
“11”. ST2 ≺ ST , thus SR = SL ⊕ ST2 = “11” ⊕ “1”
= “111”. Obviously “111” is the binary string with the
smallest size between “11” and “1111” lexicographically.
Similarly Case 3(b) can be processed following the steps
for Case 3(b) in Algorithm 3; here we do not repeat these
steps.

(IV) Case 4 in Algorithm 3
Case 4 is still used to insert a code between two codes. In
Case 4, SL is not a prefix of SR. The following intuitive
example shows how Case 4 works.

Example 7.5 Case 4(c), suppose we delete the second
code between the first code “00001” (SL) and the third
code “001” (SR) in Table 2, and want to insert a binary
string between SL “00001” and SR “001”. “00001” ≺

“001” lexicographically because the third bit of “00001”
is “0”, while the third bit of “001” is “1”, therefore this is
Case 4. Because the first difference bit between “00001”
and “001” is at position 3, ST = “00” (see Algorithm 3).
Because length(SR) = 3 which is not larger than the first
difference position between SL and SR, ST2 = “01”, i.e.
the last two bits of SL “00001”. Because not all the bits
of ST2 are “1”s, this is Case 4(c). Finally SM = ST

⊕ “0” ⊕ subString(ST2, 1, P2-1) ⊕ “1” = “00” ⊕ “0”
⊕ “” ⊕ “1” = “0001”. Obviously SM “0001” is lexico-
graphically between “00001” and “001” and it has the
smallest size, i.e. there are no any other binary strings
which are ended with “1”, are lexicographically between
“00001” and “001”, and have smaller sizes as the in-
serted binary string “0001”. Similarly Case 4(a) and
Case 4 (b) can be processed following the steps for Case
4(a) and Case 4(b) in Algorithm 3; here we do not repeat
these steps.

7.2 Insertion skewness processing

In Section 6.4, we discussed that the label size of our
V-CDBS will increase fast if the nodes are always in-
serted at one fixed place. Here we further discuss some
techniques to control the label size increasing speed in
skewed insertion environment.

Still based on V-CDBS, we introduce the skewness
processing techniques.

Efficient updates in dynamic XML data: from binary string to quaternary string 15

Skewness Processing I (SPI) Estimate (based on the
characteristics of the XML data or probing test) the
number of nodes that will be inserted at the fixed place.
Based on the estimated number, pre-calculate the labels,
and assign these labels to the inserted nodes.

Example 7.6 Suppose that there are 127 codes that
are required to be inserted one by one before the first
V-CDBS code “00001” (see Table 2), then each inser-
tion requires that one more bit should be added for the
new inserted code, i.e. the new code will be “000001”,
“0000001”, “00000001” etc. Therefore the code size will
increase fast; after inserting 127 codes, the total size for
these 127 new codes will be (6+132)×127/2=8763. It
can be seen that without any Skewness Processing Meth-
ods, the label size increases fast in the skewed inser-
tion. On the other hand, if we employ the Skewness Pro-
cessing Method (SPI), we can pre-calculate the codes
for the 127 inserted codes at the beginning. Note that
we pre-calculate the codes now, and assign the codes to
the inserted nodes only when they are really inserted.
The (1/2)th number of the 127 numbers is encoded with
“000001” (“00001” → “000001”), the (1/4)th number
of the 127 numbers is encoded with “0000001” (“000001”
→ “0000001”), and the (3/4)th number of the 127 num-
bers is encoded with “0000011” (“000001” ⊕ “1” →

“0000011”). Similarly we can encode the (1/8)th, (3/8)th,
(5/8)th and (7/8)th numbers of the 127 numbers. These
steps are similar to the steps in Algorithm 2; the differ-
ence is that for this example, we know the most right code
“00001”, but for Algorithm 2, both the most left and most
right codes are empty at the beginning. In this way, the
total size of the new inserted codes is 127×log(127+1)
+4×127+log(127+1)=1404 for this example. It can be
seen that 1404 is smaller than 8763, therefore SPI can
efficiently process the skewed insertion problem.

The method in Examples 7.6 can be used for the
skewed insertions at other places, and not restricted to
the insertions before the first code.

Furthermore, if we know at the initialing labeling
stage that nodes will always be inserted at a place, we
can leave some codes with smaller sizes for this place.
This can be known from the XML data manager about
the feature of the XML data, e.g. the future stock data
are always appended after the current stock data.

Skewness Processing II (SPII) If we know that the
nodes are always inserted at a fixed place, we can leave
some codes with small sizes for this place at the initial
labeling.

Example 7.7 Suppose at the beginning, we know that
the codes will always be inserted before the first code.
Then at the beginning, we can suppose the first code is
“1” (the most left code) and the most right code is empty,
then we can encode all the numbers. Later when inser-
tions happen, the size increases from 1 bit of “1” rather
than from 5 bits of “00001” for the first V-CDBS code in

Table 2. It will be better if SPI and SPII can be combined
together to process the skewness.

SPI and SPII can be used for all the labeling schemes.
It should be noted that the objective of this paper is to
avoid re-labeling. Silberstein et al [33] use B-tree to bal-
ance the lookup and update costs. Obviously we can em-
ploy the method in [33] to process the skewed insertion
problem. If re-labeling is allowed in the actual situation,
our approach will not be worse than the existing ap-
proaches. If re-labeling is not allowed, only our approach
support insertions without re-labeling (see Section 8 for
more details).

We use unbounded-length in our programming for
XML data stored in files rather than in SQL DBMS.
If our approach needs to be transferred to fit in SQL
DBMS, we should improve the existing DBMS to sup-
port unbounded-length binary strings. Otherwise, we have
to re-label if the length of a binary string exceeds 32 bits
or 64 bits. From another view of point, this 32 bits or 64
bits may serve as a threshold for re-labeling in subtrees
when employing the method in [33] to process skewed
insertions.

Again we need to emphasize that if the insertions are
uniform, the label size of our approach increase logarith-
mically, it is the most compact, and it can be supported
by the existing SQL DBMS.

8 CDQS encoding to completely avoid
re-labeling in XML leaf node updates

CDBS proposed in Section 4 still can not completely
avoid re-labeling in XML leaf node updates. Here is an
example.

Example 8.1 The size of each V-CDBS code is stored
with fixed length (e.g. 3; see Example 4.2). If many nodes
are inserted into the XML tree, the size of the length field
(e.g. 3) is not enough for the new labels, then we have
to re-label all the existing nodes. Even if we increase the
size of the length field (e.g. 3) to a larger number, it still
can not completely avoid re-labeling, and it will waste
the storage space. This is called the overflow problem
in this paper. Similarly F-CDBS and OrdPath [30] will
encounter the overflow problem also (O’Neil et al do not
mention this overflow problem in OrdPath [30]).

To solve the overflow problem, we have the follow-
ing observation. We observed that the size of V-CDBS
is used only to separate different V-CDBS codes. After
separation, we can directly compare the V-CDBS codes
from left to right. Therefore to solve the overflow prob-
lem, the way is to find a separator which can separate
different V-CDBS codes; meanwhile this separator will
not encounter the overflow problem. In binary string,
there are only two symbols “0” and “1”; if we use “0” or
“1” as the separator, only one symbol is left and CDBS
will not be dynamic. Therefore we design a quaternary

16 Changqing Li et al.

Table 3 Our CDQS encoding

Decimal number CDQS

1 112
2 12
3 122
4 13
5 132
6 2
7 212
8 22
9 222
10 223
11 23
12 232
13 3
14 312
15 32
16 322
17 33
18 332

Total size (bits) 88 (124 total, including the sep-
arator size)

string encoding which can help to completely avoid re-
labeling in XML leaf node updates.

8.1 CDQS encoding

Four symbols “0”, “1”, “2” and “3” are used in the qua-
ternary string and each symbol is stored with two bits,
i.e. “00”, “01”, “10” and “11”.

Now we illustrate what is our Compact Dynamic
Quaternary String (CDQS) code, CDQS code is a spe-
cial quaternary string; “0” is used as the separator and
only “1”, “2” and “3” are used in the CDQS code itself.

Because we use “0” as the separator, it is not appro-
priate to concatenate “0”s for the fixed length CDQS, i.e.
F-CDQS. In this paper, when we talk about CDQS , it
is equivalent to V-CDQS .

Still based on the 18 numbers in Table 2, we use
examples to show how CDQS works (see Table 3).

Step 1: In the encoding of the 18 numbers based on
CDQS, we suppose there is one more number before
number 1, say number 0, and one more number after
number 18, say number 19.

Step 2: The (1/3)th number is encoded with “2” , and
the (2/3)th number is encoded with “3” . The (1/3)th

number is number 6, which is calculated in this way, 6
= round(0+(19-0)/3). The (2/3)th number is number 13
(13 = round(0+(19-0)×2/3)).

Step 3: The (1/3)th and (2/3)th numbers between num-
ber 0 and number 6 are number 2 (2 = round(0+(6-
0)/3)) and number 4 (4 = round(0+(6-0) 2/3)). The
CDQS code of number 0 (SL) is now empty with size

0 bit and the CDQS code of number 6 (SR) is now “2”
with size 2 bits. This is Case (b) where size(SL) <

size(SR). In this case, the (1/3)th code is that we change
the last symbol “2” of SR to “12”, i.e. the code of num-
ber 2 is “12” (“2” → “12”), and the (2/3)th code is
that we change the last symbol “2” of SR to “13”, i.e.
the code of number 4 is “13” (“2” → “13”). Note that
in the initial encoding, if size(SL) < size(SR), SR can
only be ended with “2” (can not be ended with “3”).

Step 4: The (1/3)th and (2/3)th numbers between numb-
sers 6 and 13 are numbers 8 (8 = round(6+(13-6)/3))
and 11 (9 = round(6+(13-6)×2/3)). The CDQS code of
number 6 (SL) is “2” with size 2 bits and the code of
number 13 (SR) is “3” with size 2 bits. This is Case (a)
where size(SL) ≥ size(SR). In this case, the (1/3)th

code is that we directly concatenate one more “2” after
the SL, i.e. the code of number 8 is “22” (“2” ⊕ “2” →

“22”), and the (2/3)th code is that we directly concate-
nate one more “3” after the SL, i.e. the code of number
11 is “23” (“2” ⊕ “3” → “23”).

Step 5: The (1/3)th and (2/3)th numbers between num-
bers 13 and 19 are numbers 15 (15 = round(13+(19-
13)/3)) and 17 (17 = round(13+(19-13)×2/3)). The code
of number 13 (SL) is “3” with size 2 bits and the code
of number 19 (SR) is empty now with size 0 bit. This is
still Case (a) where size(SL) ≥ size(SR). Therefore
the CDQS code of number 15 is “32” (“3” ⊕ “2” →

“32”), and the code of number 17 is “33” (“3” ⊕ “3”
→ “33”).

In this way, all the numbers will be encoded with
our CDQS codes. Finally we need to discard the codes
for numbers 0 and 19 since they do not exist actually.
It should be noted that if the (2/3)th number exactly
refers to the (1/3)th number, the code for the (2/3)th

number will not appear since this number has already
been encoded with the (1/3)th code. See Table 3 for the
CDQS codes for all the 18 numbers.

The formal algorithm of CDQS is similar to the V-
CDBS algorithm (Algorithms 1 and 2). The difference is
that CDQS is based on the (1/3)th and (2/3)th posi-
tions rather than the (1/2)th position in V-CDBS. The
above Step 1 to Step 5 are an illustration of the formal
algorithms for CDQS. Here we do not repeat these two
algorithms.

Note that at the initial labeling stage, there are only
two cases (Case (a) and Case (b)) to process. This is
different from Algorithm 4 which is used for later inser-
tions. It can be seen from Section 8.2 that Algorithm 4
needs to process more cases.

When we note that the quaternary strings “0” ≺ “1”
≺ “2” ≺ “3” lexicographically, we have the following
example.

Example 8.2 The CDQS codes in Table 3 are lexico-
graphically ordered from top to bottom, e.g. “112” ≺

“12” lexicographically since the second symbol of “112”
is “1”, while the second symbol of “12” is “2”.

Efficient updates in dynamic XML data: from binary string to quaternary string 17

8.2 Processing of updates based on CDQS

Algorithm 4 shows how to insert a quaternary string be-
tween two CDQS codes (two quaternary strings). Algo-
rithm 4 considers the case that there are only insertions
which is similar to Algorithm 1. If there are only in-
sertions and size(SL) < size(SR), then SR can only be
ended with “2”.

Algorithm 4: AssignInsertedQuaternaryString(SL,
SR)

Input: SL ≺ SR; SL and SR are ended with “2” or
“3”

Output: SM such that SL ≺ SM ≺ SR

lexicographically
if size(SL) > size(SR) then1

if the last symbol of SL is “2” then2

SM = SL with the last symbol changed from3

“2” to “3”;
else if the last symbol of SL is “3” then4

SM = SL ⊕ “2”; //⊕ means concatenation5

end6

else if size(SL) = size(SR) then7

SM = SL ⊕ “2”;8

else if size(SL) < size(SR) then9

SM = SR with the last symbol “2” changed to10

“12”;
end11

return SM ;12

Theorem 8.1 Algorithm 4 guarantees that a quaternary
string can be inserted between two consecutive CDQS
codes with the orders kept and without re-encoding any
existing numbers.

Proof (Sketch): When we check Algorithm 4, all the
conditions can guarantee that SL ≺ SM ≺ SR lexico-
graphically, therefore Theorem 8.1 holds.

Corollary 8.2 Algorithm 4 guarantees that infinite num-
ber of quaternary strings can be inserted between any two
consecutive CDQS codes.

Proof (Sketch): When recursively using Algorithm 4
for the insertions, Corollary 8.2 holds.

Theorem 8.3 CDQS can completely avoid re-labeling
in XML leaf node updates.

Proof: We use “0” as the separator to separate differ-
ent CDQS codes, and “0” will never encounter the over-
flow problem. Also Corollary 8.2 guarantees that infinite
number of quaternary strings can be inserted between
any two consecutive CDQS codes. Therefore Theorem
8.3 holds.

Section 6.2 shows that we can efficiently process the
internal node updates though we can not completely
avoid the re-labeling in internal node updates; this is
the drawback the existing labeling schemes, but not the
drawback of our CDQS encoding.

Though the total code size of CDQS is larger (10%
around) than the total size of V-CDBS, and the update
cost of CDQS is a little larger (modify 2 bits instead of
1 bit; consider more cases instead of two cases) than V-
CDBS, CDQS can completely avoid re-labeling in XML
leaf node updates.

8.3 Reusing the deleted labels and applying CDQS to
different labeling schemes

To reuse the deleted codes, similar to Algorithm 3, we
can design an algorithm to reuse all the deleted CDQS
codes. Here we do not repeat it.

We can apply CDQS into different labeling schemes.
For the containment scheme, since the “level” value will
encounter the overflow problem, we only discuss how
to apply CDQS to the P-Containment scheme (see Sec-
tion 6.2 for the P-Containment scheme). When replacing
the decimal numbers 1-18 of the “start”, “end” and “par-
ent start” values of the P-Containment scheme in Fig-
ure 7 with our CDQS codes in Table 3, a CDQS based
P-Containment scheme is formed. Based on the separa-
tor “0”, we can separate the “start”, “end” and “par-
ent start” values, and each three values form a group of
“start, end, parent start”.

Example 8.3 For labels “1,18,-”, “2,3,1”, and “4,9,1”
of the first three nodes of the P-Containment scheme
in Figure 7, we store them consecutively in the hard
disk as “112033201201220112013022201120” (see Ta-
ble 3 for the mappings between the decimal numbers and
the CDQS codes). Based on the separator “0”, we can
separate them as “112”, “332”, “12”, “122”, “112”, “13”,
“222” and “112”, the first two are a group of “start,
end” which is the label of the root. It should be noted
that the root does not have the “parent start” value. The
next three are a group of “start, end, parent start” which
is the label of the next node after the root. The rest three
are another group of “start, end, parent start” which is
the label of the third node. The labels for the 4th, 5th,
etc. nodes can be similarly stored after the first three la-
bels. We will never encounter the overflow problem, but
we can separate different labels, and we can completely
avoid re-labeling in XML leaf node updates. Note that in
the implementation, each quaternary number is stored
with two bits e.g. “2” is stored as “10” (two bits) in the
implementation.

Example 8.4 Figure 9 shows that we apply CDQS to the
prefix scheme. The root has 4 children. To encode 4 num-
bers based on CDQS, the codes will be “12”, “2”, “3” and
“32”. Similarly if there are two siblings, their self labels
are “2” and “3”. See Figure 9 for CDQS-Prefix.

For the prefix scheme, we use one separator “0” as
the delimiter to separate different components of a la-
bel (e.g. separate “2” and “3” in “2.3”; the delimiter

18 Changqing Li et al.

12 2 3 32

2.2 2.3 32.2 32.3

Fig. 9 CDQS-Prefix scheme (for Figure 3)

“0” is equivalent to “.”; note “.” can not be stored to-
gether with numbers in the implementation), and use
two consecutive “0”, i.e. “00”, as the separator to sepa-
rate different labels (e.g. separate “2.2” and “2.3”).

Example 8.5 To store the first three nodes “12”, “2”
and “2.2” in Figure 9 (except the root which is empty) in
the hard disk, they are stored as “120020020200”. Based
on the separator “00”, we can separate “12”, “2” and
“202”, and if necessary, we can separate different com-
ponents of a label, e.g. separate “2” and “2” in “202”
based on the delimiter “0”.

It may be asked why we choose “0” but rather than
any other quaternary number “1”, “2” or “3” as the de-
limiter? It is because in this way, we can directly compare
two labels symbol by symbol from left to right to deter-
mine the document order. See the following example for
more details.

Example 8.6 Suppose that there is one more sibling
node inserted between “2” and “3” in Figure 9. Based on
Algorithm 4, the label of the inserted node is “22”. We
know that “2.3” is before “22” (the label of the inserted
node) in document order. “2.3” is stored as “203” with
delimiter “0”. We can directly compare “203” and “22”
from left to right to get the relative orders of these two
labels. If we use any number of “1”, “2” or “3” as the
delimiter, we cannot directly compare the labels from left
to right to get the document order.

8.4 Extensions of CDBS and CDQS

By further extending CDQS, we can use octal and hex
string encodings to process updates, called CDOS and
CDHS respectively. It can be seen from previous sec-
tions that CDQS grossly wastes 1/4 of the total numbers
for the separator. If we use CDOS and CDHS encod-
ings, only 1/8 and 1/16 of the total numbers are wasted
grossly. Thus CDOS and CDHS encodings will be more
compact when the total number is large. On the other
hand, the separator sizes of CDOS and CDHS encodings
are 3 bits and 4 bits respectively which will make CDOS
and CDHS encodings not so compact as expected. See
Section 9.2.4 for the experimental results.

9 Performance study

9.1 Experimental setup

We evaluate and compare the performance of different
labeling schemes. The P-Containment scheme and the
scheme names containing a “CDBS” or “CDQS” are
all schemes proposed in this paper; all the others are
prior schemes. The schemes with a “-Prefix” at the end
of the scheme names are prefix schemes, and with a “-
Containment” at the end of the scheme names are con-
tainment schemes.

All the schemes are implemented in Java and all the
experiments are carried out on a 3.0 GHz Pentium 4
processor with 1 GB RAM running Windows XP Pro-
fessional.

Table 4 shows the characteristics of the test datasets.
D1 is from [29], D3 and D4 are from [36], and all of them
are real-world XML data. D2 is a benchmark generated
by XMark [40]. We choose these datasets because they
have different characteristics.

9.2 Performance study on static XML

9.2.1 Initial labeling In the implementation, we use SAX
to parse the XML tree. Because we need to know the
size of the tree, we need to scan the XML tree twice. At
the first time, we label the XML tree based on the inte-
gers, then at the second time, we calculate the CDBS or
CDQS codes based on the total number and replace the
integers with our encodings.

As we need to scan the XML tree twice, the initial
labeling time based on our CDBS is larger than that
of Binary labeling; the extra time is the initial labeling
time of Binary labeling. However, this extra time is wor-
thy because it makes the total label size of our CDBS
as compact as the Binary encoding. Furthermore, Bi-
nary needs to re-label the existing nodes when inserting
a node. Even one time re-labeling may need the extra ini-
tial labeling time. In addition, the initial labeling time is
not so sensitive (do only once at the beginning; will not
impact the query performance). Therefore, we say that
this extra initial labeling time is worthy.

After the initial labeling, we can freely insert labels
without re-labeling and we need not know the total num-
ber of nodes later in the insertion.

9.2.2 Storage requirement In this section, we firstly test
the label sizes of different (containment, prefix and prime)
schemes, then we compare the label sizes of different con-
tainment schemes (include our containment schemes),
and finally we compare the label sizes of different prefix
schemes (include our prefix schemes).

Figure 10(a) shows the label sizes of the existing con-
tainment, prefix and prime labeling schemes for the four
datasets shown in Table 4. Prime [38] labeling scheme

Efficient updates in dynamic XML data: from binary string to quaternary string 19

Table 4 Test datasets

Datasets Topics # of files Max/average fan-out
for a file

Max/average depth
for a file

Total # of nodes for
each dataset

D1 Shakespeare’s play 37 434/48 6/5 179689
D2 XMark 1 25500/3242 12/6 1666315
D3 Treebank 1 56384/1623 36/8 2437666
D4 DBLP 1 328858/65930 6/3 3332130

has larger label size than the containment and prefix
schemes because it skips a lot of integer numbers to get
the prime numbers and it uses the multiplications of the
numbers for the labels which both make its label size
very large.

Figure 10(b) is the comparison between the existing
containment schemes and our CDBS and CDQS con-
tainment scheme. Float-point-Containment [5] has larger
label size than other containment labeling schemes. V-
CDBS-Containment has the same label size as V-Binary-
Containment, and F-CDBS-Containment has the same
label size as F-Binary-Containment. These show that V-
CDBS and F-CDBS are the most compact variable and
fixed length encodings. Because the separator “0” can
not appear in the CDQS code itself which is a waste, the
label sizes of CDQS-Containment are 10% around larger
than the label sizes of V-CDBS-Containment for these
datasets. Though the label size of CDQS-Containment
is larger, CDQS-Containment can completely avoid re-
labeling in XML leaf node updates.

When V-Binary, F-Binary, our V-CDBS, our F-CDBS
and our CDQS are applied to the P-Containment scheme,
V-CDBS-P-Containment still has the same label size as
V-Binary-P-Containment, F-CDBS-P-Containment has
the same size as F-Binary-P-Containment, and the la-
bel size of CDQS-P-Containment is still a little larger
than the size of V-CDBS-P-Containment. Here we do
not show the P-Containment schemes in Figure 10(b).

For the prefix schemes, based on the size (length) of
each code of our V-CDBS (similar for F-CDBS), we can
use the UTF8 [41] or OrdPath [30] encoding to process
the delimiters. If we use UTF8 to process the delimiters,
our V-CDBS(UTF8)-Prefix has the same label size as
DeweyID(UTF8)-Prefix. If we use OrdPath encodings
to process the delimiters, our V-CDBS(OrdPath)-Prefix
has smaller label size than OrdPath-Prefix since we do
not waste the even numbers. As the UTF8 and Ord-
Path encodings are existing techniques, we do not com-
pare the UTF8 or OrdPath encodings of our V-CDBS
with DeweyID and OrdPath. In Section 8.3, we show
how to process the delimiters based on our CDQS (see
Example 8.5). Here in Figure 10(c), we compare the
label size of our CDQS-Prefix with the existing pre-
fix labeling schemes. It can be seen from Figure 10(c)
that BinaryString-Prefix [14] has much larger label size
than other prefix labeling schemes. Generally OrdPath1-
Prefix and OrdPath2-Prefix have smaller label sizes than

Table 5 Test queries on the scaled D1

Queries
of nodes
retrieved

Q1:/play/act[4] 370
Q2:/play//personae[./title]/pgroup[.//grpdescr]

/persona
2690

Q3:/play/personae/persona[12]/preceding-sib
ling::*

4240

Q4://act[2]/following::speaker 184060
Q5://act/scene/speech 309330
Q6:/play/*//line 1078330

DeweyID(UTF8)-Prefix though a lot of even numbers
are wasted by OrdPath1-Prefix and OrdPath2-Prefix.
This is because the encodings of OrdPath1 and Ord-
Path2 are more compact. However, though OrdPath de-
creases the label size, its query performance is worse on
some queries because it needs more time to decode its
encodings and needs more time to determine the levels
based on the odd and even numbers (see Section 9.2.3).
Our CDQS-Prefix has the smallest label sizes in all the
four datasets (D1-D4) compared to the other prefix la-
beling schemes, and our CDQS-Prefix can completely
avoid re-labeling in XML leaf node updates. Note that
we use sizes to separate different DeweyID and OrdPath
labels though different components of a DeweyID or Or-
dPath label can be separated by using UTF8 or OrdPath
encodings.

9.2.3 Query performance Based on all the XML files in
the Shakespeare’s play dataset (D1), we test the query
performance, and for a more sizeable data workload we
scaled up (replicated) D1 10 times as described in [35].
The ordered and un-ordered queries and the number of
nodes retrieved are shown in Table 5.

Different structural join algorithms [4,11,13,20,26,
37] have been proposed to process the XML queries. To
do a fair comparison of different labeling schemes in the
implementation, except the part which must be different,
we use the same method (sort, join) to test the queries
for all the labeling schemes. Figure 11 shows the response
time (CPU time + I/O time) of the 6 queries in Table 5.

Figure 11(a) shows the response time of the con-
tainment, prefix and prime labeling schemes. Prime has
much larger response time because it has larger label
size and it employs the modular and division operations

20 Changqing Li et al.

(a) Label sizes of different schemes (b) Label sizes of containment
schemes

(c) Label sizes of prefix schemes

Fig. 10 Label sizes of different labeling schemes

(a) Response time of different schemes (b) Response time of containment
schemes

(c) Response time of prefix schemes

Fig. 11 Query performance of different labeling schemes

to determine the ancestor-descendant, parent-child etc.
relationships which is very expensive. We compare con-
tainment scheme and prefix scheme fairly. Note that it
is unfair if prefix labels are stored as strings, but con-
tainment labels are stored as integers.

Figure 11(b) shows the response time of different con-
tainment schemes. Float-point has larger response time
due to its very large label size. Our CDBS-Containment
(“V-” and “F-”) has smaller response time than Binary-
Containment (“V-” and “F-”) because our encodings can
directly compare labels from left to right no matter the
labels have variable or fixed lengths, but V-Binary can
not directly compare labels from left to right.

Finally Figure 11(c) shows the response time of dif-
ferent prefix schemes. BinaryString-Prefix has larger re-
sponse time due to its larger label size on D1. Though
OrdPath1-Prefix and OrdPath2-Prefix have smaller la-
bel sizes than DeweyID(UTF8)-Prefix, their query per-
formance is worse than DeweyID(UTF8)-Prefix on some
queries because it is slow for them to decode the Or-
dPath1 and OrdPath2 codes and slow to separate the
prefix levels (OrdPath2 even slower). Our CDQS-Prefix
has smaller response time on different queries because it
has the smaller label size.

9.2.4 Performance Study on CDOS and CDHS When
the total number is between 20 and 220, Figure 12 shows
the sizes of CDQS, CDOS, and CDHS. In Figure 12, we
suppose that there is one separator for each code. When
the total number is smaller than or equal to 28, CDQS
is the most compact; when the total number is between

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

LOG2(Total number)

LO
G

2(
To

ta
l s

iz
e

(b
its

))

CDQS

CDOS

CDHS

Fig. 12 Label sizes of different labeling schemes

210 and 220, CDOS is the most compact; and when the
total number is larger than or equal to 216, CDHS has
smaller size than CDQS.

Though with the increasing of the total number, the
total size of CDOS and CDHS will be smaller than CDQS,
the encoding time of CDOS and CDHS is averagely 2.1
and 5.5 times of that of CDQS. That is to say, CDOS
and CDHS are slower in encoding.

That also shows that CDOS and CDHS have more
expensive update costs than CDQS. CDQS only needs
to modify the last 2 bits of the neighbor codes, while
CDOS and CDHS need to modify the last 3 and 4 bits
respectively. More important, CDQS only needs to con-
sider the neighbor code that is ended with “2” or “3”
besides the sizes of the neighbor codes, while CDOS and
CDHS need to consider many more cases to make the
label size increase logarithmically, thus the update cost
of CDOS and CDHS are not cheap; otherwise the sizes
of CDOS and CDHS will increase very fast which makes

Efficient updates in dynamic XML data: from binary string to quaternary string 21

Table 6 Number of nodes to re-label in leaf node updates

Value
Number of nodes to re-label

1 2 3 4 5

Float-point-Containment 0 0 0 0 0
V-Binary-Containment 6596 5121 3932 2431 1300
F-Binary-Containment 6596 5121 3932 2431 1300
V-CDBS-Containment 0 0 0 0 0
F-CDBS-Containment 0 0 0 0 0
CDQS-Containment 0 0 0 0 0

BinaryString-Prefix 6595 5120 3931 2430 1299
DeweyID(UTF8)-Prefix 6595 5120 3931 2430 1299
OrdPath1-Prefix 0 0 0 0 0
OrdPath2-Prefix 0 0 0 0 0
CDQS-Prefix 0 0 0 0 0

Prime 1320 1025 787 487 261

the advantage of CDOS and CDHS not an advantage,
i.e. not more compact than CDQS.

In conclusion, CDBS and CDQS are the cheapest two
approaches to process updates, and their sizes are not
large in practice.

9.3 Performance study on intermittent updates

Section 9.3.1 discusses how to process the leaf node up-
dates. Section 9.3.2 is about the internal node updates.
Section 9.3.3 describes the performance when a subtree
is inserted.

9.3.1 Leaf node updates The deletion of a leaf node will
not require the re-labeling of existing nodes, therefore in
this section we only compare the update performance
when leaf nodes are inserted into the XML tree.

Same as [38], we select one XML file Hamlet in D1 to
test the update performance (it is similar for other XML
files). Hamlet has 5 act elements. We test the following
5 cases (see Table 6 and Figure 13): inserting an act
element before act[1], inserting an act element before
act[2], . . . , and inserting an act element before act[5].

Table 6 shows the number of nodes to re-label when
applying different labeling schemes. In the 5 cases, V-
Binary-Containment and F-Binary-Containment need to
re-label many nodes (note that Hamlet has totally 6636
nodes). Though V-Binary-Containment and F-Binary-
Containment are very compact, they need to re-label
the existing nodes at each time when a node is inserted
into the XML tree.

BinaryString-Prefix and DeweyID(UTF8)-Prefix also
need to re-label many nodes in the five insertion cases.
It should be noted that V-Binary-Containment and F-
Binary-Containment have one more node to re-label than
BinaryString-Prefix and DeweyID(UTF8)-Prefix because
act elements are the children of the root and the contain-
ment schemes need to re-label the root also (modify the
“end” value of the root).

For Prime, the number of SC values that are required
to re-calculate is counted in Table 6. Because Prime uses
each SC value for every five nodes [38], the number of
SC values required to re-calculate is 1/5 of the number
of nodes required by DeweyID(UTF8)-Prefix to re-label.
Note that it is impossible to use a single SC value for all
the nodes in the XML tree since the SC value will be a
too large number.

In the five cases, Float-point-Containment (less than
18 nodes at a single place), our V-CDBS-Containment
(without overflow here), our F-CDBS-Containment (with-
out overflow here), our CDQS-Containment (never need
to re-label), OrdPath1-Prefix (without overflow here),
OrdPath2-Prefix (without overflow here), and our CDQS-
Prefix (never need to re-label) need not re-label any ex-
isting nodes. Our V-CDBS-Containment and F-CDBS-
Containment are the most compact, yet they need not
re-label the existing nodes in intermittent updates.

Next we study the total time (CPU time + I/O
time) for updates. Figure 13 shows the Log2 of the to-
tal leaf node update time (ms) (Y-axis). The total time
required by Prime to re-calculate the SC values is much
larger (at least 80 times; sum time of Case 1 to Case
5) than the time required by Binary-Containment (“V-”
and “F-”) to re-label the nodes. Prime theoretically is
a good scheme to process updates, but it is not practi-
cable. The update time of BinaryString-Prefix [14] and
DeweyID(UTF8) [35] is larger than the update time of
Binary-Containment (“V-” and “F-”). In contrast, the
total update time of V-CDBS-Containment, F-CDBS-
Containment, CDQS-Containment, and CDQS-Prefix is
1/12 to 1/3 of the time of Binary-Containment. This is
because these approaches need not re-label the existing
nodes.

Fig. 13 Log2 of total time (CPU time + I/O time) for leaf
node updates

It can be seen from Figure 13 that the update per-
formance differences among Float-point, OrdPath and
our approach are not very large though our approach
is still better. This is because only several nodes are in-
serted into the XML tree and the main part of the up-
date time of Float-point, OrdPath and our approach is
the I/O time. When considering the CPU time only, our
approach is much better than Float-point and OrdPath.

22 Changqing Li et al.

Table 7 Number of nodes to re-label for internal node up-
dates

Value
Number of nodes to re-label

Insertion Deletion

Float-point-Containment 6595 6595
V-Binary-Containment 6596 6595
F-Binary-Containment 6596 6595
V-CDBS-Containment 6595 6595
F-CDBS-Containment 6595 6595
CDQS-Containment 6595 6595
CDQS-P-Containment 5 5

BinaryString-Prefix 6595 6595
DeweyID(UTF8)-Prefix 6595 6595
OrdPath1-Prefix 6595 6595
OrdPath2-Prefix 6595 6595
CDQS-Prefix 6595 6595

Prime 6595 6595

Their wide update cost differences can be seen in Sec-
tion 9.4 where frequent insertions are executed.

9.3.2 Internal node updates No matter an internal node
is inserted into or deleted from an XML tree, the nodes
should be re-labeled before the labeling schemes can
work correctly to answer queries. Table 7 shows the num-
ber of nodes to re-label when inserting a node acts as the
parent of the five act nodes in Hamlet and when deleting
this internal node acts.

It can be seen that all the labeling schemes except
our CDQS-P-Containment (V-CDBS and F-CDBS can
be applied to P-Containment scheme also; here we do
not show them because they will encounter the overflow
problem) need to re-label many nodes in internal node
updates. Though our CDQS-P-Containment also needs
to re-label the child nodes of the inserted node, it need
not re-label the other descendant nodes of the inserted
node, therefore it only needs to re-label 5 nodes which
is much better than the existing approaches.

Figure 14 shows the Log2 of the total internal node
update time (ms) (Y-axis). For V-Binary-Containment
and F-Binary-Containment, the deletion of an internal
node needs less update time than the insertion of an
internal node, because the deletion only needs to modify
the “level” values, but the insertion needs to modify the
“start”, “end” and “level” values.

CDBS-Containment (“V-” and “F-”) only need to
modify the “level” values, but need not modify the “start”
and “end” values even in insertions, therefore their in-
sertion time is smaller. The update time of Float-point-
Containment is larger because its label size is larger
which needs more I/O time. In contrast, our CDQS-
P-Containment needs much less update time because it
needs to re-label much less nodes (5 vs 6595 or 6596).

Fig. 14 Log2 of total time (CPU time + I/O time) for in-
ternal node updates

All the prefix labeling schemes including our CDQS-
Prefix need to re-label all the descendant nodes when an
internal node is inserted or deleted.

When an internal node is updated, Prime needs to
re-label all the descendant nodes of the inserted node.
When an internal node is inserted, all the labels of the
descendant nodes should multiply the label of the in-
serted node. When an internal node is deleted, all the
labels of the descendant nodes should divide the label
of the deleted node. In addition, Prime needs to re-
calculate the SC values to maintain the document order
in insertions. Therefore the insertion time of Prime is
much larger which can be seen from Figure 14.

9.3.3 Subtree insertion In this section, we discuss how
to insert a subtree. If we insert the nodes of the subtree
one by one, the label size will increase fast. If we insert
the nodes of the subtree based on the method introduced
in Section 6.3, the label size increases slowly.

Figure 15 shows the label size increasing speed of
these two methods when inserting subtrees with different
number of nodes. It can be seen from Figure 15 that the
label size based on the method introduced in Section 6.3
increases much slower than the method of insertions of
subtrees node by node.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

Number of nodes in the inserted subtree

La
be

l s
iz

es
 (1

,0
00

,0
00

 b
its

)

Sequential insertion

Whole subtree insertion

Fig. 15 Label size increasing when inserting a subtree

9.4 Performance study on frequent updates

In the previous section, we study the performance when
nodes are intermittently inserted into XML data.

Efficient updates in dynamic XML data: from binary string to quaternary string 23

6

8

10

12

14

16

18

20

0 150000 300000 450000

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

OrderPath1-Prefix

OrderPath2-Prefix

CDQS-Prefix

6

8

10

12

14

16

18

20

22

24

0 150000 300000 450000

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

Float-point-
Containment

CDQS-Containment

(a) OrdPath-Prefix (1&2) vs CDQS-Prefix (b) Float-point-Containment vs CDQS-Containment

Fig. 16 Uniformly frequent updates

3
4
5
6
7
8
9

10
11
12
13
14

0 50 100 150 200

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

OrdPath1-Prefix

OrdPath2-Prefix

CDQS-Prefix

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

Float-point-
Containment

CDQS-
Containment

(a) OrdPath-Prefix (1&2) vs CDQS-Prefix (b) Float-point-Containment vs CDQS-Containment

Fig. 17 Skewed frequent updates

In intermittent insertions, V-Binary-Containment, F-
Binary-Containment, BinaryString-Prefix, DeweyID(U-
TF8)-Prefix, and Prime have much larger update time;
it will be even worse for them to update the XML tree
with frequent and tiny insertions; this makes them im-
possible to answer queries in either the uniformly fre-
quent or skewed frequent insertion environment. In this
section, we mainly compare the update performance be-
tween OrdPath-Prefix (OrdPath1-Prefix and OrdPath2-
Prefix) and our CDQS-Prefix, and between Float-point-
Containment and our CDQS-Containment. We compare
our CDQS with the existing labeling schemes because
frequent updates is easy to lead to overflow, and our
CDQS can completely avoid re-labeling in XML leaf
node updates. Section 9.4.1 discusses the case that fre-
quent insertions are random at different places of the
XML tree. Section 9.4.2 discusses the worst case that
frequent and tiny insertions are always at a fixed place
of the XML tree.

9.4.1 Uniformly frequent updates In this section, we test
the uniformly distributed frequent insertions. The Ham-
let file has totally 6636 nodes. We insert 6635 nodes be-
tween every two consecutive nodes of the 6636 nodes.
Based on the new file after insertion, we insert another
13270 nodes between any two consecutive nodes. We re-
peat this kind of insertion 6 times. After the 6 th time
insertion, the node number in the XML tree is 424641
which is 63.99 times of the original node number.

Figures 16(a) and 16(b) show the Log2 of the total
update time (ms) (Y-axis) of prefix schemes (OrdPath-

Prefix [30] vs CDQS-Prefix) and containment schemes
(Float-point-Containment [2] vs CDQS-Containment) re-
spectively. In frequent updates, the main part of the total
update time is the CPU time since we can read the file
at one time and write back all the updates at different
places to the hard disk at one time. Even in frequent
writing back, our approach still can save a lot of update
time because the label size of CDQS-Prefix is smaller
than the label size of OrdPath-Prefix and the label size
of CDQS-Containment is smaller than the label size of
Float-point-Containment.

Even if overflow is not encountered, i.e. without re-
labeling, the update time of OrdPath-Prefix is still at
least 207 (218.8−11.1 = 27.7) times of that of CDQS-Prefix
(see Figure 16(a)). OrdPath needs to decode its codes
[30] and needs the addition and division operations to
get the numbers between two numbers which are both
expensive. CDQS-Prefix only needs to modify the last 2
bits of the neighbor label to get the inserted label which
is cheaper.

Even if overflow is not encountered (less than 18
nodes at a fixed place), i.e. without re-labeling, the up-
date time of Float-point-Containment (need to insert
two values “start” and “end”; the calculation is expen-
sive) is still at least 548 (29.1) times of that of CDQS-
Containment (see Figure 16(b)).

When there is overflow, the update time of OrdPath-
Prefix and Float-point-Containment is even larger.

If we can increase the length field of V-CDBS code a
little larger, the uniformly frequent updates will not be
so easy to lead V-CDBS to re-labeling. In addition, be-

24 Changqing Li et al.

cause V-CDBS only needs to modify the last 1 bit of the
neighbor label to get the inserted label, its update cost
is smaller than the update cost of CDQS which needs
to modify the last 2 bits of the neighbor label. There-
fore V-CDBS can process the uniformly frequent updates
more efficiently compared to CDQS if there is no over-
flow. Note that the update costs of OrdPath-Prefix and
Float-point-Containment are much more expensive than
V-CDBS and CDQS even if there is no overflow.

9.4.2 Skewed frequent updates In this section, we test
the case that the nodes are always inserted at a fixed
place of the XML file Hamlet.

When nodes are always inserted at a fixed place,
OrdPath-Prefix and Float-point-Containment is much
easier to encounter the overflow problem. Figure 17 shows
that the update time of OrdPath-Prefix and Float-point-
Containment is more than 1000 times larger than that
of CDQS-Prefix and CDQS-Containment in skewed in-
sertions. Thus CDQS is much better than OrdPath and
Float-point in processing skewed frequent updates.

9.5 Controlling the increase in label size

9.5.1 Reusing the deleted labels We test the case that
nodes are deleted and inserted at the odd positions of
Hamlet ; after the deletions and insertions, we call this
new Hamlet file Hamlet2 ; this is case 1. Secondly we
test that the nodes are deleted and inserted at the even
positions of Hamlet2, thirdly odd positions of Hamlet3,
fourthly even positions of Hamlet4, and so on.

We compare the performance of Algorithm 1 (origi-
nal) and Algorithm 3 (Reuse). Figure 18 shows that the
label size of Algorithm 3 does not increase in all the ten
cases (since we reuse all the deleted labels). On the other
hand, the label size of Algorithm 1 increases linearly (for
these ten cases) which is fast. Note if there are only inser-
tions (no deletions) at different places of the XML tree,
the label size of Algorithm 1 increases logarithmically
but not linearly.

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

Deletion and insertion cases

La
be

l s
iz

e
(1

,0
00

,0
00

 b
its

)

Original
algorithm
(Algorithm 1)

Reuse
Algorithm
(Algorithm 3)

Fig. 18 Comparison of Algorithm 1 and Algorithm 3 with
deletions

The experimental results confirm that Algorithm 3
can reuse all the deleted labels, thus it efficiently controls
the increase of the label size.

9.5.2 Processing the skewed insertion Figure 19 shows
that the skewness processing techniques SPI and SPII
introduced in Section 7.2 can efficiently to process the
skewed insertion problem.

16

18

20

22

24

26

28

0 2500 5000 7500

Number of inserted nodes

LO
G

2(
To

ta
l l

ab
el

 s
iz

e
(b

its
))

NoSP

SPI

SPI+SPII

Fig. 19 Processing of skewed insertions

10 Conclusion and future work

10.1 Summary of contributions

10.1.1 Update We propose a novel Compact Dynamic
Binary String (CDBS) encoding which is orthogonal to
specific labeling schemes, therefore it can be applied
broadly to different labeling shemes, e.g. containment,
prefix and prime schemes, to maintain the document or-
der when XML is updated.

In addition, we improve our CDBS to a Compact
Dynamic Quaternary String (CDQS) encoding which is
also orthogonal to specific labeling schemes and can be
applied to different labeling schemes. Though the total
size of CDQS is larger (10% around) than the total size
of CDBS, and though the update cost of CDQS is larger
(modify the last 2 bits of the neighbor code instead of
the last 1 bit; determine the neighbor code is ended with
”2” or ”3”) than CDBS, CDQS can completely avoid re-
labeling in XML leaf node updates.

Furthermore, to efficiently process the internal node
updates, we propose the P-Containment scheme which
stores the “parent start” instead of the “level”. In this
way, we can process the internal node updates much
more efficiently based on our CDBS or CDQS encod-
ing. The traditional encodings can not process the in-
ternal node update efficiently even if they employ the
P-Containment scheme (see Theorem 6.2).

Our V-CDBS and CDQS only need to modify the
last 1 and 2 bits of the neighbour label to get the label
of the inserted node which is the cheapest compared to
the existing techniques. The experimental results show
that our CDQS is the only approach to process frequent
insertions efficiently.

10.1.2 Query When XML is frequently updated, all the
time for all the existing labeling schemes are used for
the updates, thus they have no time to answer queries.

Efficient updates in dynamic XML data: from binary string to quaternary string 25

Our approaches have better query performance than the
existing labeling schemes in the environment of updates
because we avoid the re-labeling and the update time of
our approaches is much smaller.

When considering the static environment of XML,
for the containment scheme, our CDBS almost has the
same total label size as Binary. Our CDQS increases the
label size of V-CDBS a little. For the prefix scheme, our
CDQS-Prefix have smaller label sizes than the existing
prefix labeling schemes. The query performance of our
approaches is not worse even in the static environment
of XML.

10.2 Future work

There are no labeling schemes or encoding approaches
which can completely avoid re-labeling in internal node
updates. Thus we need to consider how to solve this
problem in the future.

It can be seen from this paper that even if we do
not handle the skewed insertion problem, our approaches
still work the best to answer queries in the frequent up-
date environment of XML because the update time of
our approaches is much smaller. Also we propose tech-
niques to process the skewed insertion problem, but these
skewness processing techniques have some restrictions,
e.g. they should estimate the number of nodes to be
inserted at a fixed place, while the estimation will not
be so easy. By balancing the query and update perfor-
mance [33] or by re-labeling some nodes, we can solve
this skewed insertion problem better. In the future, we
want to research whether there are approaches that can
completely avoid re-labeling and meanwhile solve the
skewed insertion problem efficiently, but seems that it
is not so easy to solve this problem because seems that
these two aspects contradict each other.

References

1. S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling
schemes for ancestor queries. In Proc. of the 12th annual
ACM-SIAM Symp. on Discrete Algorithms (SODA’01),
pages 547-556, 2001.

2. S. Abiteboul and V. Vianu. Regular path queries with
constraints. In Proc. of the 16th ACM Symp. on Principles
of Database Systems (PODS’97), pages 122-133, 1997.

3. R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient
Management of Transitive Relationships in Large Data
and Knowledge Bases. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’89), pages 253-
262, 1989.

4. S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N.
Koudas, and D. Srivastava. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. In Proc. of
the 18th Int. Conf. on Data Engineering (ICDE’02), pages
141-152, 2002.

5. T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Ro-
bust Numbering Scheme for XML Documents. In Proc. of
the 19th Int. Conf. on Data Engineering (ICDE’03), pages
705-707, 2003.

6. J.A. Anderson and J.M. Bell. Number Theory with Ap-
plication. Prentice-Hall, New Jersey, 1997.

7. A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M.
Kay, J. Robie, and J. Simon. XML path language (XPath)
2.0. W3C working draft 04, Apr. 2005.

8. S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J.
Robie, and J. Simon. XQuery 1.0: An XML Query Lan-
guage. W3C working draft 04, Apr. 2005.

9. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,
F. Yergeau, and J. Cowan. Extensible markup language
(XML) 1.1. W3C recommendation, Feb. 2004.

10. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: Optimal XML pattern matching. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’02), pages 310-321, 2002.

11. B. Catania, W.Q. Wang, B.C. Ooi, and X. Wang. Lazy
XML Updates: Laziness as a Virtue of Update and Struc-
tural Join Efficiency. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’05), 2005.

12. T. Chen, J. Lu, and T.W. Ling. On Boosting Holism
in XML Twig Pattern Matching using Structural Indexing
Techniques. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’05), 2005.

13. S.-Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, and C.
Zaniolo. Efficient Structural Joins on Indexed XML Docu-
ments. In Proc. of the 28th Int. Conf. on Very Large Data
Bases (VLDB’02), pages 263-274, 2002.

14. E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Trees. In Proc. of the 21st ACM Symp. on Principles
of Database Systems (PODS’02), pages 271-281, 2002.

15. P.F. Dietz. Maintaining order in a linked list. In Proc.
of the 14th Annual ACM Symp. on Theory of Computing
(STOC’82), pages 122-127, 1982.

16. M. Fernandez and D. Suciu. Optimizing Regular Path
Expres-sions Using Graph Schemas. In Proc. of the 14th

Int. Conf. on Data Engineering (ICDE’98), pages 14-23,
1998.

17. G. Gottlob, C. Koch, and R. Pichler. XPath Query Eval-
uation: Improving Time and Space Efficiency. In Proc. of
the 19th Int. Conf. on Data Engineering (ICDE’03), pages
379-390, 2003.

18. A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krish-
namurthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang, J. F.
Naughton, and D. J. DeWitt. Mixed mode XML query
processing. In Proc. of the 29th Int. Conf. on Very Large
Data Bases (VLDB’03), pages 225-236, Berlin, Germany,
September 2003.

19. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lak-
shmanan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivas-
tava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A
native XML database. The VLDB Journal, 11(4):274-291,
2002.

20. H. Jiang, H. Lu, W. Wang, and B.C. Ooi. XR-Tree: In-
dexing XML Data for Efficient Structural Joins. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’03), pages 253-263, 2003.

21. E. Jiao, T.W. Ling, and C.Y. Chan. PathStack : A Holis-
tic Path Join Algorithm for Path Query with not-predicates

26 Changqing Li et al.

on XML Data. In Proc. of the 10th Int. Conf. on Database
Systems for Advanced Applications (DASFAA’05), pages
113-124, 2005.

22. D.D. Kha, M. Yoshikawa, and S. Uemura. A Structural
Number-ing Data. In Proc. of the 8th Int. Conf. on Ex-
tending Database Technology (EDBT’02) Workshop, pages
91-108, 2002.

23. D.D. Kha, M. Yoshikawa, and S. Uemura. An XML In-
dexing Structure with Relative Region Coordinate. In Proc.
of the 17th Int. Conf. on Data Engineering (ICDE’01),
pages 313-320, 2001.

24. Chanqing Li and Tok Wang Ling. QED: A Novel Quater-
nary En-coding to Completely Avoid Re-labeling in XML
Updates. In Proc. of the 14th Int. Conf. on Information
and Knowledge Man-agement (CIKM’05), pages 501-508,
2005.

25. Changqing Li, Tok Wang Ling, and Min Hu. Efficient
Processing of Updates in Dynamic XML data. In Proc. of
the 22nd Int. Conf. on Data Engineering (ICDE’06), 2006.

26. Q. Li and B. Moon. Indexing and Querying XML Data
for Regu-lar Path Expressions. In Proc. of the 27th Int.
Conf. on Very Large Data Bases (VLDB’01), pages 361-
370, 2001.

27. J. Lu, T. Chen, T.W. Ling. Efficient processing of XML
twig pat-terns with parent child edges: a look-ahead ap-
proach. In Proc. of the 13th Int. Conf. on Information and
Knowledge Management (CIKM’04), pages 533-542, 2004.

28. T. Milo and D. Suciu. Index Structures for Path Expres-
sions. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), pages 277-295, 1999.

29. NIAGARA Experimental Data. Available at:
http://www.cs.wisc.edu/niagara/data.html

30. P.E. O’Neil, E.J. O’Neil, S. Pal, I. Cseri, G. Schaller,
and N. Westbury. ORDPATHs: Insert-Friendly XML Node
Labels. In Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’04), pages 903-908, 2004.

31. P. Rao and B. Moon. PRIX: Indexing And Querying
XML Using Prüfer Sequences. In Proc. of the 20th Int.
Conf. on Data Engi-neering (ICDE’04), pages 288-300,
2004.

32. N. Santoro and R. Khatib. Labeling and implict routing
in net-works. The Computer J., 28:5-8, 1985.

33. A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Effi-
cient Main-tenance of Order-Based Labeling for Dynamic
XML Data. In Proc. of the 21st Int. Conf. on Data Engi-
neering (ICDE’05), pages 285-296, 2005.

34. I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld. Up-
dating XML. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’01), 2001.

35. I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasun-
daram, E.J. Shekita, and C. Zhang. Storing and querying
ordered XML using a relational database system. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’02), pages 204-215, 2002.

36. University of Washington XML Repository. Available at:
http://www.cs.washington.edu/research/xmldatasets/

37. H. Wang, S. Park, W. Fan, and P.S. Yu. ViST: A Dy-
namic Index Method for Querying XML Data by Tree
Structures. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’03), pages 110-121, 2003.

38. X. Wu, M.L. Lee, and W. Hsu. A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees. In Proc. of the

20th Int. Conf. on Data Engineering (ICDE’04), pages 66-
78, 2004.

39. G. Xing and B. Tseng. Extendible range-based num-
bering scheme for xml document. In Proc. of the Int.
Conf. on Information Tech-nology: Coding and Computing
(ITCC’04), pages 140-141, 2004.

40. XMark - An XML Benchmark Project. Available at:
http://monetdb.cwi.nl/xml/downloads.html

41. F. Yergeau. UTF8: A Transformation Format of ISO
10646. Request for Comments (RFC) 2279, January 1998.

42. K. Yi, H. He, I. Stanoi, and J. Yang. Incremental
Maintenance of XML Structural Indexes. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’04), pages 491-502, 2004.

43. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: a path-based approach to storage and retrieval of
XML documents using relational databases. ACM Trans.
Internet Techn., 1(1): 110-141, 2001.

44. N. Zhang, V. Kacholia, and M.T. Özsu. A Succinct
Physical Stor-age Scheme for Efficient Evaluation of Path
Queries in XML. In Proc. of the 20th Int. Conf. on Data
Engineering (ICDE’04), pages 54-65, 2004.

45. C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries in Re-
lational Database Man-agement Systems. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’01), pages 425-436, 2001.

Appendix: size calculation for V-CDBS

Calculation of
1 × 1 + 2 × 2 + 22 × 3 + 23 × 4 + . . . + 2n × (n + 1)

= 20 × 1 + 21 × 2 + 22 × 3 + . . . + 2n × (n + 1)
= (20 +21 +22+ . . .+2n)+(21×1+22×2+ . . .+2n×n)
= (2n+1 − 1) + 2 × (20 × 1 + 21 × 2 + . . . + 2n−1 × n)

+2× 2n × (n + 1) − 2 × 2n × (n + 1)
= (2n+1 − 1) + 2× (20 × 1 + 21 × 2 + . . . + 2n × (n + 1))

−2× 2n × (n + 1)

Let x = 20 × 1 + 21 × 2 + 22 × 3 + . . . + 2n × (n + 1),
then the above formula becomes to:

x

= (2n+1 − 1) + 2x − 2 × 2n × (n + 1)

Therefore x = n × 2n+1 + 1.

