
Storing and Maintaining Semistructured Data Efficiently in an
Object-Relational Database

Yuanying Mo
National University of Singapore

moyuanyi@comp.nus.edu.sg

Tok Wang Ling
National University of Singapore

lingtw@comp.nus.edu.sg

Abstract

We propose to use object-relational database
management systems to store and manage semi-structured
data. ORA-SS (Object-Relationship-Attribute model for
Semi-Structured data) [9] is used as the data model. It
not only reflects the nested structure of semi-structured
data, but also distinguishes between object classes and
relationship types, and between attributes of object
classes and attributes of relationship types. ORA-SS can
specify the degree of n-ary relationship types and indicate
if an attribute is an attribute of a relationship type or an
attribute of an object class. Existing semi-structured data
models cannot specify such information. We use these
information to translate XML Schemas/DTD to ORA-SS
schemas, then to object-relational databases correctly
and without avoidable redundancy. The existing
techniques have a lot of redundancy in storage and
introduce node IDs of the tree instance which are not
needed in our approach.

1. Introduction

Semi-structured data is becoming ubiquitous. The
emergence of XML, which is a data format for semi-
structured data, will increase the availability of semi-
structured data.

Modeling semi-structured data as a graph has been the
preferred approach so far. In the current data models for
semi-structured data it is not possible to model the kind of
information that is traditionally needed when organizing
data storage, for example the degree of an n-ary
relationship type and the attribute of the relationship type.
In this paper, we use a richer data model for semi-
structured data, ORA-SS (Object-Relationship-Attribute
model for Semi-Structured data) [9]. The richer semantics
of ORA-SS enables us to capture more of the real world
semantics, and use them in storage organization.

ORA-SS not only reflects the nested structure of semi-
structured data, but it also distinguishes between object
classes and relationship types, and between attributes of

object classes and attributes of relationship types.
Knowing the degree of an n-ary relationship type from
ORA-SS leads to more efficient storage and access the
data. Such information is lacking in other existing semi-
structured data models, and we use these information to
design an efficient storage system for semi-structured data
without avoidable redundancy. We can translate the XML
documents correctly. If the update to XML documents is
valid, it can be translated correctly into update to the
stored database.

Currently semi-structured data is usually stored in flat

files. But it is difficult to query or update. In the
relational approach, such as the edge approach [11, 12,
20], the attribute approach [11, 20], universal table [11,
12, 21], normalized universal approach [11, 21] and
STORED [7, 8], handling multi-valued attributes is
expensive. In the storage manager approach, such as
Shore [4, 20] and B-tree [4, 20], it is still inconvenient
when doing the search or update. Relational DBMS, for
its maturity and scalability, is a viable and promising
approach for storing and querying semi-structured data.
But it is not efficient in handling multi-valued attributes.
We can see the details in section 4.

In this paper, we describe a storage system for XML
documents in the object-relational database.

ORA-SS reflects the nested structure of semi-structured
data, and multi-valued attributes are treated as repeating
groups in nested relations, there is less join to retrieve the
multi-valued attributes, so store ORA-SS in nested
relations is better.

The rest of the paper is organized as follows. Section 2

describes the ORA-SS data model and the reason why we
choose ORA-SS as our data model. In section 3, we
specify the translation from ORA-SS schema diagrams to
object-relational databases. Section 4 compares the
storage system using ORA-SS data model with other
systems using other data models that have been proposed
for semi-structured data. Section 5 discusses the
conclusions.

2. Data Model -- ORA-SS

In our study, we found that the efficient storage and access
depend not only on the transformation methodology, but
also on the expressiveness of the chosen semi-structured
data model. We adopt ORA-SS because it is a
semantically richer data model that has been proposed for
modeling semi-structured data compared to OEM [15] or
XOM [24].

There are three main concepts in the ORA-SS data
model (Object-Relationship-Attribute model for Semi-
Structured data) [9], they are object class, relationship
type and attribute (of object class or relationship type).
The ORA-SS data model distinguishes object classes,
relationship types and attributes. The main advantages of
ORA-SS over existing data models is its ability to express
the degree of an n-ary relationship type, and distinguishing
between attributes of relationship types and attributes of
object classes. These semantics are essential and very
important for implementing an efficient storage
management system.

2.1 Object classes

An object class is similar to a set of entities in the real

world, an entity type in an ER diagram, a class in an
object-oriented diagram or an element in semi-structured
data model.

An object class is represented as a labeled rectangle.
The attributes are represented as labeled circles joined to
their object class by an edge. Keys are filled circles.

2.2 Relationship types

Two object classes are connected via a relationship

type. Each relationship type has a degree and
participation constraints. A relationship type of degree 2
(i.e. a binary relationship type) relates two object classes.
One object class is the parent and the other the child. A
relationship type of degree 3 (i.e. a ternary relationship
type) is a relationship type between three object classes.
In a ternary relationship type, there is a binary relationship
type between two object classes, and a relationship type
between this binary relationship type and the other object
classes.

In an ORA-SS schema diagram, relationship types are
denoted by directional labeled edges. The direction of the
edge is from the parent object class to the child object
class. The label can be described by 4 concepts, name, n,
p, c, where name denotes the name of the relationship type
and is optional; n is an integer indicating the degree of the
relationship type (n=2 indicates binary, n=3 indicates
ternary, etc.), it is optional, the default value is 2; p is a
participation constraint of the form min:max of the parent

object class in the relationship type, we also use XML
notations ?, *, + to represent 0:1, 0:n, 1:n, it is optional
and the default value is *; and c is the participating
constraint of the child object class, it is optional and the
default value is +. We can see it clearly in Example 2.2.

An object class cannot be identified by the value of its
own attributes, but has to be identified by its relationship
with other object classes. Such a relationship type is
called identifier-dependency relationship type, it is
represented by a relationship type diamond labeled with
symbol “IDD”.

2.3 Attributes

Attributes represent properties. And attribute can be a

property of an object class or a property of a relationship
type.

Attributes are denoted by labeled circles, the label
consists of name, [F|D: value]. The name is compulsory,
and the rest of the label is optional. The letter F precedes
a fixed value, while D precedes a default value. The
identifiers are indicated by filled circles, while other
candidate keys are a double circle with the inner circle
filled. An attribute’s cardinality is shown inside the
attribute circle, using ?, *, + to represent 0:1, 0:n, 1:n,
where the default is 1:1. An attribute can be single-valued
or multi-valued. A multi-valued attribute is represented
using an * or + inside the attribute circle.

The special attribute name ANY denotes an attribute of
unknown or heterogeneous structure.

Attributes of an object class can be distinguished from
attributes of a relationship type. The former has no label
on its incoming edge while the latter has the name of the
relationship type to which it belongs on its incoming edge.

2.4 References

A reference depicts an object class referencing another

object class, and we say a reference object class references
a referenced object class. References are denoted by the
dashed arrows from a referencing object class to a
referenced object class. The reference and referenced
object classes can have different labels and different
attributes and relationship types.

Now let us see the advantages of ORA-SS model
compared with the existing data models.

Example 2.1 Figure 2-1(a) shows a binary relationship

type between project and member and a binary
relationship type between member and publication.
Figure 2-1(b) shows an instance of this schema with a
relationship type between projects and members, and
another between members and publications, but no
relationship type between projects and publications. From
this diagram, we can deduce that member m1 has

publications pub1, pub2 and pub3, but we do not know
which projects the publications are associated with. A
Dataguide [6, 13] for this diagram is shown in Figure 2-
1(c). Notice that there is no relationship type between
project and publication in the ORA-SS schema diagram in
Figure 2-1(a) and if the data is nested as is suggested in
Figure 2-1(a), then all the publications for each member
will be repeated for every project the member works on.

(a) ORA-SS Schema Diagram

(b) Instance Relationship

(c) Dataguide

Figure 2-1. Representing binary relationship types

In contrast, Figure 2-2(a) shows a ternary relationship
type between project, member and publication. There is a
binary relationship type (named jm) between project and
member, and a relationship type (named jmp) between jm
and publication. Figure 2-2(b) shows an instance of this
schema. It shows a relationship type between project and
member, and another relationship type between the project

and member relationship type and publications. From this
diagram, we can deduce that publications pub1 and pub2
are associated with member m1 and project p1. A
Dataguide for this diagram is shown in Figure 2-2(c). The
constraints on the relationship types in the ORA-SS
diagrams in Figure 2-1(a) and Figure 2-2(a) are quite
different. The schema in Figure 2-2(a) models the
relationship type between papers written by a particular
member while working in a particular project, and if the
data is nested as is suggested in Figure 2-2(a) then only
the publications written by a member while working on a
project will be nested within that member and project.

(a) ORA-SS Schema Diagram

(b) Instance Relationship

(c) Dataguide

Figure 2-2. Representing ternary relationship types

The distinction between binary and ternary relationship
types cannot be made in other semi-structured data
models. Note that a Dataguide for the schema in Figure 2-
2(c) is the same as that in Figure 2-1(c) although the

constraints on the relationship types in the ORA-SS
diagrams are quite different.

Example 2.2 Let us see an example of the ORA-SS

schema diagram in Figure 2-3.

Figure 2-3. ORA-SS schema diagram of a
Dept-Course-Student database

Figure 2-3 shows the schema, distinguishing object
classes, relationship types and attributes, highlighting the
degree of n-ary relationship types, the participation of
object classes in relationship types and whether an
attribute is a relationship attribute or an object attribute.
The label on the edge between department and course (2,
1:n, 1:1) indicates the relationship type between
department and course. There are only 3 columns, no
name is assigned to this relationship type. The number 2
means that this is a binary relationship type. Each
department must minimum offer one course (1:n). And
each course belongs to one and only one department (1:1).
The identifier of course is number (indicated by the filled
circle) and course has another attribute name, that is not
necessarily unique. The default cardinality of name is 1:1
so every course must have a name. Every student has a
student number and a name, where the student number is
unique. The binary many-to-many relationship type
between course and student has the name cs. For each
course, there can be minimum 1 student to many students
(1:n). And for each student, he can take minimum 1
course and maximum 4 courses (1:4). The label cs on the
edge between object class student and attribute grade
indicates the attribute grade belongs to relationship type
cs rather than the object class student.

cs is a many-to-many relationship type, and the
attribute grade belongs to relationship type cs. This
semantic information is helpful when repositories are
being designed. Because cs is a many-to-many
relationship type, we know that if we nest student within

course, the attributes of student will be repeated for every
course they take. Also, because cs is a many-to-many
relationship type, the relationship type attribute grade
cannot be stored in either student or course and must be
stored in something that represents the relationship type
between the object classes student and course.

We note that traditional semantic data models such as

the Entity-Relationship model [5] cannot support XML
naturally and fully. ER model is flat, it can not reflect the
tree structure, while it is important in XML data. XML
consists of nested element structures and the relationships
of elements are modeled directly by hierarchies and
reference. In contract, the Entity-Relationship model is
flat and normalized.

Existing semi-structured data models, like OEM, are
not possible to represent the participation constraints of
object classes in relationship types, whether an attribute is
an attribute of an object class or an attribute of a
relationship type, and the degree of n-ary relationship
types for the hierarchical semistructured data. It is best
illustrated in Example 2.2.

The inadequacy of the Dataguide is its inability to
express the degree of n-ary relationships for the
hierarchical semistructured data, which introduces
ambiguous data representations, as we have illustrated in
Example 2.1.

These semantic informations are essential and very
important for storage structure. The existing approaches
have problems in storing semi-structured data since they
cannot express this kind of semantic information.

ORA-SS has characteristics which are very similar to
XML: self-describing, deeply nested or even cyclic, and
irregular. It is possible to specify the participation
constraints of object classes in relationship types and
distinguish between attributes of relationship types and
attributes of object classes. Such information is lacking in
existing semi-structured data models. At the same time,
the inherently hierarchical structure of ORA-SS schema
diagram, the ability to model disjunction and ordering on
object classes and attributes, and the ability to express the
cardinality and heterogeneity of attributes makes ORA-SS
the ideal model for mapping other formats to and from
XML.

When a semi-structured data instance is given, the
ORA-SS schema diagram can be generated using data-
mining techniques, combined with the users’ input. With
user input, we can provide an ORA-SS schema diagram
that is closer to the user expectation, and preserves the
inherent semantics and implicit structures. An algorithm
has developed to extract ORASS schema from XML
documents, by scanning and processing the XML file, and
asking necessary questions to users.

3. Translation from ORA-SS to object-
relational database

In order to design an efficient and consistent

organization of data in a data store, it is essential to have
an algorithm that maps the logical data model to the data
store. For example, the mapping algorithms from the ER
data model to the relational data model. In this section,
we outline an algorithm that maps ORA-SS schema
diagrams to the object-relational model. Such an
algorithm demonstrates how semi-structured data can
efficiently and consistently be stored in a nested relational
database management system like Oracle 8i or its newer
version Oracle 9i.

Main rules from ORA-SS schema diagrams to object-

relational databases are as follows.
1. Each object class together with its attributes forms a

nested relation while multi-valued attributes as
repeating groups of this relation (Object relation).

2. Each relationship type together with its attributes forms
a nested relation while multi-valued attributes as
repeating groups of this relation (Relationship relation).

(I) Object Class Translation Algorithm

For each object class, create a (possibly nested)
relation.

O1 The identifier and candidate key of this object class
is the primary key and candidate key of the
generated relation.

O2 Each single-valued attribute of this object class is a
single-valued attribute of the generated relation.
Composite attributes of ORA-SS diagrams are
represented directly. They are replaced by their
components in the generated relation. Store the
value for composite attribute by listing its
component attributes within parentheses.

O3 Each multi-valued attribute of this object class
forms a repeating group in this relation.
Store the multi-valued attribute in the next level-
repeating group.
Each multi-valued composite attribute of this object
class forms a repeating group in this relation. Its
components are in the repeating group.

O4 Each reference is a foreign key in this relation.
O5 Each disjunctive attribute is represented by two

attributes in the generated relation. One is the flag
of one bit to show which attribute the instance is
related to. The other is used to store the value.

O6 For the ID dependency relationship type, the rule
for the ID dependent object class is the same as the
rule for the regular object class. The ID dependent
object class together with its attributes forms a
nested relation within its parent object class.

(II) Relationship Type Translation Algorithm

For each relationship type, create a (possibly
nested) relation.

R1 The identifiers of all the object classes participating
in this relationship type form the single-valued
attributes of the nested relation.
The key of the relationship type can be determined
by the participation constraint of the relationship
type.

R2 Each single-valued attribute of this relationship
type is a single-valued attribute of the generated
relation.

R3 Each multi-valued attributes of this relationship
type forms a repeating group in this relation.
This mapping rule is the same as in object classes.
So as the other attributes of this relationship type.

R4 A disjunctive relationship type is treated as two
relationship types.

R5 There is no need to translate ID dependency
relationship type.

(III) Translation for Ordering

Either for the three kinds of ordering, we define
another attribute named ordinal within the ordered object
class (ie, the ordered attribute).

(IV) Translation for ANY

For the unknown structured attribute or an attribute
may have a different structure for different instances,
which is denoted as ANY, we define a separate table as
(Identifier, ANY, ANY-value). Identifier is the identifier
of the object class or the relationship type which this ANY
belongs to. ANY is the different structure name (the
TAG) for the different instances. ANY-value is its value.

This table will not be too long. Compared with
creating the relation of the object class or the relationship
type with the ANY attribute together with all the other
attributes, it is more efficient and economical.

If an ORA-SS schema is in normal form [22], then the

undesirable update anomalies in semistructured databases
are removed and any redundancy due to many-to-many
relationships and n-ary relationships are controlled.
Followed these rules, the Normal Form ORA-SS schema
will result in the normal form nested relations.

Example 3.1 Given an ORA-SS schema diagram as

shown in Figure 3-1, the relations generated by the object
class translation rule and the relationship type translation
rule are shown in Figure 3-2.

Figure 3-1. ORA-SS schema diagram of a

Project-Employee database

Figure 3-2. Nested relational storage for the

Project-Employee database

For the object class Project, an object relation Project
is created. J# is the primary, it is indicated underline in
Figure 3-2. The relation only has a single-valued attribute
Jname. For the object class Employee, an object relation
Employee is created. E# is the primary key(O1). The
attribute Ename is a composite attribute with component
attributes firstname, and lastname in this relation(O2).
The attribute qualification of Employee is multi-valued
composite attribute, it is stored as an embedded nested
relation in Employee, with its component degree,
university and year in this embedded nested relation
qualification(O3). For the object class Child, it is an ID
dependency object class, its attributes Cname and Cage
are embedded in Employee(O6). For the relationship
relation EP created from relationship type EP, it is a
binary relationship type between the object classes
Employee and Project. The primary key is {J#, E#.}, it is
determined by the participation constraints *, +, it is a
many-to-many relationship type(R1). The attribute
Progress is a single-valued attribute(R2).

We can see that in our object-relational database,
accessing multi-valued attributes is easy, there is no need
to do join. But for the relational database, 3 relations are
needed for employee, one is the basic information of
employee like employee name, one is for the information
of qualification, the other is for the job history. When we
want to get all the information about the employee, we
should do the join operation, join these 3 relations
together.

Example 3.2 In a Project-Supplier-Part database, each

supplier supplies parts with fixed prices. And the database
contains the information about the quantity of every part
that its supplier supplies to any project. The ORA-SS
schema diagram is as shown in Figure 3-3.

Figure 3-3. ORA-SS schema diagram for the

Project-Supplier-Part database

Using the object class translation algorithm and the
relationship type translation algorithm, we get the
relations in Figure 3-4. The primary keys are underlined.

Figure 3-4. Nested relational storage for the

Project-Supplier-Part database

In the ORA-SS schema diagram, we can have 2 labels
on an edge. The relationship type SP is a binary
relationship type between object classes Supplier and
Part, while SPJ is a ternary one among object classes
Project, Supplier and Part. There is no participation
constraints of the participating object class for these two
relationship types, it means *, +, the relationship types are
both many-to-many. The attribute price is related to the
binary relationship type SP, while Qty is related to the
ternary relationship type SPJ. Also we have the functional
dependency {S#, P#} → price and {S#, P#, J#} → Qty.

Note that we have the relation SPJ (J#, S#, P#, Qty),
not SPJ (J#, S#, P#, price, Qty), because the attribute price
is only related to the relationship type SP, it is only
dependent on S# and P#, we can see it from the ORS-SS
schema diagram. It is not correct to translate price and
Qty to SPJ (J#, S#, P#, price, Qty) in designing the
database. In contrast to existing models, ORA-SS enables
the mapping algorithm to correctly associate the attribute
price with part and supplier in the SP relation, and the
attribute Qty with project, part and supplier in the SPJ
relation. Other existing approaches may get this result
SPJ (J#, S#, P#, price, Qty), since they cannot know price
is determined only by S# and P#, has nothing to do with
J#. Without knowing this information, they will store
wrongly.

4. Comparison with Related Work

The ORA-SS data model extends semi-structured data

models that have been proposed in the literature. These
models commonly represent semi-structured data as
directed labeled graphs [1, 3, 19]. Of the models
proposed, OEM (Object Exchange Model) [2, 15] is a
representative example. In OEM, entities are represented
by objects, each object has an object identifier and each
object is either atomic or complex, i.e. the value of the
object is atomic or a set of references respectively. OEM
is a simple and flexible model, for representing semi-
structured data. However, unlike ORA-SS data model,
OEM is not possible to express some semantic
information such as the degree of n-ary relationship types
that is needed to design an efficient non-redundant data
repository. Such information is lacking in other existing
semi-structured data models also.

To apply techniques like normalization, effectively, it
is necessary to know the cardinality of object classes in
relationship types, the degree of n-ary relationship types
and whether attributes are attributes of object classes or
attributes of relationship types. In OEM, the relationship
types between object classes are not specified. Like in the
object-oriented data model, the inter-object references
may introduce maintenance problems as a result of
redundancy [14]. In contrast, in the ORA-SS data model,
the relationship types between object classes and the
properties of these relationship types are stated explicitly.

Approach 1.(Text File) Currently, semi-structured data

is usually stored in text, such as store XML documents as
ASCII files in the operating file system. But it has several
major drawbacks. First, XML files in ASCII format need
to be parsed every time when they are accessed for either
browsing or querying. Second, the entire parsed file,
which is always much larger than the original XML
document, must be memory-resident during query
processing. Third, it is hard to build and maintain indices

on documents stored this way. Another drawback is that
update operations are difficult to implement.

Let us see an example how the existing approaches

store the data in Figure 4-1.

Figure 4-1. A Simple OEM database

Approach 2.(The edge table approach) It [11, 12, 20]
stores all edges of the graph in a single table using
relational database, as shown in Figure 4-2. It is often
large, too expensive, and with much redundancy. This
approach needs to have ID values for nodes which are not
part of XML document. The ordinal number is used to
record the order of any children nodes.

Figure 4-2. Edge Table for example in Figure 4-1

Approach 3.(The attribute approach) It [11, 20]
groups all edges with the same name into one table, this
approach corresponds to a horizontal partitioning of the
edge table [11, 20], as shown in Figure 4-3. It is very
complex to do the search and update.

Figure 4-3. Attribute Tables for example in Figure 4-1

Approach 4.(The universal table approach) It [11, 12,

21] generates a single universal table to store all the edges.
The universal table corresponds to the result of an outer
join of all attribute tables [11, 20], as shown in Figure 4-4.
The universal table has many fields which are set to null,
and it also has a great deal of redundancy. And another
problem is that we cannot know how many attributes and
some attributes’ name in some cases.

Figure 4-4. Universal Table for example in Figure 4-1

Approach 5.(The normalized universal approach) It

[11, 21] is a variant of the universal table approach [11,
21], as shown in Figure 4-5. The difference is that multi-
valued attributes are stored in separate overflow tables in
the normalized universal approach.

Figure 4-5. UnivNorm and Overflow Tables for

example in Figure 4-1

The above approaches (2, 3, 4, 5) all need to have ID
values for nodes which are not part of XML document

Approach 6.(STORED) It [7, 8] uses OEM model and

relational database management system to store and
manage semi-structured data, as shown in Figure 4-6.
There are many fields set to null, and it also has much
redundancy.

Figure 4-6. STORED storage for

example in Figure 4-1

Relational DBMS, for its maturity and scalability, is a
viable and promising approach for storing and querying
semi-structured data [3, 7, 8, 12, 18, 19]. But using
relational database is not efficient for handling multi-
valued attributes as retrieving of multi-valued attributes
involves join operation which is expensive.

Approach 7.(Shore) In the storage manger object

approach, Shore [4, 20] is used as the underlying storage
system. The solution is to store each XML element of the
XML file as a separate object, as shown in Figure 4-7. If
the updated object increases in size when updating a
object, it is complex. There are several drawbacks of this
approach if the file needs to be frequently updated.

Figure 4-7. Shore storage for example in Figure 4-1

Approach 8.(B-tree approach) It [4, 20], as shown in
Figure 4-8, eliminates the drawback in Shore. Every

object has a key. But when doing search, we do not know
the key-value of the object. It is still inconvenient.

Figure 4-8. B-tree approach for

example in Figure 4-1

Our approach. In contrast, our approach is to use
ORA-SS as our data model and use object-relational
database as the database management system. We can
store and access the semi-structured data correctly, more
efficient and without avoidable redundancy. There is no
node ID needed in our approach.

Figure 4-9. ORA-SS approach for

example in Figure 4-1

5. Conclusion

In this paper, we propose to use ORA-SS as our data

model and use object-relational database management
systems to store and manage semi-structured data. ORA-
SS can specify the degree of n-ary relationship types and
indicate if an attribute is an attribute of a relationship type
or an attribute of an object class. Existing semi-structured
data models cannot specify such information. We use
these information to translate the XML documents to
ORA-SS and then to object-relational databases correctly
and without avoidable redundancy. We have presented
the algorithms of storing ORA-SS in the object-relational

databases, and we have presented some examples.
Although the examples in this paper are quite simple, they
are representative of more complicated situations that
people represent using semi-structured data.

Compared with other existing approaches, such as the
edge table approach, the attribute approach, the universal
table approach, the normalized universal approach,
STORED, Shore, B-tree approach, our approach is
efficient and no removable redundancy.

In conclusion, our methodology is able to produce an
efficient and non-redundant storage organization for semi-
structured data.

6. Reference

[1] Serge Abiteboul. Querying semi-structured data. In

Proceedings of the 5th IDCT’97, volume 1186 of Lecture
Notes in Computer Science, pages 1-18. Springer, 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.
Wiener, "The Lorel Query Language for Semistructured
Data," In Proceedings of ACM SIGMOD International
Conference on Management of Data, Tucson, Arizona,
1997.

[3] Peter Buneman. Semistructured Data. In Proceedings of the
6th ACM Symposium on Principles of Database Systems,
pages 117-121. ACM Press, 1997.

[4] M. Carey, D. DeWitt, J. Naughton, M. Solomon, et. al,
Shoring Up Persistent Applications, Proc. of the 1994 ACM
SIGMOD Conference

[5] P.P Chen. The Entity-Relationship Approach to Logical
Database Design. Q.E.D. Information Sciences, Inc., 1977

[6] Byron Choi. Lore: Lorel, DataGuide and Semistructure
Databases. Available at
http://www.cis.upenn.edu/~kkchoi/dbpaper2.html

[7] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing
Semistructured Data in Relations, ICDT’99

[8] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing
semistructured data with STORED. In SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on
Management of Data, June 1-3, 1999, Philadephia,
Pennsylvania, USA, pages 431-442, 1999

[9] Gillian Dobbie, Xiaoying Wu and Tok Wang Ling and
Mong Li Lee. ORA-SS: An Object-Relationship-Attribute
Model for Semi-Structured Data. Available at
http://techrep.comp.nus.edu.sg/techreports/2000/TR21-
00.asp

[10] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D.
Suciu. Catching the boat with strudel: Experiences with a
web-site management system. In L. M. Haas and A. Tiwary,
editors, SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, pages
414-425. ACM Press, 1998.

[11] D. Florescu, D. Kossman, A Performance Evaluation of
Alternative Mapping Schemes for Storing XML Data in a
Relational Database, Rapport de Recherche No. 3680
INRIA, Rocquencourt, France, May 1999

[12] Daniela Florescu, Donald Kossmann: Storing and Querying
XML Data using an RDMBS. IEEE Data Engineering
Bulletin 22(3): 27-34(1999)

http://www.cis.upenn.edu/~kkchoi/dbpaper2.html
http://techrep.comp.nus.edu.sg/techreports/2000/TR21-00.asp
http://techrep.comp.nus.edu.sg/techreports/2000/TR21-00.asp

[13] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.
In Proceedings of 23rd VLDB’97, pages 436-445. Morgan
Kaufmann, 1997.

[14] Tok Wang Ling and Pit Koon Teo. A normal form object-
oriented entity relationship diagram. In Proceedings 13th
ER’94, volumn 881 of Lecture Notes in CS, pages 241-258.
Springer, 1994.

[15] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J.
Widom, "Lore: A Database Management System for
Semistructured Data," SIGMOD Record (ACM Special
Interest Group on Management of Data), 26:3, pp. 54-66,
1997.

[16] Yannis Papakonstantinou, Hector Garcia-Molina, and
Jennifer Widom. Object exchange across heterogeneous
information sources. In Philip S. Yu and Arbee L. P. Chen,
editors, Proceedings of the Eleventh International
Conference on Data Engineering, March 6-10, 1995, Taipei,
Taiwan, pp. 251--260. IEEE Computer Society (1995).

[17] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J.
Widom. Querying semistructure heterogeneous
information. In International Conference on Deductive and
Object Oriented Databases, pages 319-344, 1995.

[18] D. Suciu. An overview of semistructured data. Database
Theory Column (ed V. Vianu), Sigact News, 29(4):28--38,
1998

[19] D. Suciu. Semistructured data and XML. In Proceedings of
the 5th International Conference on Foundations of Data
Organization and Algorithms (FODO), Kobe, Japan,
November 1998.

[20] Feng Tian, David J. DeWitt, Jianjun Chen, Chun Zhang,
The Design and Performance Evaluation of Alternative
XML Storage Strategies, 1999

[21] Jeffrey D. Ullman. Principles of Database and Knowledge-
base Systems, Volumes I, II. Computer Science Press,
Rockville MD, 1989.

[22] Xiaoying Wu, Tok Wang Ling, Mong Li Lee, Gillian
Dobbie. Designing Semistructured Databases Using ORA-
SS Model, in Proceedings of the 2nd International
Conference on Web Information Systems Engineering
(WISE), PP:171-180, IEEE Computer Society, Kyoto,
Japan, December 2001.

[23] D. Zhang, Y.S. Dong. A Data Model and Algebra for The
Web. 10th Workshop on Database and Expert Systems
Applications, pages 711-714, 1999.

	Storing and Maintaining Semistructured Data Efficiently in a
	1. Introduction
	2. Data Model -- ORA-SS
	2.1 Object classes
	2.2 Relationship types
	2.3 Attributes
	2.4 References

	3. Translation from ORA-SS to object-relational database
	4. Comparison with Related Work
	5. Conclusion
	6. Reference

