
Performing Grouping and Aggregate Functions in XML
Queries

Huayu Wu, Tok Wang Ling, Liang Xu, and Zhifeng Bao
School of Computing

National University of Singapore
wuhuayu@comp.nus.edu.sg, lingtw@comp.nus.edu.sg, xuliang@comp.nus.edu.sg,

baozhife@comp.nus.edu.sg

ABSTRACT
Since more and more business data are represented in XML
format, there is a compelling need of supporting analyti-
cal operations in XML queries. Particularly, the latest ver-
sion of XQuery proposed by W3C, XQuery 1.1, introduces
a new construct to explicitly express grouping operation in
FLWOR expression. Existing works in XML query process-
ing mainly focus on physically matching query structure over
XML document. Given the explicit grouping operation in
a query, how to efficiently compute grouping and aggregate
functions over XML document is not well studied yet. In this
paper, we extend our previous XML query processing algo-
rithm, VERT, to efficiently perform grouping and aggregate
function in queries. The main technique of our approach is
introducing relational tables to index values. Query pattern
matching and aggregation computing are both conducted
with table indices. We also propose two semantic optimiza-
tions to further improve the query performance. Finally we
present experimental results to validate the efficiency of our
approach, over other existing approaches.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms

Keywords
grouping, aggregate function, query processing, XML

1. INTRODUCTION
XML is an important standard format for data storage

and exchange over the Internet. As a result, how to effi-
ciently process queries over XML databases attracts lots of
research interests [15]. Existing works on XML query pro-
cessing mainly focus on how to efficiently match the query
pattern to XML document, which is considered as a core
operation to process queries in most standard XML query
languages (e.g. XPath [2] and XQuery [5]). As more and
more business data are represented in XML format, ana-
lytical queries involving grouping and aggregate operations
have become more popular. To process an analytical query

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

with grouping, existing pattern matching techniques are no
longer effective. A new technique is required to handle the
grouping operation in queries.

Similar to relational databases, most analytical queries
over XML documents contain a main operator group-by and
a set of aggregate functions such as max(), min(), sum(
), count(), avg(), etc. In most XML query languages, ag-
gregate functions are syntactically supported; however, the
shortcoming is the lack of explicit support for grouping. E.g.
XQuery 1.0 is a widely adopted version by most XQuery
engines, however, grouping in XQuery 1.0 can only be ex-
pressed implicitly using nesting. This nested expression for
grouping can be neither well understood by users, nor easily
detected by query optimizer, as pointed out by [4].

There are many efforts [6, 3, 18] on extending the ex-
pressive power for XQuery to support grouping, until W3C
publishes the latest version of XQuery, XQuery 1.1 [11], to
introduce a new construct to explicitly express grouping in
FLWOR expression. For example, consider the bookstore
document shown in Fig. 1, and a query to find the average
book price for each publisher in each year. This query can
be expressed in XQuery 1.1 as follows:

FOR $p IN distinct-values(doc(“bookstore.xml”)//book/publisher),

$y IN distinct-values(doc(“bookstore.xml”)//book/year),

LET $pr :=

doc(“bookstore.xml”)//book[publisher=$p and year=$y]/price

GROUP BY $p, $y

ORDER BY $p, $y

RETURN

<book publisher=“{$p}” year=“{$y}”>
<average price>{avg($pr)}</average price>

</book>

Although the work of XQuery 1.1 has just started, it re-
flects the importance of grouping operations in XML queries.
As a result, how to efficiently process XML queries with
grouping becomes a new research direction. Since RDBMS
is the dominant model for structured data, in the early stage
there are many works [29, 28, 25] on storing and querying
XML data using RDBMS. In these relational approaches,
they normally shred XML documents into tables and con-
vert XML queries into SQL to query the database. This sort
of approaches can handle grouping in XML queries with the
group-by function in SQL. However, SQL has difficulty sup-
porting multi-level (nested) grouping, which often appears
in analytical XML queries. Also the primeval drawbacks of
relational approaches in query structural search, such as the
inefficiency to answer “//”-axis queries over XML document

with recursively appearing elements [7], are a big concern. A
recent work [14] proposed an algorithm to compute group-by
queries natively over XML document. They scan the doc-
ument for each query and prune out irrelevant nodes. For
the relevant nodes, they merge and count the analytical at-
tributes for each group so that aggregate function can be
easily performed.The major problem is that their approach
is only suitable for queries with simple predicate. They find
the relevant nodes in documents by scanning the document
for each query. However, if a query contains complex pred-
icates as selection conditions and the document schema is
complex (e.g. “//”-axis query and documents with recur-
sively appearing tags), file scan is neither efficient, nor ef-
fective to return correct answers. That also explains why
many twig pattern matching techniques, e.g. TwigStack [7],
attract lots of research attention.

To solve the problem in structural search in existing work
for XML query processing with grouping, we extend our pre-
vious algorithm VERT [26], to efficiently compute group-by
operators in XML queries with complex predicates. Given
a group-by query, we match the query pattern to the doc-
ument based on query predicates using VERT. VERT can
handle both structural search and content search in an XML
query efficiently, thus it is suitable for queries with com-
plex predicates. After that, we use the table indices to get
the values of relevant properties and compute the aggregate
functions in different levels of nested grouping by scanning
the resulting tuples.

The contribution of this paper is summarized as follows:

• We propose an extended algorithm V ERT G based on
our previous algorithm, VERT, to process group-by
queries over XML document efficiently. V ERT G in-
herits all the advantages of VERT, including the effi-
ciency in matching complex query pattern.

• We propose two optimizations based on semantic in-
formation like object and property, which can further
enhance the query performance.

• We conduct experiments to compare the efficiency of
our approach to existing works, to validate the benefit
of our approach.

Some background, as well as related work is presented
in Section 2. In Section 3 and 4 we describe a format of
queries with grouping and aggregation, which is used in our
system, and design the algorithm V ERT G to efficiently pro-
cess queries. In Section 5, we optimize our algorithm with
semantics of object and property. We present experimental
results in Section 6 and conclude this paper in Section 7.

2. BACKGROUND AND RELATED WORK

2.1 XML data model and queries
XML documents are normally modeled as ordered trees

without considering ID/IDREF, in which nodes represent
elements, attributes or values in document, and edges repre-
sent the relationships between element, attribute and value.

The predicate in a query are the constraint to filter the
query results. It is similar to the where clause in SQL to
specify the selection condition. An XML query with predi-
cate can be represented by a tree structure, which is called
a twig pattern. Finding all occurrences of a twig pattern

query in the tree structure of the XML document is the core
operation for XML query processing.

2.2 Grouping and aggregate function
Aggregate function is used to perform analytical compu-

tation and summarization. Some common aggregate oper-
ators include max(), min(), sum(), count(), avg(), etc.
Since usually we need to apply the aggregate functions to
each of a number of groups, another operator group-by is
commonly used. Furthermore, an optional operator having
normally comes with group-by to specify the qualifications
over groups.

2.3 Related work
Grouping and aggregation are well supported by SQL in

relational databases. There are also research works [16,
19] to generalize or optimize such analytical operations in
RDBMS. Since XQuery 1.0 lacks functions to explicitly sup-
port grouping, processing queries with grouping in XML is
addressed by researchers in recent years. Intuitively, the
relational approaches [29, 28, 25] to store and query XML
data can support grouping and aggregation because those
approaches shred XML data into relational tables and con-
vert queries involving grouping operation into SQL to query
the database. These sort of approaches have limitations such
as the inefficiency to answer “//”-axis queries over the doc-
ument with recursively appearing tags [7]. Also [29] proves
that the relational approaches are not efficient as native ap-
proaches for most cases.

The research in XML grouping in native XML databases
mainly focuses on three directions. The first direction is on
how to support grouping by either providing logical group-
ing operators [13, 9, 22], or detecting grouping in nested
queries and rewriting queries [10, 12, 20, 23, 24]. Particu-
larly, in [13] they provide algebraic operators for grouping,
and achieve efficient construction of XML elements using
their algebra. [9, 22] focus on designing a graphical query
language supporting grouping, and eventually the query will
be translated to XQuery expression to process. The works
[10, 12, 20, 23, 24] detect the potential grouping from nested
queries and using different rewriting rules to transform the
queries into a new structure with explicit group-by operator.
However, this approach has a bottleneck, which is the diffi-
culty of detecting grouping in nested queries. Sometimes it
is even not possible to detect such potential grouping [3].

Due to the limitation of detecting grouping in nested queries,
some researchers focus on a second direction, which is ex-
tending XQuery 1.0 to explicitly support grouping in queries.
In [6, 3, 18] they defined extra operator to complement
FLWOR expression in XQuery for grouping. In this case, the
query optimizer does not need to detect potential grouping
in an XQuery expression. Based on these research efforts,
W3C published the new version of XQuery, XQuery 1.1, in
which a grouping construct is introduced as a core require-
ment, though the work has just started.

Since none of the works mentioned above focuses on phys-
ically computing group-by and aggregate function over XML
documents, a new research direction works on algorithmic
support for processing grouping and aggregation. [14] pro-
poses an algorithm to directly compute group-bys. However
their method did not consider the case that an XML query
may contain complex predicate and the document may also
have a complex schema such as containing recursively ap-

bookstore
(1:1000,1)

subject
(2:63,2)

subject
(64:321,2)

name
(3:4,3)

computer

book
(5:18,3)

title
(8:9.4)

author
(10:11,4)

publisher
(6:7,4)

year
(12:13,4)

price
(14:15,4)

quantity
(16:17,4)

HillmanNetwork Green 2003 45 30

book
(19:34,3)

title
(22:23.4)

author
(24:25,4)

publisher
(20:21,4)

year
(28:29,4)

price
(30:31,4)

quantity
(32:33,4)

Elco Database
Systems

Smith 2005 32 20

book
(35:48,3)

title
(38:39.4)

author
(40:41,4)

publisher
(36:37,4)

year
(42:43,4)

price
(44:45,4)

quantity
(46:47,4)

Elco XML Smith 2005 56 10

author
(26:27,4)

Cole

…...

book
(49:62,3)

title
(52:53.4)

author
(54:55,4)

publisher
(50:51,4)

year
(56:57,4)

price
(58:59,4)

quantity
(60:61,4)

Elco Data
Replication

Wang 2006 60 25

Figure 1: An example document bookstore.xml

pearing elements. For such documents and queries, the file
scan to select relevant nodes in [14] may fail to work, and this
motivates many pattern matching techniques ([15]). There
are also works ([21]) to eliminate duplicates during grouping
computation so that better performance can be retrieved.

3. QUERY EXPRESSION
In this section, we describe the general form of XML

queries with grouping, which is used in our V ERT G algo-
rithm. The general query form is shown in Fig. 2 below.

Expr ::= “PATTERN:” XPath_expression
Group by*

Group by ::= “GROUP BY:” group by_attribute+
(“ORDER BY:” group by_attribute+)?
(“HAVING:” condition+)?
“RETURN: {” aggregate_function+
 Group by* “}”

Occurrence Indicator: + 1 or more * 0 or more ? 0 or 1

Figure 2: Query form used by V ERT G

Pattern: The grouping operation and aggregation function
are built on twig pattern queries as mentioned in Section
1. We use XPath expressions to represent twig patterns.
The nodes in a twig pattern should include all the predicate
nodes, group-by nodes and output nodes in the given query.

Grouping: Grouping is explicitly expressed using the key-
word group by. Group by indicates the query nodes by which
the results are grouped, and an optional order by clause in-
dicates the order to output each group. Without indicating
the grouping order, we will output the result based on the
ascending order of the group-by nodes by default. Grouping
often comes with optional having, which is used to specify
the aggregate conditions. Grouping can be parallel, which
means the results are grouped in multiple ways by different
properties. Grouping can also be nested, which means the
results within each return clause can be further grouped.

Return: The return clause specifies the aggregate functions
in each group. As mentioned above, grouping can recursively
appear in a query, so the output information following the
return clause can be the value of an aggregate function, or
a nested grouping operation with another return clause.

Example 1. Consider a query to find first all the com-
puter books grouped by publisher to output the total number
of books of each publisher whose average book price is greater
than 40, and then group all books under each of these pub-
lishers by year and price separately to find the total quantity
of books in each subgroup. This query can be expressed as Q1
in Fig. 3. Note that the pattern in Q1 is an XPath expres-
sion in which all relevant nodes to the query are included.

Q1: PATTERN: subject[name=”computer”]/book[publisher][year][price][quantity]
 GROUP BY: publisher
 ORDER BY: publisher
 HAVING: avg(price)>40
 RETURN: { count(book),
 GROUP BY: year
 RETURN: { sum(quantity) }
 GROUP BY: price
 RETURN: { sum(quantity) } }

Figure 3: Example query Q1

4. ALGORITHM
In this section, we introduce the algorithm V ERT G to

perform grouping as well as aggregate function in XML
queries with complex predicate. Our algorithm contains two
phases. In the first phase, we perform pattern matching to
find all the relevant nodes that satisfy the query predicates
in XML document. In our implementation we use our previ-
ously proposed algorithm VERT to match query pattern be-
cause: (1) VERT solves content problems existing in many
other algorithms, such as the inefficiency of content man-
agement, content search and content extraction. (2) VERT
makes use of relational tables to index values, which is more
compatible with the algorithm proposed in this paper, and
(3) VERT is a very efficient algorithm to process twig pat-
tern queries. After that, in the second phase we use the
table indices on values, together with the result from pat-
tern matching, to perform grouping and compute aggregate
functions. Multi-level grouping can be efficiently supported
in V ERT G. First of all, we briefly review VERT with table
indices.

4.1 VERT and table index
Traditional twig pattern matching techniques suffer from

problems dealing with contents, such as difficulty in data
content management and inefficiency in performing content
search. We proposed VERT, to solve these content prob-
lems, by introducing relational tables to index values. Most
XML query processing algorithms assign labels to each doc-
ument node so that the parent-child relationship or ancestor-
descendant relationship between two nodes can be easily
identified using node labels. In VERT, we use tables to
store labels of properties and their values. The term prop-
erty used in this paper refers to the property of each object,
irrespective of whether it appears as an element type or an
attribute type in an XML document. When we parse an
XML document, we label only elements and attributes, and
put the labels into corresponding streams. A stream for each
element or attribute is used to store labels for that element
or attribute in document order. Values in documents are not
labeled; instead we put them into relational tables together

with the corresponding property node labels. The schema
of each table is:

Rproperty(Label, Value)
In this schema, the subscript property in the table name

indicates for which type of property this table is used. The
two fields“Label” and“Value” store the label of the property
node and its child value. There are different labeling schemes
for static or dynamic1 XML documents. Suppose we adopt
containment labeling scheme [29] in our implementation, the
labels assigned to each document node is shown in Fig. 1
and the example tables for property “title” and “author” in
the the same document is shown in Fig. 4.

Label Value

Rtitle Label Value

(10:11,4) Green

Rauthor

(8:9,4) Network

(22:23,4) Database Systems

(38:39,4) XML

(,)

(24:25,4) Smith

(26:27,4) Cole

(40 41 4) S ith
(,)

(52:53,4) Data Replication
(40:41,4) Smith

(54:55,4) Wang

Figure 4: Table indices for “title” and “author”

To process a twig pattern query with value comparison
in the predicate, VERT performs content search first on the
value comparisons, and then rewrites the query by removing
those value comparisons and performs structural search on
the new query pattern using any efficient structural join al-
gorithm, e.g. TwigStack. For example, to process the query
shown in Fig. 5(a), VERT first refers to the title table to get
the labels for property title whose value is “XML”. It con-
structs a new title stream for this query using the selected
title labels. Now we just need to process the rewritten query
in Fig. 5(b), ignoring the value comparison and using the
new stream for title. The reason why we can simplify the
original query like this is that the value of the property title
for all the labels in the new title stream is “XML” and ac-
tually we have already handled the predicate based on title.
Comparing VERT using a relational table to handle values
with the pure structural matching algorithms, we can see
VERT significantly reduces the size of the stream for title,
and reduces the number of structural joins by 1. We also
propose optimizations for VERT. Details can be found in
[26].

book

authortitle

“XML”

(a) Original query

book

authortitleXML

(b) Rewritten query

Figure 5: Example query in VERT processing

4.2 Data structures and output format
We define the query format in Section 3. In this section,

we discuss how we store the query information into relevant
data structures, which will be used during query processing
with V ERT G. Since we adopt VERT to process pattern
matching for queries, we need to maintain the index tables
for each type of property, as mentioned in last section. The
tables are also used to extract actual values for each property
when we perform grouping and aggregation.

1Static document is the document which is seldom updated,
whereas, dynamic document is frequently updated.

Besides the table indices, we also need two tree structures
in V ERT G. One is a query structure tree, named QT, and
the other one is a grouping structure tree, named GT. QT
is used to represent the XPath expression in a query, and it
is also named as twig pattern. V ERT G matches QT to the
document. This pattern matching process can be considered
as a selection based on predicates. In GT, each node stands
for a grouping operation. Thus within a GT node we record
the group-by property2, the order-by property, the group-
ing constraint and the output aggregate function. Each GT
node has two pointers: child and next sibling. The child
points to a nested grouping operation, and the next sibling
points to a parallel grouping operation in the same grouping
level as the current node.

Example 2. Consider Q1 in Fig. 3. The structures QT
and GT for Q1 are shown in Fig. 6. In GT, the four entries
in each node stand for group-by property, order-by property,
grouping constraint and output aggregate function in order.
The child pointer reflects the nested relationship between the
two levels of grouping, and the next sibling pointer reflects
the parallel relationship between the two grouping operations
in the same level.

subject

name

“computer”

book

publisher year price quantity

QT:

GT:

child

next sibling

publisher
avg(price)>40
count(book)

publisher

year
year
nil

sum(quantity)

price
price
nil

sum(quantity)

Figure 6: Structures for Q1

The format of the output results can be easily generated
by analyzing the query. The result format for Q1 is shown in
Fig. 7. Due to the space limitation, the details of generating
QT, GT and output format from the query are omitted.

Result

Publisher_group

publisher no_of_book Year_group

year total_quantity

Price_group

price total_quantity

“2005” 30 “32” 20

3“Elco”

……

Publisher_group ……

……Year_group

Figure 7: Output format for Q1

4.3 Query processing
To process a query with grouping using V ERT G, we first

perform a pattern matching for the query to the XML doc-
ument. After that in the second phase we perform grouping
and aggregation based on the matching results.

Pattern matching: As mentioned previously, we adopt
VERT for pattern matching. The output of this pattern
matching phase is tuples of labels for relevant nodes, which is
considered as intermediate result set, named as RSintermediate.
The relevant nodes means the nodes which are searched by

2To simplify the explanation, we assume there is one group-
by property in each grouping operation. The data structures
can be easily extended to support multiple group-by proper-
ties. The same assumption is made for grouping constraint
and output aggregate function.

the query, used as group-by properties, or involved in ag-
gregate functions. For example, to process Q1, we match
the path expression following PATTERN to the document.
Since nodes “book”, “publisher”, “year”, “price” and “quan-
tity”appear in GROUP BY, HAVING and RETURN clauses,
VERT will output the labels for these nodes in each matched
segment. The intermediate result set for Q1 is shown in Fig.
8, where each tuple contains the node labels in each twig pat-
tern occurrence in document.

book publisher year price quantity

(5:18,3) (6:7,4) (12:13,4) (14:15,4) (16:17,4)

RSintermediate

(19:34,3) (20:21,4) (28:29,4) (30:31,4) (32:33,4)

(35:48,3) (36:37,4) (42:43,4) (44:45,4) (46:47,4)

(49:62 3) (50:51 4) (56:57 4) (58:59 4) (60:61 4)(49:62,3) (50:51,4) (56:57,4) (58:59,4) (60:61,4)

Figure 8: Pattern matching result for Q1

Performing grouping: In the second phase, we perform
grouping, as well as aggregate functions. We first construct
RSfinal by extracting actual values for the properties in the
intermediate result set RSintermediate using table indices for
each property. After that we traverse the GT for the query
according to a child-first fashion. The recursive method for
GT traverse is shown in Algorithm 1. We start with tra-
verse (GT.root) and the global variable level, which indi-
cates the grouping level that we start performing group-
ing with, is initialized to be 1. When we visit a node, we
attach the group-by property, order-by property, grouping
constraint and aggregate function in that node to the end
of the corresponding global lists GL, OL, CL and AL. If a
node does not have a child, we begin to perform grouping
in RSfinal with current GL, OL, CL, AL and level. We
also consider the parallel grouping within the same level by
checking the next sibling of each GT node. The level value
is set to be the level of the node which has a next sibling.

Algorithm 1: traverse (node)

attach the group-by property, order-by property, grouping1
constraint and aggregate function in node to the end of the lists
GL, OL, CL and AL separately
if node.getChild == null then2

perform (RSfinal, GL, OL, CL, AL, level)3
else4

traverse (node.getChild)5
delete the last entry of GL, OL, CL and AL.6
if node.getNextSibling != null then7

level=node.getLevel8
traverse (node.getNextSibling)9

To process the query Q1, we traverse the GT in Fig. 6. By
Algorithm 1, we perform grouping twice for Q1: one is for
properties“publisher”and“year”with level=1, and the other
one is for“publisher”and“price”with level=2. Now we move
to the algorithm to perform grouping, which is shown in
Algorithm 2. Note that although the RSfinal is in relational
table format, we cannot use SQL to compute all the group-
by clauses, because SQL cannot support nested grouping due
to the flat format of relational table. We partition RSfinal

in line 1. The function partition(RSfinal, GL, OL) sorts the
table RSfinal based on all the properties in GL, following the
order by which the properties appear in OL if it is different
from that in GL. Sorting by multiple properties works in
the way that the system sorts tuples by the first property,
and if two or more tuples have the same value on the first

property, then it sorts them by the second property, and
so forth. Now the tuples can be partitioned into different
groups for different levels.

Algorithm 2: perform (RSfinal, GL, OL, CL, AL, level)

partition(RSfinal, GL, OL)1
let n = GL.length2
foreach i = level to n do3

initialize cv [i] = RSfinal[GL[i]]4
initialize lists count[i][], sum[i][], max[i][], min[i][] for5
relevant properties in RSfinal, which are used to compute
aggregate functions

foreach tuple t in RSfinal do6
foreach i = level to n do7

if t[GL[i]] != cv[i] then8
foreach j = i to n do9

check the constraints in CL[j]10
if CL[j] holds then11

compute aggregate functions in AL[j]12
put cv [j] and the aggregate results into the13
appropriate position in result tree

cv [j] = t[GL[i]]14
reset count[j][], sum[j][], max[j][], min[j][]15

break16

else17
update count[j][], sum[j][], max[j][], min[j][]18

foreach i = level to n do19
check the constraints in CL[i]20
if CL[i] holds then21

compute aggregate functions in AL[i]22
put cv [i] and the aggregate results into the appropriate23
position in result tree

Example 3. Consider Q1 in Fig. 3 with the intermediate
result set shown in Fig. 8. Using the index tables Rpublisher,
Ryear, Rprice and Rquantity we can get the exact values for
each field. When the perform function is first called in
Algorithm 1, we partition the RSfinal based on properties
“publisher” and “year”. The result is shown in Fig. 9. The
bold lines in the RSfinal show the partition.

Level 1
partition

Level 2
partition

RS

publisher year book price quantity

Elco 2005 (19:34,3) 32 20

RSfinal

Elco 2005 (35:48,3) 56 10

Elco 2006 (49:62,3) 60 25

Hillman 2003 (5:18,3) 45 30()

Figure 9: Example RSfinal with partition for Q1

In lines 2-5, we initialize the lists used in this algorithm.
Particularly, cv[i] stores the current value of the group-by
property in the ith level group, while statistic lists count[i][
], sum[i][], max[i][] and min[i][] store the corresponding
current statistic values for the ith level group. In lines 6-
23, we update these lists to get aggregate results. We check
each tuple in RSfinal to see whether any new partition in
the different levels begins at this tuple. This is done by
checking whether the value of the group-by property in each
level is changed in line 8. If any new partition begins in
a certain grouping level, for every lower level a new parti-
tion also begins. Then we check the HAVING constraint in
these levels and compute the aggregate functions using the
corresponding statistic lists, as shown in lines 10-13. After
that we reset the current group-by property value and the
statistic lists for each of these levels, in lines 14-15. If in a
tuple, some grouping level does not end, we simply update

the statistic lists in line 18. In many cases, we do not need
to maintain all the statistic lists as the query may be only
interested in some of them. To simplify the presentation,
we use all the statistic lists in the pseudo-code. Lines 19-23
finalize the query processing by outputting the result for the
last group in each grouping level.

Example 4. When the perform function is first called
during GT traverse for Q1, the RSfinal with partition is
shown in Fig. 9. We start with level=1, and initialize the
current value and the necessary statistic lists for each group-
ing level, as shown in Fig. 10. The list cv[] contains two
entries since there are two levels of grouping. The statistical
list, saying count[1][], stores the total number of each target
property in the first level, e.g. count[1][2] is the count of
the second property “price” in level 1 grouping. Nil in some
entries of each list means the corresponding statistic value
is not asked by the query and we do not need to maintain it.

cv[]
publisher year

Elco 2005

count[1][]
book price

0 0

 sum[1][] 0

Note: In count[i][j] and sum[i][j], i is the grouping level
and j is the position in the list.

quantity

 sum[2][] 0

nil

nilnil

nil

nil

Figure 10: Example initial lists for Q1

When the system reads the third tuple in RSfinal, the
value in cv[1] is the same as the “publisher” value in the third
tuple. That means the current level 1 group does not end at
this tuple. Thus it updates the lists count[1][] and sum[1][
]. However, the value “2005” in cv[2] is different from the
“year” value “2006” in the third tuple, which means current
level 2 group ends. It then follows lines 10-13 in Algorithm 2
to compute the aggregate function in level 2 grouping based
on current statistic list for this level, e.g. sum[2][], and
puts the value “2005” for the group-by property “year” and
the result “30” for aggregate function sum(quantity) into ap-
propriate position in the result tree as shown in Fig. 7. After
that the system resets cv[2] and the statistic list sum[2][] for
level 2 grouping and continues reading the next tuple. The
relevant lists before and after reading the third tuple is shown
in Fig. 11.

cv[]
publisher year

Elco 2005

count[1][]
book price

2 2

 sum[1][] 88

quantity

 sum[2][] 30

nil

nil

nil

nilnil

(a) Before the third tuple

cv[]
publisher year

Elco 2006

count[1][]
book price

3 3

 sum[1][] 148

quantity

 sum[2][] 25

nil

nil

nil

nilnil

(b) After the third tuple

Figure 11: Example lists before and after reading
the third tuple in RSfinal for Q1 processing

4.4 Early pruning
Anti-monotonic constraint is defined as the constraint which

will never be true once it becomes false. Some aggregate con-
straints that appear in HAVING clauses, such as count() ≤
num, max() ≤ num, min() ≥ num or sum() ≤ num (num
is a numeric value), are anti-monotonic constraints. E.g. for
the constrain max(price) ≤ 100, once we get a price greater
than 100 in a group, we can never turn the constraint to

be true, no matter how many more prices are checked in
the same group. Motivated by anti-monotonic constraints,
some early pruning can be done to enhance the query per-
formance. When we read tuples in RSfinal, we can check
the anti-monotonic constraint first, rather than checking all
constraints after meeting the end tuple of the group. If any
anti-monotonic constraint is violated by a certain tuple, all
other tuples in the same group can be skipped.

4.5 Extension flexibility
The query form and query processing algorithms presented

in Section 3 and Section 4.2 are built on basic aggregation.
Sometimes the user may issue queries involving keyword con-
straints distinct, or some other aggregate functions, or even
moving windows following the group-by properties. In this
section, we explain briefly how our algorithm is flexible to
be extended to support these advanced features.

Distinct: Some aggregate function aims to find aggregate
results on distinct values in the group. In this case, we
need to introduce keyword distinct. There are two types of
parameters that can be used by distinct constraint. The
first type is property. E.g. count(distinct name) counts the
number of different names distinguished by name values. To
support this type of distinct, we can maintain a sorted list
to store different values for the corresponding properties.
When a value comes, we can know whether it is a distinct
value or not by check the sorted list.

The second type of parameter following distinct constraint
is object, e.g. count(distinct book). This function is not
easy to compute as “book” is an object class rather than
property, and there is no child value for “book” to explic-
itly distinguish each “book” object. One way to distinguish
objects under the same class is to discover more semantics
on object ID [8]. As long as the ID of an object class is
clear, we can easily perform aggregate functions on distinct
objects by introducing ID to RSfinal for the relevant object.

Other aggregate functions: We discuss four more aggre-
gate functions that are frequently asked, namely, maxN(),
minN(), median() and mode(). The function maxN()
and minN() are top N functions to find the N maximum
or minimum values. Median() returns the value that sepa-
rates the higher half of a set of values from the lower half,
and mode() is used to find the value that occurs most often
in a set. In the discussion about distinct keyword above,
we mentioned that we can maintain an additional sorted list
to store different values for particular property. To compute
maxN(), minN(), median() and mode(), we not only need
the sorted list for the distinct values for relevant properties,
but also need a frequency list in which each entry stores the
number of occurrences of the value in the corresponding en-
try in the sorted list. Using these two lists, these aggregate
functions can be easily computed.

Moving windows: Moving windows are used to group an-
swers by ranges of values on a certain property. E.g. a
query needs to find the total quantity of books group by
range of 5 years with a moving step of 3 years, beginning
at 2008. In this query, we need to put books with year in
[2008, 2012] together, with year in [2011, 2015] together and
so on. The general approach to handle moving windows is,
we first do grouping and aggregation as usual for each dis-
tinct value, and after that we perform a post-aggregation
that aggregates the results from the previous step based on

each window range. Consider the query mentioned above.
First we get the sum(quantity) for each year, and then in the
post-aggregation step, we just sum up the quantity for years
from 2008 to 2012, and from 2011 to 2015, etc. If there are
nested grouping operations inside each window group, the
post-aggregation is also effective. For example, continuing
with the above query, suppose for each year window, we need
to find the number of books grouped by publisher. In the
first step, we group books by each different year, and then
in each group, we do a secondary grouping on publisher and
count the books in each subgroup. The post-aggregation will
integrate all subgroups in the five groups with year value
from 2008 to 2012, from 2011 to 2015, etc, by summing up
the results under the same publishers.

5. SEMANTIC OPTIMIZATION
In Q1, we group “book” by its descendant properties. Ac-

tually our algorithm also supports grouping by the prop-
erties appearing in other places in document, rather than
descendants of an object.

Example 5. Consider the query Q2 to find the average
price of books published in 2005, group by publisher first and
then group by subject name. In this query, subject name
appears as a property of the parent node of “book”. To an-
swer this query, we just match the twig pattern shown in
Fig. 12(a) to the document tree, and extract values for each
property using table index to form RSfinal. Then grouping
operation and aggregate function can be done normally in
RSfinal. The result structure is shown in Fig. 12(b).

subject

name book

publisher priceyear

“2005”

(a) Twig pattern

Result

Publisher_group Publisher_group

pubisher Subject_group Subject_group

“Elco” name avg_price

……

……

name avg_price

“computer” “biology”49.3 64.5

(b) Result tree

Figure 12: Query Q2 and result tree

By investigating analytical queries, we find many of them
group objects by their own properties. E.g. in Q1, we group
books by publisher and then by year and price. Publisher,
year and price are all the properties of book. With the se-
mantic information on grouped object, and the relationship
between grouped object and group-by properties, we can
optimize tables to further improve the query performance.

5.1 Optimization 1: object/property table
Recall the table index we used in V ERT G (e.g. the ex-

ample tables shown in Fig. 4), we can see the “Label” field
in each table stores the label of the corresponding property,
while the “Value” field stores the value of the property. If
we have knowledge on the object to which each property
belongs, e.g. the object for properties “title” and “author”
is “book”, we can optimize the table to be object/property
table, instead of the previous property table. The schema
of the object/property table is:

Robject/property(Label, Value)
In the object/property table, the table name indicates

which object and property the table is for. The “Label” field
stores the label for the object, instead of the property, and
the “Value” field stores the corresponding property value.

Example 6. For the bookstore document in Fig. 1, we
can optimize the index property table to be object/property
table. The table for object “book” and property “title” is
shown in Fig. 13(a). Comparing the “book/title” table in
Fig. 13(a) to the table for “title” shown in Fig. 4, we can
find that the stored information in “Label” field is changed
from “title” labels to “book” labels, whereas the “Value” field
is not changed. Now when we process Q1 using the new
table indices, we can simplify the twig pattern as shown in
Fig. 13(b), by reducing quite a number of structure nodes
and structure joins. After getting the labels for “book” dur-
ing twig pattern matching, we can use the corresponding
object/property tables to get values for “publisher”, “year”,
“price” and “quantity”, to form RSfinal.

Label Value

Rbook/title

(5:18,3) Network

(19:34,3) Database Systems

(35:48,3) XML(,)

(49:62,3) Data Replication

(a) Object/property table
for “book/title”

subject

name

computer

book

(b) Twig pattern for Q1
with new table indices

Figure 13: Example for Optimization 1

5.2 Optimization 2: object table
In Optimization 1, for each object we maintain different

table indices for different properties. E.g. for the object
“book” in the bookstore document in Fig. 1, we have tables
Rbook/title, Rbook/author, etc. Processing a group-by query
involving different properties on the same object requires
accessing multiple table indices. Those tables have the same
“Label” value as there are for the same object. If we merge
all object/property tables for the same object and single-
valued properties to get object table, we can save the cost
on the access and the search in multiple tables for the same
object. Motivated by this, we have the second optimization.
The schema for object table used in Optimization 2 is:

Robject(Label, Property*)
The table name indicates for which object the table is,

the field “Label” stores the labels of each object and the rest
fields store the names of each belonging single-valued prop-
erty and the corresponding values. For multi-valued prop-
erties, we cannot merge them with other properties, so we
keep the object/property table for multi-valued properties.

Label Publisher Title Year Price Quantity

Rbook Label Value

(5:18,3) Green

Rbook/author

(5:18,3) Hillman Network 2003 45 30

(19:34,3) Elco Database Systems 2005 32 20

(35:48,3) Elco XML 2005 56 10

(,)

(19:34,3) Smith

(19:34,3) Cole

(35 48 3) S ith
(,)

(49:62,3) Elco Data Replication 2006 60 25
(35:48,3) Smith

(49:62,3) Wang

Figure 14: Example object table in Optimization 2

Example 7. Consider the bookstore document shown in
Fig. 1. The index tables for “book” under Optimization 2
are shown in Fig. 14. We merge all the single-valued prop-
erties for “book” to Rbook, and for the multi-valued property
“author” we keep the object/property table. With the new
optimization, for Q1 we only need to join RSintermediate in
Fig. 8 with Rbook once to get all the property values.

Intuitively the parent node of each value is its property,
while the parent node of each property can be considered as
the corresponding object, but it is not always correct. E.g.
in an XML document, “person” has property “name”, and
“name” is a composite property having two children “first-
Name” and “lastName”. In this case, “firstName” and “last-
Name” should be the properties of object “person”, though
they are not the children of “person”. Normally the seman-
tics of object can be inferred from domain knowledge. With-
out such semantics, we can still process queries using Op-
timization 2, in which the parent node of each property is
simply considered as an object, e.g. in the above exam-
ple, we consider “name” as an object with two properties
“firstName” and “lastName”. Once we have more semantic
information, we can include it to the table index and fur-
ther improve the query performance. E.g. in a query to find
the person whose “firstName” is “John”. When we consider
“name”as an object of property “firstName”, we need to find
the “name” whose property “firstName” has value of “John”,
and then join it with each “person”. If we know the actual
object for “firstName” is “person”, we can directly find the
“person” whose property “firstName” has value of “John”.

6. EXPERIMENTS
In this section we present experimental results. First we

conduct experiments to compare the query performance us-
ing V ERT G without optimization, with Optimization 1 and
with Optimization 2. Then we use V ERT G Optimization 2
to compare with other approaches including relational ap-
proach, XQuery engine, and a recently proposed algorithm
N-GB [14] on group-by query processing.

6.1 Experimental settings
We implemented all algorithms in Java. The experiments

were performed on a dual-core 2.33GHz processor with 4G
RAM. We used real-world data sets DBLP (91MB) and
NASA (23MB), and a well known synthetic data set XMark
[27] in our experiments. Note that DBLP data has a sim-
ple schema, while NASA data has a complex schema. The
characteristics of queries used is shown in Fig. 15.

Q G i G i Q G i G iQuery Grouping
levels

Grouping
properties

Query Grouping
levels

Grouping
properties

X1, N1, D1, XM1, NM1 1 1 XNR1, XNS1 1 2

2 2 2 2 2 2 S2 2X2, N2, D2, XM2, NM2 1 1 XNR2, XNS2 1 2

X3, N3, D3, XM3, NM3 1 2 XNR3, XNS3 2 3

X4, N4, D4, XM4, NM4 1 2 XNR4, XNS4 2 4

X5, N5, D5, XM5, NM5 2 3 XNR5, XNS5 3 5

X6, N6, D6, XM6, NM6 2 3 XNR6, XNS6 3 6

X7, N7, D7, XM7, NM7 2 4 DN1, DN2, DN3 1 1 2X7, N7, D7, XM7, NM7 2 4 DN1, DN2, DN3 1 1 2

X8, N8, D8, XM8, NM8 2 4 DN4, DN5, DN6 2 2 4

SX, SN, SD 1 6 1 6 DN7, DN8, DN9 3 3 6

Figure 15: Experimental queries with No. of group-
ing levels and No. of grouping properties

6.2 Comparison between V ERTG without and
with optimizations

6.2.1 Query performance
We process 8 queries in each document to compare the

query performance between original V ERT G algorithm and
the two optimizations (named as V ERT G-op1 and V ERT G-
op2). Queries X1-X8 are issued to Xmark document, N1-N8

to NASA document and D1-D8 to DBLP document. The
experimental results on execution time are shown in Fig. 16.

ibute

0

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q4

1500

2000

2500

on
ti
m
e
(m

s)

0

0

0

0

0

500

1000

X1 X2 X3 X4 X5 X6 X7 X8

Ex
ec
ut
io

Queries

VE VG

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

VERTG VERTG-op1 VERTG-op2

(a) XMark data set

ibute

0

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q4

3000

4000

5000

on
ti
m
e
(m

s)

0

0

0

0

0

1000

2000

N1 N2 N3 N4 N5 N6 N7 N8

Ex
ec
ut
io

Queries

VG VG 1 VG 2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

VERTG VERTG-op1 VERTG-op2

(b) NASA data set

ibute

0

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q44000
5000
6000
7000
8000
9000

on
ti
m
e
(m

s)

0

0

0

0

0
1000
2000
3000
4000

D1 D2 D3 D4 D5 D6 D7 D8

Ex
ec
ut
io

Queries

VG V 2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

VERTG VERTG-op1 VERTG-op2

(c) DBLP data set

Figure 16: Query performance comparison for
V ERT G, V ERT G-op1 and V ERT G-op2

We can see that for all the queries V ERT G-op2 outper-
forms V ERT G-op1, and V ERT G-op1 outperforms V ERT G

without optimization. This validates the analysis in Section
5, which is V ERT G-op1 uses object/property table and can
further simplify the query to improve the performance, and
V ERT G-op2 combine object/property tables to object ta-
bles, so that the table accesses and the tuple searches are
reduced and the performance is further improved.

6.2.2 Scalability as grouping levels increase
It is natural that the user issues a query with nested

grouping. In this section we measure the time trend of our
algorithm V ERT G and its optimizations when the group-
ing levels increase. For each document, we select one type
of query with predicates fixed and grouping levels varied.
The result on the scalability is shown in Fig. 17.

From the result we can see that running time for V ERT G

increases as the number of grouping levels increases. The
reason is, if we group a set of objects by a new property, we
have to include that property for pattern matching, which is
time consuming. However, if we adopt V ERT G with either
V ERT G-op1 or V ERT G-op2, we only match the relevant
objects, instead of each property node. As a result, the exe-
cution time increases slowly when more grouping levels are
involved. V ERT G-op2 is better than V ERT G-op1 because
we access less table indices in V ERT G-op2.

6.3 Comparison with other approaches
In this section, we compare our approach with other ap-

proaches including relational approaches, XQuery engine,
and N-GB. We use V ERT G-op2 in our approach for the
comparison.

6.3.1 Comparison with relational approaches
As mentioned in Section 1, relational approaches shred

XML into relational tables and translate XML queries into
SQL to query the database, and they support grouping in

vels
300004500 4000

5000

on
ti
m

3500

5000

10000

15000

20000

25000

900

1800

2700

3600

Ex
ec
ut
io
n
ti
m
e
(m

s)

0
1000
2000
3000
4000

D1 D2 D3 D4 D5 D6 D7 D8

Ex
ec
ut
io

Queries

VG VG 1 VG 2
500

1000

1500

2000

2500

3000
Ex
ec
ti
on

ti
m
e
(m

s)

0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

N GB VG VG opt

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q4

VGroup VGroup opt1 VGroup opt20

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

VERTG VERTG-op1 VERTG-op2

(a) XMark data with SX

vels
300004500 4000

5000

on
ti
m

3500

4000

5000

10000

15000

20000

25000

900

1800

2700

3600

Ex
ec
ut
io
n
ti
m
e
(m

s)

0
1000
2000
3000
4000

D1 D2 D3 D4 D5 D6 D7 D8

Ex
ec
ut
io

Queries

VG VG 1 VG 2
500

1000

1500

2000

2500

3000

3500

Ex
ec
ti
on

ti
m
e
(m

s)

0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

N GB VG VG opt

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q4

VGroup VGroup opt1 VGroup opt20

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

VERTG VERTG-op1 VERTG-op2

(b) NASA data with SN
vels

300004500 4000
5000

on
ti
m

16000
18000

5000

10000

15000

20000

25000

900

1800

2700

3600

Ex
ec
ut
io
n
ti
m
e
(m

s)

0
1000
2000
3000
4000

D1 D2 D3 D4 D5 D6 D7 D8

Ex
ec
ut
io

Queries

VG VG 1 VG 2
2000
4000
6000
8000

10000
12000
14000
16000

Ex
ec
ti
on

ti
m
e
(m

s)

0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

N GB VG VG opt

0

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

Q1 Q2 Q3 Q4

VGroup VGroup opt1 VGroup opt20

1 level 2 level 3 level 4 level 5 level 6 level

Number of grouping levels

VERTG VERTG-op1 VERTG-op2

(c) DBLP data with SD

Figure 17: Scalability for V ERT G, V ERT G-op1 and
V ERT G-op2

queries. In [14] they conducted experiments to show the
bad performance using shredding method proposed in [25].
We tried another shredding method [17] in our experiments.
We issued a query with 1-level grouping to an XMark docu-
ment of 11MB. The relational database system takes around
10 minutes to return the answer, whereas in our approach
such query only needs several seconds. When more query
nodes are introduced, the processing time of the relational
approach increases exponentially.

6.3.2 Comparison with XQuery
Besides, we take MonetDB [1], which is a well known ef-

ficient memory-based XQuery engine, for comparison. We
used two data sets, XMark (11MB) and NASA (23MB), and
conducted experiments on 8 queries in each data set (XM1-
XM8 and NM1-NM8). All the queries contain grouping op-
eration, and the group-by properties may not necessarily be
the children or descendants of the object to be grouped. E.g.
in NM8 for NASA data we group journals by subject, which
is the ancestor node of “journal” in document. The experi-
mental results are shown in Fig. 18 (Y-axis is in logarithmic
scale).

e attribute

000 1000

10000

100000

,l
og

sc
al
e)

000

000

000

000

000

1

10

100

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM8

CP
U
ti
m
e
(m

s

0

DN1 DN2 DN3 DN4 DN5 DN6 DN7 DN8 DN9

Queries

Queries

MonetDB VERTG-op2

(a) XMark data set

e attribute

000 1000

10000

100000

,l
og

sc
al
e)

1000

10000

100000

,l
og

sc
al
e)

000

000

000

000

000

1

10

100

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM8

CP
U
ti
m
e
(m

s

1

10

100

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8

CP
U
ti
m
e
(m

s

0

DN1 DN2 DN3 DN4 DN5 DN6 DN7 DN8 DN9

Queries

Queries

MonetDB Vp

Queires

MonetDB VERTG-op2

(b) NASA data set

Figure 18: CPU time comparison between MonetDB
and V ERT G-op2

For both data sets, we can see that for 1-level grouping
with one property, MonetDB performs well. However, when
the number of group-by properties and the number of group-
ing levels increases, since XQuery needs to express such
queries using nesting with multiple document retrievals and

joins, the performance of MonetDB is affected. In XMark
data set, the CPU time for MonetDB increases fast on XM3-
XM8. In NASA data set, though the CPU time on NM3-
NM4 is still relatively low, when we increase the number of
grouping levels in NM5-NM8, the efficiency of MonetDB is
significantly affected. Our approach, V ERT G-op2, outper-
forms MonetDB for those queries with multi-level groupings.

6.3.3 Comparison with N-GB
We also compare our work with a recently proposed al-

gorithm N-GB ([14]) to process queries with grouping and
aggregation. We take two data sets, XMark (111MB) and
DBLP (91MB) for the comparison. For XMark data, we
perform two sets of queries. The first set contains queries
in which group-by properties appear in any positional re-
lationship with the object to be grouped. E.g. we group
journals by either its child property “year” or its ancestor
property “subject”. For this set of queries, our optimization
can reduce the complexity during query processing, but we
still need pattern matching to get query node occurrences in
document. The second set of queries have group-by proper-
ties, output nodes and aggregate properties under the same
object. In this case, we do not need to perform pattern
matching, and the efficiency will be enhanced. For each
query set, we have 6 queries with grouping levels varying
among 1, 2 and 3. Fig. 19 shows the experimental results
for XMark data.

one attribute
s
els
12000 1000

10000

,l
og

sc
al
e)

1000

10000

,l
og

sc
al
e)

5000

6000

7000

e
(m

s)

2000

4000

6000

8000

10000

1

10

100

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM

CP
U
ti
m
e
(m

s

1

10

100

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM

CP
U
ti
m
e
(m

s

0

1000

2000

3000

4000

Ex
ec
ut
io
n
ti
m
e

0

DN1 DN2 DN3 DN4 DN5 DN6 DN7 DN8 DN9

Queries

Queries

MonetDB VERTG op2

Queires

MonetDB VERTG op2

XNR1 XNR2 XNR3 XNR4 XNR5 XNR6

Queries

N GB VERTG op2

(a) Group-by properties in
random position

one attribute
s
els
12000 1000

10000

,l
og

sc
al
e)

1000

10000

,l
og

sc
al
e)

5000

6000

7000

e
(m

s)

5000

6000

7000

e
(m

s)

2000

4000

6000

8000

10000

1

10

100

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM

CP
U
ti
m
e
(m

s

1

10

100

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM

CP
U
ti
m
e
(m

s

0

1000

2000

3000

4000

Ex
ec
ut
io
n
ti
m
e

0

1000

2000

3000

4000

Ex
ec
ut
io
n
ti
m
e

0

DN1 DN2 DN3 DN4 DN5 DN6 DN7 DN8 DN9

Queries

Queries

MonetDB VERTG op2

Queires

MonetDB VERTG op2

XNR1 XNR2 XNR3 XNR4 XNR5 XNR6

Queries

N GB VERTG op2

XNS1 XNS2 XNS3 XNS4 XNS5 XNS6

Queries

N GB VERTG op2

(b) Group-by properties in
the same object as outputs

Figure 19: Execution time comparison between N-
GB and V ERT G-op2 for XMark data

From the figure above we can see V ERT G-op2 always
outperforms N-GB. For the first set of queries (Fig. 19(a)),
V ERT G-op2 saves 30%-51% running time, and for the sec-
ond query set (Fig. 19(b), this saving becomes 86%-93%.

We also used the real-world data DBLP to compare our
approach and N-GB. We used 9 queries for DBLP data,
which are DN1-DN9. Since N-GB assumes the answer tree
can fit in memory, we allocated 1GB memory for JVM dur-
ing experiments. The results are shown in Fig. 20. We can
see from the figure, V ERT G-op2 outperforms N-GB for all
kinds of queries. This result shows that our approach is ef-
ficient not only for complex documents (e.g. XMark), but
also for flat documents (e.g. DBLP).

7. CONCLUSION
In this paper we analyzed the drawbacks of different ex-

isting approaches to process XML queries with grouping
and aggregation, and proposed a novel algorithm, V ERT G,
which can perform grouping operation and compute aggre-
gate functions in XML queries with complex predicate. The
main technique of V ERT G is to introduce table index dur-
ing XML query processing. After processing XML queries

e levels
12000

2000

4000

6000

8000

10000

Ex
ec
ut
io
n
ti
m
e
(m

s)

0

DN1 DN2 DN3 DN4 DN5 DN6 DN7 DN8 DN9

Queries

N GB VERTG-op2

Figure 20: Execution time comparison between N-
GB and V ERT G-op2 for DBLP data

over documents natively using any pattern matching algo-
rithm, e.g. VERT, V ERT G extracts actual values for rel-
evant nodes with table indices and performs grouping and
aggregation. Furthermore, we proposed two semantic opti-
mizations to table index, which can significantly enhance the
query processing performance. We conducted experiments
to compare our approach with a relational approach, a well
known XQuery engine and a recently proposed algorithm,
to show the advantages of our approach.

In future work, we plan to investigate real-life queries and
further optimize the table index so that the relationship be-
tween relevant objects can be efficiently discovered using
index, instead of searching the document. Also we will ex-
tend our approach to handle queries with ID references, and
queries across multiple XML documents.

8. REFERENCES
[1] MonetDB. http://monetdb.cwi.nl/.

[2] A. Berglund, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Simeon. XML path language
XPath 2.0. W3C Working Draft, 2007.

[3] K. S. Beyer, D. D. Chamberlin, L. S. Colby, F. Özcan,
H. Pirahesh, and Y. Xu. Extending XQuery for
analytics. In SIGMOD Conference, pages 503–514,
2005.

[4] K. S. Beyer, R. Cochrane, L. S. Colby, F. Ozcan, and
H. Pirahesh. XQuery for analytics: Challenges and
requirements. In XIME-P, pages 3–8, 2004.

[5] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An
XML query. W3C Working Draft, 2003.

[6] V. Borkar and M. Carey. Extending XQuery for
grouping, duplicate elimination, and outer joins. In
XML Conference and Expo., 2004.

[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In SIGMOD,
pages 310–321, 2002.

[8] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and
W. C. Tan. Keys for XML. In WWW, pages 201–210,
2001.

[9] S. Ceri, S. Comai, E. Damiani, P. Fraternali,
S. Paraboschi, and L. Tanca. XML-GL: a graphical
language for querying and restructuring XML
documents. In WWW, pages 1171–1187, 1999.

[10] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The
next logical framework for XQuery. In VLDB, pages
168–179, 2004.

[11] D. Engovatov. XML query (XQuery) 1.1 requirements.
W3C Working Draft, 2007.

[12] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi.
Query processing of streamed XML data. In CIKM,
pages 126–133, 2002.

[13] T. Fiebig and G. Moerkotte. Algebraic XML
construction and its optimization in natix. World
Wide Web, 4(3):167–187, 2001.

[14] C. Gokhale, N. Gupta, P. Kumar, L. V. S.
Lakshmanan, R. T. Ng, and B. A. Prakash. Complex
group-by queries for XML. In ICDE, pages 646–655,
2007.

[15] G. Gou and R. Chirkova. Efficiently querying large
XML data repositories: A survey. IEEE Trans.
Knowl. Data Eng., 19(10):1381–1403, 2007.

[16] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In
ICDE, pages 152–159, 1996.

[17] T. Grust, M. van Keulen, and J. Teubner.
Accelerating XPath evaluation in any RDBMS. ACM
Trans. Database Syst., 29:91–131, 2004.

[18] M. H. Kay. Positional grouping in XQuery. In
XIME-P, 2006.

[19] W. Kim. On optimizing an sql-like nested query. ACM
Trans. Database Syst., 7(3):443–469, 1982.

[20] N. May, S. Helmer, and G. Moerkotte. Strategies for
query unnesting in XML databases. ACM Trans.
Database Syst., 31(3):968–1013, 2006.

[21] N. May and G. Moerkotte. Efficient XQuery
evaluation of grouping conditions with duplicate
removals. In XSym, pages 62–76, 2007.

[22] W. Ni and T. W. Ling. GLASS: A graphical query
language for semi-structured data. In DASFAA, pages
363–370, 2003.

[23] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S.
Lakshmanan, A. Nierman, D. Srivastava, and Y. Wu.
Grouping in XML. In EDBT Workshops, pages
128–147, 2002.

[24] C. Re, J. Siméon, and M. F. Fernández. A complete
and efficient algebraic compiler for XQuery. In ICDE,
page 14, 2006.

[25] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying XML documents: Limitations
and opportunities. In VLDB, pages 302–314, 1999.

[26] H. Wu, T. W. Ling, and B. Chen. VERT: A semantic
approach for content search and content extraction in
XML query processing. In ER, pages 534–549, 2007.

[27] XMark. An XML benchmark project.
http://www.xml-benchmark.org, 2001.

[28] M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura. XRel: a path-based approach to storage
and retrieval of XML documents using relational
databases. ACM Trans. Internet Techn., 1(1):110–141,
2001.

[29] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On supporting containment queries in
relational database management systems. In SIGMOD
Conference, pages 425–436, 2001.

