Towards An Interactive Keyword Search over Relational
Databases

Zhong Zeng', Zhifeng Bao?, Mong Li Lee!, Tok Wang Ling*

'National University of Singapore
{zengzh,leeml,lingtw}@comp.nus.edu.sg

ABSTRACT

Keyword search over relational databases has been widely
studied for the exploration of structured data in a user-
friendly way. However, users typically have limited domain
knowledge or are unable to precisely specify their search
intention. Existing methods find the minimal units that
contain all the query keywords, and largely ignore the in-
terpretation of possible users’ search intentions. As a result,
users are often overwhelmed with a lot of irrelevant answers.
Moreover, without a visually pleasing way to present the an-
swers, users often have difficulty understanding the answers
because of their complex structures. Therefore, we design
an interactive yet visually pleasing search paradigm called
ExpressQ. ExpressQ extends the keyword query language
to include keywords that match meta-data, e.g., names of
relations and attributes. These keywords are utilized to in-
fer users’ search intention. Each possible search intention is
represented as a query pattern, whose meaning is described
in human natural language. Through a series of user inter-
actions, ExpressQ can determine the search intention of the
user, and translate the corresponding query patterns into
SQLs to retrieve answers to the query. The ExpressQ pro-
totype is available at http://expressq.comp.nus.edu.sg.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

Keywords
Keyword Search; Relational Database; Interactive Approach

1. INTRODUCTION

The primary interaction between relational databases (RDB)

and users starts from SQL queries, which assumes that users
are familiar with database schemas and the query language.
As databases increase in size and become more accessible to
a diverse and less technically oriented audience, new forms

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742830.

2RMIT University
zhifeng.bao@rmit.edu.au

of data exploration become increasingly attractive, and key-
word search is one of them to explore information in RDB.

Existing search methods typically considers a keyword
query as a set of user specified keywords that match tuple
values. One traditional approach to evaluate the query is to
materialize the database as a graph where each node repre-
sents a tuple and each edge represents a foreign key-key ref-
erence. The query answers are the minimal connected sub-
graphs that contain all the keywords [1]. Another approach
translates the keyword query into a set of SQL statements,
and leverages on relational DBMSs to retrieve answers [2,
5]. However, these works do not consider users’ search in-
tentions due to the intrinsic ambiguity of keyword queries,
and often return an overwhelming amount of answers, many
of which are complex and not easily understood. As a re-
sult, users usually have to re-formulate their queries multiple
times before they can get the desired information.

Our goal is to design an exploratory search paradigm that
actively involves the user in the search process in order to ad-
dress the following challenges in relational keyword queries:

1. How to identify the search target of a user query;

2. How to identify the context of a keyword since key-
words can match tuple values as well as meta-data such
as the names of relation and attributes [6];

3. How to present the query answers such that they facili-
tate human understanding and convey the relationship
between data items [7, 3].

To achieve our goal, we build a system called ExpressQ),
which provides an interactive approach to relational keyword
search. ExpressQ captures the semantics of objects and re-
lationships in the database, and handles keywords match-
ing the names of relations and attributes. Given a keyword
query, ExpressQ infers the search target of the query by
identifying the objects/relationships referred to by the key-
words. Then it constructs query patterns to represent the
user’s possible search intention, and rank the patterns. The
meanings of these patterns are described in human natural
languages in order to facilitate users’ understanding. Based
on the user’s choice of query patterns, ExpressQ will gener-
ate SQL statements to retrieve the answers.

The work in [4] presents a natural language interface for
querying RDB. However, their focus is how to understand
a loosely structured query, while we strive to interpret the
search intention of a keyword query and interactively con-
struct SQLs.

2. PRELIMINARIES

The relations in a database can be classified into object
relations, relationship relations, mixed relations and compo-
nent relations [7]. Intuitively, an object (relationship) rela-
tion contains information of objects (relationships), namely,
the single-valued attributes of an object class (relationship
type). A mixed relation contains information of both objects
and relationships, which occurs when there is a many-to-one
relationship. The multivalued attributes of objects and re-
lationships are stored in component relations.

ExpressQ models the relational schema with an undirected
graph called Object-Relationship-Mized (ORM) schema graph
G = (V,E). Each node v € V comprises of an object/ re-
lationship/ mixed relation and its component relations, and
is associated with a v.type € {object, relationship, mized}.
Two nodes u and v are connected via an edge e(u,v) € F
if there exists a foreign key-key constraint between the rela-
tions in v and that in v.

Consider the sample company database in Figure 1. Fig-
ure 2 shows the corresponding ORM schema graph of the
database. Note that node Employee is a mixed node be-
cause of the many-to-one relationships between employees
and departments.

Employee EmployeeSkill EmpProj

Eid Name Salary Deptid JoinDate Eid Skill Eid Pid JoinDate

el Smith 3.5k dl 2010 el Java el pl 2010

e2 Green 4.2k dl 2009 e2 SQL e2 pl 2009

e3 Brown 5.5k dl 2006 e3 Java e2 p2 2010
e3 PhP e3 p2 2007

Project ProjDept e p3 2008

Pid Name Budget Pid Deptid Department

pl XML 40k pl dl Deptid Name Address

p2 RDB 50k p2 d1 d1 computing Brown Street

p3 Survey 30k p3 d2 d2 marketing Queen Street

Figure 1: Sample company database

Department

S

Figure 2: ORM schema graph of Figure 1

fTL T T T [
| Legend:
| [Object Node

|
|
: <> Relationship Node |
| () MixedNode :

Suppose a user issues the keyword query {Smith Green},
where both the keywords match the names of several em-
ployees. Based on the ORM schema graph in Figure 2, some
of the possible interpretations of this query are:

a. Find information on the project in which both employ-

ees Green and Smith are involved.

b. Find information on the department in which both em-

ployees Green and Smith work.

c. Find information on the department which conducts

a project that involves the employee Green and the
employee Smith works in.

Existing RDB keyword search engines [1, 2, 5] would con-
sider all the above query interpretations and retrieve the cor-
responding information from the database. Consequently,
the user is often overwhelmed by a lot of answers.

ExpressQ extends the keyword query language in order
to reduce the interpretations of keyword queries. An ex-
tended keyword query consists of a sequence of keywords
such that each keyword matches a relation name, or an at-
tribute name or a tuple value. For instance, if the user is in-
terested in the information on the department that both the
employee Smith and the employee Green work in, s/he can
issue the query as {Department Employee Smith Employee
Green}. The keyword Department indicates that the user is
interested in the information of the department, while the
keyword Employee gives the context that Smith and Green
refer to names of two employees.

3. SYSTEM ARCHITECTURE

Figure 3 depicts the architecture of ExpressQ. The sys-
tem takes as input a keyword query, and generates a set of
SQL statements that best capture the user’s search inten-
tion. During the query processing, it interacts with the user
in the front end and communicates with the database and
its corresponding schema in the back end, in order to re-
trieve the information that the user is interested in. There
are four main components in ExpressQ, namely, Query An-
alyzer, Query Interpreter, Ranker, and SQL Generator. The
following sections discuss the functions of these components.

Query Keyword tags Query
Interpreter Analyzer

Query patterns

Ranker i
~— N

|
|
| Interactive

|oul i

SQL
Generator

Figure 3: System Architecture

3.1 Query Analyzer

The Query Analyzer parses each keyword in the query
and obtains the possible matches of the keywords. Based on
the ORM schema graph of the database, the Query An-
alyzer determines the object/relationship that a keyword
refers to, and creates tags for the keyword. A tag is given
by T = (label, attr, cond), where label is the name of the ob-
ject /relationship, attr is the attribute name, and cond is the
restriction on the object/relationship. A keyword may have
multiple tags as it matches different objects or relationships.
This results in multiple sequences of tags for a query. After
obtaining a sequence of tags for the keywords in the query,
the Query Analyzer groups the keywords that refer to the
same object or relationship together.

Consider the keyword query {Project Employee Green
Brown}. Table 1 shows two sequence of tags created for the
query. Based on the tags, we can tell that the keywords
Project and Employee refer to the names of projects and
employees in the database, while the keyword Green refers
to an employee name. Note that the keyword Brown has two
tags. Tag T4 captures the information that Brown refers to

Table 1: Sequence of tags created for the query {Project Employee Green Brown}

Ty1 = (Project,null,null), Tho = (Employee,null,null), Th3 = (Employee,Name,Green), T14 = (Employee,Name,Brown)

T11 = (Project,null,null), Th2 = (Employee,null,null), Ty 3 = (Employee,Name,Green), T, = (Department,Address,Brown)

an employee name, while tag T4, captures the information
that Brown refers to a department address.

Figure 4 shows the screenshot of the interface where Ex-
pressQ lists the different matches of the keywords in this
query for the user to select.

3.2 Query Interpreter

The Query Interpreter constructs a set of query patterns
to represent the possible search intention of the user. A
query pattern is a minimal connected graph derived from
the ORM schema graph. Intuitively, the Query Interpreter
creates a node to denote the object/relationship referred to
by each group of keywords. These nodes will correspond to
the nodes in the ORM schema graph and the Query Inter-
preter connects them based on the edges in the graph.

For example, given the first sequence of tags for the key-
word query {Project Employee Green Brown} in Table 1,
ExpressQ creates three nodes to denote a project object,
the employee named Green and the employee named Brown.
Based on the ORM schema graph in Figure 2, the Project
node can connect to the Employee node via the EmpProj
node. Hence, ExpressQ connects these three objects by cre-
ating two EmpProj relationships between the employees and
the project. The query pattern P; obtained is shown in Fig-
ure 5, indicating that the user is interested in projects that
involve both the employees Green and Brown.

Further, the Project node can also connect to the Em—
ployee node via the path Project — ProjDept — Depart-
ment — Employee in the ORM schema graph. By creating
nodes (ProjDept and Department) according to this path,
we obtain the query pattern P, in Figure 5. This pattern
depicts the user’s intention to find projects which involves
Green and are conducted by the department where Brown
works.

3.3 Ranker

Since ExpressQ may generate multiple query patterns for
a keyword query, it is necessary to rank these patterns. The
Ranker in ExpressQ takes into account how many objects are
involved in the query patterns. This is captured by the num-
ber of object/mixed nodes in the patterns. The Ranker also
identifies the target nodes and the condition nodes by their
tags. A target node indicates the output object of the query,
and is typically specified by a keyword matching the name
of a relation or an attribute. On the other hand, a condition
node indicates the restrictions for the output object, and is
specified by a keyword matching some tuple value. Conse-
quently, query patterns with fewer object/mixed nodes, and
a shorter average distance between target nodes and condi-
tion nodes will be ranked higher.

In Figure 5, the query pattern P; contains 3 object/mixed
nodes while the query pattern P» contains 4 object/mixed
nodes. Both P; and P» have one target node (Project) and
two condition nodes (Employee). We compute the average
distance between the Project node and two Employee nodes.
P has an average distance of 2 while the P, has an average
distance of 2.5. Thus, P; is ranked higher than P>.

Expnss@ Project Employee Green Brown Searchl

DataSet: | Company v
(Sample Queries)

Step 1: Choose matches of individual keywords.

(Keyword 1: Project refers to ‘

« A Project

Keyword 2: Employee refers to
¥ AnEmployee ‘

¥ An Employee with name matching Green

Keyword 4: Brown refers to

¥ An Employee with name matching Brown
¥ A Department with address matching Brown

(Keyword 3: Green refers t ‘

Figure 4: Screenshot of possible keyword matches

3.4 SQL Generator

The SQL Generator translates a query pattern into an
SQL statement to retrieve the result from the database. Ex-
isting RDB keyword search engines typically generate SQLs
that project every attribute of joining relations [2, 5]. As
a result, many irrelevant attributes are projected, which
makes the output overwhelming and difficult to understand.

In contrast, ExpressQ only projects the information on the
target node. In particular, if the target node specifies the
output object by its name, then the SQL Generator will in-
clude all the attributes of the object in the SELECT clause.
Otherwise, if it specifies the name of an attribute of the out-
put object, then the system will include the corresponding
attribute in the SELECT clause.

For example, ExpressQ will translate the query pattern
P in Figure 5 to the following SQL statement:

SELECT P.Pid,P.Name,P.Budget
FROM Project P, EmpProj EP1, Employee E1, EmpProj EP2, Employee E2
WHERE P.Pid=EP1.Pid AND P.Pid=EP2.Pid AND

EP1.Eid=E1.Eid AND EP2.Eid=E2.Eid AND

E1.Name contains ‘Green’ AND E2.Name contains ‘Brown’

Note that ExpressQ only outputs the relevant project in-
formation. In contrast, existing works will project the at-
tributes of 5 relations in the FROM clause, and the output
will contain a lot of irrelevant information.

3.5 User Interaction

One key feature of ExpressQ is its friendly interaction with
the user to understand his/her search intention so that it can
be selective in its generation of SQL statements and subse-
quent retrieval of relevant answers for the user. A keyword
query is inherently ambiguous for the following reasons:

1. a query keyword can have multiple matches in the
database, and

Figure 5: Screenshot of query interpretations

2. the keyword match objects can be connected via vari-
ous relationships and form various interpretations.

As the user often has some particular search intention in
mind, ExpressQ actively involves the user in the query evalu-
ation process. In particular, if a keyword is associated with
more than one tag, the user is offered the opportunity to
choose the tag(s); if the Query Interpreter constructs more
than one query pattern, the user is again allowed to select
his/her intended query pattern and retrieve the correspond-
ing answers. This interactive approach has the advantage of
systematically leading the user to obtain answers that sat-
isfy his/her search intention. This approach also gives the
user insight into how the query is interpreted by the system
and the results that can be expected.

Recall the query {Project Employee Green Brown}. Sup-
pose the user issues this query to find the project that in-
volves both the employees Green and Brown. Since the key-
word Brown can refer to an employee named Brown or a de-
partment at Brown street, the ExpressQ shows the possible
matches for the user to choose from (see Figure 4). If the
user selects Brown as refering to an employee name, then Ex-
pressQ will show how the employees Brown and Green can
relate to a project in terms of query patterns (see Figure 5).
Note that these patterns are ordered by their ranking scores.

Another feature of ExpressQ is it depicts the query in-
terpretations and answers in human natural language to fa-
cilitate users’ understanding. For instance, the tag T4 =
(Employee, Name, Brown) in Table 1 is described as “Brown
refers to an employee with name matching Brown”. The
query pattern P; in Figure 5 is represented as a tree anno-
tated with the semantics of objects and relationships. The
root of the tree denotes the output object while the leaves
denote the restrictions on the output object. The meaning
of this pattern is to “Find the projects that involve the em-
ployee with name matching Green and involve the employee
with name matching Brown”. Thereby, the user can easily
identify the intended query pattern by the tree structure,
and verify its meaning by the description. After the user
selects a query pattern, ExpressQ retrieves the answers and
represents them according to the corresponding search inten-
tion. Figure 6 shows the screenshot of the interface which
displays the answers w.r.t. the query pattern P; in Figure 5.

Figure 6: Screenshot of answers retrieved

4. DEMONSTRATION

In our demonstration, we will present a web-based brows-
ing interface of ExpressQ, which communicates with the
main Java based server. The system is available at http:
//expressq.comp.nus.edu.sg. We intend to show the use
of ExpressQ against a number of real application scenarios
such as the IMDB database (www.imdb.com), and the ACM
Digital Library (dl.acm.org).

The demonstration will consist of two parts. First, we
will run a number of sample keyword queries against these
sources. We will demonstrate how ExpressQ exploits the se-
mantics of objects/relationships in the database and utilize
the keywords that match meta-data in the query to infer
the search intention for these queries. Next, the user will be
free to run their own queries. We will demonstrate how Ex-
pressQ interactively leads the user to retrieve the intended
answers effectively. During the query processing, the system
will present different interpretations of the queries. The user
will be able to choose the ones he/she is interested in, and
thus obtain the answers that satisfy the search intention.

Through this demonstration, we will highlight three key-
points to the audience. First, the interpretation of the user’s
search intention is critical to keyword search over relational
database. This requires the keyword search system to be
knowledgeable about the semantics of objects and relation-
ships in the database. Second, keywords that match the
meta-data are helpful to infer the search intention of the
user since they provide the context of subsequent keywords
in the query. Third, the presentations of the query interpre-
tations and query answers are important to facilitate user
understanding and subsequent interaction with the system.

S. REFERENCES

[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,

C. Nakhe, P. Parag, and S. Sudarshan. BANKS: Browsing
and keyword searching in relational databases. In VLDB,
2002.

[2] M. Kargar, A. An, N. Cercone, P. Godfrey, J. Szlichta, and
X. Yu. MeanKS: Meaningful keyword search in relational
databases with complex schema. In SIGMOD, 2014.

[3] F. Li and H. V. Jagadish. Usability, databases, and HCI.
IEEE Data Eng. Bull., 35(3):37-45, 2012.

[4] F. Li and H. V. Jagadish. NaLIR: An interactive natural
language interface for querying relational databases. In
SIGMOD, 2014.

[5] Y. Luo, W. Wang, and X. Lin. SPARK: A keyword search
engine on relational databases. In ICDE, 2008.

[6] Z. Zeng, Z. Bao, T. N. Le, M. L. Lee, and W. T. Ling.
ExpressQ: Identifying keyword context and search target in
relational keyword queries. In CIKM, 2014.

[7] Z. Zeng, Z. Bao, M. L. Lee, and T. W. Ling. A semantic
approach to keyword search over relational databases. In
ER, 2013.

