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Abstract
The expressive power of a Gaussian process (GP)
model comes at a cost of poor scalability in the data
size. To improve its scalability, this paper presents a
low-rank-cum-Markov approximation (LMA) of the GP
model that is novel in leveraging the dual computational
advantages stemming from complementing a low-rank
approximate representation of the full-rank GP based on
a support set of inputs with a Markov approximation of
the resulting residual process; the latter approximation
is guaranteed to be closest in the Kullback-Leibler dis-
tance criterion subject to some constraint and is consid-
erably more refined than that of existing sparse GP mod-
els utilizing low-rank representations due to its more re-
laxed conditional independence assumption (especially
with larger data). As a result, our LMA method can
trade off between the size of the support set and the or-
der of the Markov property to (a) incur lower computa-
tional cost than such sparse GP models while achieving
predictive performance comparable to them and (b) ac-
curately represent features/patterns of any scale. Inter-
estingly, varying the Markov order produces a spectrum
of LMAs with PIC approximation and full-rank GP at
the two extremes. An advantage of our LMA method
is that it is amenable to parallelization on multiple ma-
chines/cores, thereby gaining greater scalability. Empir-
ical evaluation on three real-world datasets in clusters
of up to 32 computing nodes shows that our central-
ized and parallel LMA methods are significantly more
time-efficient and scalable than state-of-the-art sparse
and full-rank GP regression methods while achieving
comparable predictive performances.

1 Introduction
Gaussian process (GP) models are a rich class of Bayesian
non-parametric models that can perform probabilistic re-
gression by providing Gaussian predictive distributions with
formal measures of the predictive uncertainty. Unfortu-
nately, a GP model is handicapped by its poor scalability in
the size of the data, hence limiting its practical use to small
data. To improve its scalability, two families of sparse GP re-
gression methods have been proposed: (a) Low-rank approx-
imate representations (Hensman, Fusi, and Lawrence 2013;
∗Kian Hsiang Low and Jiangbo Yu are co-first authors.
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Lázaro-Gredilla et al. 2010; Quiñonero-Candela and Ras-
mussen 2005; Snelson and Ghahramani 2005) of the full-
rank GP (FGP) model are well-suited for modeling slowly-
varying functions with large correlation and can use all the
data for predictions. But, they require a relatively high rank
to capture small-scale features/patterns (i.e., of small corre-
lation) with high fidelity, thus losing their computational ad-
vantage. (b) In contrast, localized regression and covariance
tapering methods (e.g., local GPs (Park, Huang, and Ding
2011) and compactly supported covariance functions (Fur-
rer, Genton, and Nychka 2006)) are particularly useful for
modeling rapidly-varying functions with small correlation.
However, they can only utilize local data for predictions,
thereby performing poorly in input regions with little/no
data. Furthermore, to accurately represent large-scale fea-
tures/patterns (i.e., of large correlation), the locality/tapering
range has to be increased considerably, thus sacrificing their
time efficiency.

Recent sparse GP regression methods (Chen et al. 2013;
Snelson and Ghahramani 2007) have unified approaches
from the two families described above to harness their
complementary modeling and predictive capabilities (hence,
eliminating their deficiencies) while retaining their com-
putational advantages. Specifically, after approximating the
FGP (in particular, its covariance matrix) with a low-rank
representation based on the notion of a support set of in-
puts, a sparse covariance matrix approximation of the re-
sulting residual process is made. However, this sparse resid-
ual covariance matrix approximation imposes a fairly strong
conditional independence assumption given the support set
since the support set cannot be too large to preserve time
efficiency (see Remark 2 after Proposition 1 in Section 3).
In this paper, we argue that such a strong assumption is
an overkill: It is in fact possible to construct a more re-
fined, dense residual covariance matrix approximation by
exploiting a Markov assumption and, perhaps surprisingly,
still achieve scalability, which distinguishes our work here
from existing sparse GP regression methods utilizing low-
rank representations (i.e., including the unified approaches)
described earlier. As a result, our proposed residual covari-
ance matrix approximation can significantly relax the condi-
tional independence assumption (especially with larger data;
see Remark 1 after Proposition 1 in Section 3), hence poten-
tially improving the predictive performance.



This paper presents a low-rank-cum-Markov
approximation (LMA) of the FGP model (Section 3)
that is novel in leveraging the dual computational advan-
tages stemming from complementing the reduced-rank
covariance matrix approximation based on the support set
with the residual covariance matrix approximation due
to the Markov assumption; the latter approximation is
guaranteed to be closest in the Kullback-Leibler distance
criterion subject to some constraint. Consequently, our
proposed LMA method can trade off between the size
of the support set and the order of the Markov property
to (a) incur lower computational cost than sparse GP
regression methods utilizing low-rank representations
with only the support set size (e.g., (Chen et al. 2013;
Snelson and Ghahramani 2007)) or number of spectral
points (Lázaro-Gredilla et al. 2010) as the varying param-
eter while achieving predictive performance comparable
to them and (b) accurately represent features/patterns
of any scale. Interestingly, varying the Markov order
produces a spectrum of LMAs with the partially indepen-
dent conditional (PIC) approximation (Chen et al. 2013;
Snelson and Ghahramani 2007) and FGP at the two
extremes. An important advantage of LMA over most
existing sparse GP regression methods is that it is
amenable to parallelization on multiple machines/cores,
thus gaining greater scalability for performing real-time
predictions necessary in many time-critical applica-
tions and decision support systems (e.g., ocean sens-
ing (Cao, Low, and Dolan 2013; Dolan et al. 2009;
Low, Dolan, and Khosla 2008; 2009; 2011; Low et al. 2012;
Podnar et al. 2010), traffic monitoring (Chen et al. 2012;
Chen, Low, and Tan 2013; Hoang et al. 2014a; 2014b;
Low et al. 2014a; 2014b; Ouyang et al. 2014; Xu et al. 2014;
Yu et al. 2012)). Our parallel LMA method is implemented
using the message passing interface (MPI) framework to
run in clusters of up to 32 computing nodes and its predic-
tive performance, scalability, and speedup are empirically
evaluated on three real-world datasets (Section 4).

2 Full-Rank Gaussian Process Regression
Let X be a set representing the input domain such that each
input x ∈ X denotes a d-dimensional feature vector and is
associated with a realized output value yx (random output
variable Yx) if it is observed (unobserved). Let {Yx}x∈X
denote a GP, that is, every finite subset of {Yx}x∈X fol-
lows a multivariate Gaussian distribution. Then, the GP is
fully specified by its prior mean µx , E[Yx] and covari-
ance σxx′ , cov[Yx, Yx′ ] for all x, x′ ∈ X . Supposing a
column vector yD of realized outputs is observed for some
set D ⊂ X of inputs, a full-rank GP (FGP) model can per-
form probabilistic regression by providing a Gaussian pos-
terior/predictive distribution

N (µU + ΣUDΣ−1DD(yD − µD),ΣUU − ΣUDΣ−1DDΣDU )

of the unobserved outputs for any set U ⊆ X \ D of inputs
where µU (µD) is a column vector with mean components
µx for all x ∈ U (x ∈ D), ΣUD (ΣDD) is a covariance ma-
trix with covariance components σxx′ for all x ∈ U , x′ ∈ D

(x, x′ ∈ D), and ΣDU = Σ>UD. The chief limitation hinder-
ing the practical use of the FGP regression method is its poor
scalability in the data size |D|: Computing the Gaussian pos-
terior/predictive distribution requires inverting ΣDD, which
incurs O(|D|3) time. In the next section, we will introduce
our proposed LMA method to improve its scalability.

3 Low-Rank-cum-Markov Approximation
Ŷx , ΣxSΣ−1SSYS is a reduced-rank approximate repre-
sentation of Yx based on a support set S ⊂ X of inputs
and its finite-rank covariance function is cov[Ŷx, Ŷx′ ] =

ΣxSΣ−1SSΣSx′ for all x, x′ ∈ X . Then, Ỹx = Yx − Ŷx is the
residual of the reduced-rank approximation and its covari-
ance function is thus cov[Ỹx, Ỹx′ ] = σxx′ − ΣxSΣ−1SSΣSx′ .
Define

QBB′ , ΣBSΣ−1SSΣSB′ and RBB′ , ΣBB′ −QBB′

for all B,B′ ⊂ X . Then, a covariance matrix ΣVV for the set
V , D∪U ⊂ X of inputs (i.e., associated with realized out-
puts yD and unobserved random outputs YU ) can be decom-
posed into a reduced-rank covariance matrix approximation
QVV and the resulting residual covariance matrix RVV , that
is, ΣVV = QVV +RVV . As discussed in Section 1, existing
sparse GP regression methods utilizing low-rank representa-
tions (i.e., including unified approaches) approximate RVV
with a sparse matrix. In contrast, we will construct a more
refined, dense residual covariance matrix approximation by
exploiting a Markov assumption to be described next.

Let the set D (U) of inputs be partitioned1 evenly into
M disjoint subsets D1, . . . ,DM (U1, . . . ,UM ) such that the
outputs yDm

and YUm are as highly correlated as possible for
m = 1, . . . ,M . Let Vm , Dm∪Um. Then, V =

⋃M
m=1 Vm.

The key idea of our low-rank-cum-Markov approximation
(LMA) method is to approximate the residual covariance
matrix RVV by a block matrix RVV partitioned into M ×M
square blocks, that is, RVV , [RVmVn ]m,n=1,...,M where

RVmVn ,


RVmVn if |m− n| ≤ B,
RVmDB

m
R−1DB

mDB
m
RDB

mVn if n−m > B > 0,

RVmDB
n
R−1DB

nDB
n
RDB

n Vn if m− n > B > 0,

0 if |m− n| > B = 0;
(1)

such that B ∈ {0, . . . ,M − 1} denotes the order of the
Markov property imposed on the residual process {Ỹx}x∈D
to be detailed later, DB

m ,
⋃min(m+B,M)

k=m+1 Dk, and 0 denotes
a square block comprising components of value 0.

To understand the intuition underlying the approximation
in (1), Fig. 1a illustrates a simple case of RVV with B = 1
and M = 4 for ease of exposition: It can be observed that
only the blocks RVmVn outside the B-block band of RVV
(i.e., |m − n| > B) are approximated, specifically, by un-
shaded blocks RVmVn being defined as a recursive series of
|m − n| − B reduced-rank residual covariance matrix ap-
proximations (1). So, when an unshaded block RVmVn is

1D and U are partitioned according to a simple parallelized
clustering scheme employed in the work of Chen et al. (2013).
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Figure 1:RVV andR
−1
DD withB = 1 andM = 4. (a) Shaded

blocks (i.e., |m − n| ≤ B) form the B-block band while
unshaded blocks (i.e., |m − n| > B) fall outside the band.
Each arrow denotes a recursive call. (b) Unshaded blocks
outside B-block band of R

−1
DD (i.e., |m− n| > B) are 0.

further from the diagonal of RVV (i.e., larger |m− n|), it is
derived using more reduced-rank residual covariance matrix
approximations. For example, RV1V4 is approximated by an
unshaded block RV1V4 being defined as a recursive series of
2 reduced-rank residual covariance matrix approximations,
namely, approximating RV1V4 by RV1D1

1
R−1D1

1D1
1
RD1

1V4 =

RV1D2
R−1D2D2

RD2V4 based on the support set D1
1 = D2

of inputs and in turn approximating RD2V4 by a subma-
trix RD2V4 = RD2D3R

−1
D3D3

RD3V4 (1) of unshaded block
RV2V4 based on the support set D1

2 = D3 of inputs. As a
result, RV1V4 = RV1D2R

−1
D2D2

RD2D3R
−1
D3D3

RD3V4 is fully
specified by five submatrices of the respective shaded blocks
RV1V2 , RV2V2 , RV2V3 , RV3V3 , and RV3V4 within the B-
block band of RVV (i.e., |m− n| ≤ B). In general, any un-
shaded blockRVmVn outside theB-block band ofRVV (i.e.,
|m−n| > B) is fully specified by submatrices of the shaded
blocks within the B-block band of RVV (i.e., |m− n| ≤ B)
due to its recursive series of |m−n|−B reduced-rank resid-
ual covariance matrix approximations (1). Though it may
not be obvious now how such an approximation would entail
scalability, (1) interestingly offers an alternative interpreta-
tion of imposing a B-th order Markov property on resid-
ual process {Ỹx}x∈D, which reveals a further insight on the
structural assumption of LMA to be exploited for achieving
scalability, as detailed later.

The covariance matrix ΣVV is thus approximated by a
block matrix ΣVV , QVV + RVV partitioned into M ×M
square blocks, that is, ΣVV , [ΣVmVn ]m,n=1,...,M where

ΣVmVn , QVmVn +RVmVn . (2)

So, within the B-block band of ΣVV (i.e., |m − n| ≤ B),
ΣVmVn = ΣVmVn , by (1) and (2). Note that when B =
0, ΣVmVn = QVmVn for |m − n| > B, thus yielding
the prior covariance matrix ΣVV of the partially indepen-
dent conditional (PIC) approximation (Chen et al. 2013;
Snelson and Ghahramani 2007). When B = M − 1, ΣVV =
ΣVV is the prior covariance matrix of FGP model. So, LMA
generalizes PIC (i.e., if B = 0) and becomes FGP if B =
M − 1. Varying Markov order B from 0 to M − 1 produces
a spectrum of LMAs with PIC and FGP at the two extremes.

By approximating ΣVV with ΣVV , our LMA method uti-
lizes the data (D, yD) to predict the unobserved outputs for
any set U ⊆ X \D of inputs and provide their corresponding
predictive uncertainties using the following predictive mean
vector and covariance matrix, respectively:

µLMA
U , µU + ΣUDΣ

−1
DD (yD − µD) (3)

ΣLMA
UU , ΣUU − ΣUDΣ

−1
DDΣDU (4)

where ΣUU , ΣUD, and ΣDD are obtained using (2), and
ΣDU = Σ

>
UD. If ΣDD in (3) and (4) is inverted directly,

then it would still incur the same O(|D|3) time as inverting
ΣDD in the FGP regression method (Section 2). In the rest of
this section, we will show how this scalability issue can be
resolved by leveraging the computational advantages associ-
ated with both the reduced-rank covariance matrix approx-
imation QDD based on the support set S and our proposed
residual covariance matrix approximation RDD due to B-th
order Markov assumption after decomposing ΣDD.

It can be observed from RVV (1) that RDD is approx-
imated by a block matrix RDD = [RDmDn ]m,n=1,...,M

where RDmDn is a submatrix of RVmVn obtained using (1).

Proposition 1 Block matrix R
−1
DD is B-block-banded, that

is, any block outside its B-block band is 0 (e.g., Fig. 1b).

Its proof follows directly from a block-banded matrix result
of Asif and Moura (2005) (specifically, Theorem 3).
Remark 1. In the same spirit as a Gaussian Markov random
process, imposing aB-th order Markov property on residual
process {Ỹx}x∈D is equivalent to approximating RDD by
RDD whose inverse is B-block-banded (Fig. 1b). That is, if
|m − n| > B, YDm

and YDn
are conditionally independent

given YS∪D\(Dm∪Dn). Such a conditional independence as-
sumption thus becomes more relaxed with larger data. More
importantly, this B-th order Markov assumption or, equiva-
lently, sparsity ofB-block-bandedR

−1
DD is the key to achiev-

ing scalability, as shown in the proof of Theorem 2 later.
Remark 2. Though R

−1
DD is sparse, RDD is a dense residual

covariance matrix approximation if B > 0. In contrast, the
sparse GP regression methods utilizing low-rank represen-
tations (i.e., including unified approaches) utilize a sparse
residual covariance matrix approximation (Section 1), hence
imposing a significantly stronger conditional independence
assumption than LMA. For example, PIC (Chen et al. 2013;
Snelson and Ghahramani 2007) assumes YDm

and YDn
to be

conditionally independent given only YS if |m− n| > 0.
The next result reveals that, among all |D| × |D| matrices

whose inverse is B-block-banded, RDD approximates RDD
most closely in the Kullback-Leibler (KL) distance criterion,
that is, RDD has the minimum KL distance from RDD:

Theorem 1 Let KL distanceDKL(R, R̂) , 0.5(tr(RR̂−1)−
log |RR̂−1| − |D|) between two |D| × |D| positive definite
matrices R and R̂ measure the error of approximating R

with R̂. Then, for any matrix R̂ whose inverse is B-block-
banded, DKL(RDD, R̂) ≥ DKL(RDD, RDD).

Its proof is in (Low et al. 2014c). Our main result in Theo-



rem 2 below exploits the sparsity of R
−1
DD (Proposition 1)

for deriving an efficient formulation of LMA, which is
amenable to parallelization on multiple machines/cores by
constructing and communicating the following summary in-
formation:
Definition 1 (Local Summary) Them-th local summary is
defined as a tuple (ẏm, Ṙm, Σ̇

m
S , Σ̇

m
U ) where

ẏm , yDm − µDm −R′DmDB
m

(yDB
m
− µDB

m
)

Ṙm , (RDmDm −R′DmDB
m
RDB

mDm
)−1

Σ̇m
S , ΣDmS −R′DmDB

m
ΣDB

mS

Σ̇m
U , ΣDmU −R′DmDB

m
ΣDB

mU

such that R′DmDB
m
, RDmDB

m
R−1DB

mDB
m

.

Definition 2 (Global Summary) The global summary is
defined as a tuple (ÿS , ÿU , Σ̈SS , Σ̈US , Σ̈UU ) where

ÿS ,
M∑

m=1

(Σ̇m
S )>Ṙmẏm , ÿU ,

M∑
m=1

(Σ̇m
U )>Ṙmẏm

Σ̈SS , ΣSS +

M∑
m=1

(Σ̇m
S )>ṘmΣ̇m

S

Σ̈US ,
M∑

m=1

(Σ̇m
U )>ṘmΣ̇m

S , Σ̈UU ,
M∑

m=1

(Σ̇m
U )>ṘmΣ̇m

U .

Theorem 2 For B > 0, µLMA
U (3) and ΣLMA

UU (4) can be re-
duced to µLMA

U = µU + ÿU − Σ̈USΣ̈−1SS ÿS and ΣLMA
UU =

ΣUU − Σ̈UU + Σ̈USΣ̈−1SSΣ̈>US .

Its proof in (Low et al. 2014c) essentially relies on the spar-
sity of R

−1
DD and the matrix inversion lemma.

Remark 1. To parallelize LMA, each machine/core m
constructs and uses the m-th local summary to compute
the m-th summation terms in the global summary, which
are then communicated to a master node. The master
node constructs and communicates the global summary to
the M machines/cores, specifically, by sending the tuple
(ÿS , ÿUm , Σ̈SS , Σ̈UmS , Σ̈UmUm) to each machine/core m.
Finally, each machine/corem uses this received tuple to pre-
dict the unobserved outputs for the set Um of inputs and
provide their corresponding predictive uncertainties using
µLMA
Um (3) and ΣLMA

UmUm (4), respectively. Computing ΣDmU
and ΣDB

mU terms in the local summary can also be paral-
lelized due to their recursive definition (i.e., (1) and (2)), as
discussed in (Low et al. 2014c). This parallelization capa-
bility of LMA shows another key advantage over existing
sparse GP regression methods2 in gaining scalability.
Remark 2. Supposing M, |U|, |S| ≤ |D|, LMA can
compute µLMA

U and tr(ΣLMA
UU ) distributedly in O(|S|3 +

(B|D|/M)3 + |U|(|D|/M)(|S|+B|D|/M)) time using M
parallel machines/cores and sequentially in O(|D||S|2 +
B|D|(B|D|/M)2 + |U||D|(|S|+B|D|/M)) time on a sin-
gle centralized machine. So, our LMA method incurs cubic

2A notable exception is the work of Chen et al. (2013) that par-
allelizes PIC. As mentioned earlier, our LMA generalizes PIC.

time in support set size |S| and Markov order B. Increas-
ing the number M of parallel machines/cores and blocks re-
duces the incurred time of our parallel and centralized LMA
methods, respectively. Without considering communication
latency, the speedup3 of our parallel LMA method grows
with increasing M and training data size |D|; to explain the
latter, unlike the additional O(|D||S|2) time of our central-
ized LMA method that increases with more data, parallel
LMA does not have a correspondingO((|D|/M)|S|2) term.
Remark 3. Predictive performance of LMA is improved by
increasing the support set size |S| and/or Markov order B
at the cost of greater time overhead. From Remark 2, since
LMA incurs cubic time in |S| as well as in B, one should
trade off between |S| and B to reduce the computational
cost while achieving the desired predictive performance. In
contrast, PIC (Chen et al. 2013; Snelson and Ghahramani
2007) (sparse spectrum GP (Lázaro-Gredilla et al. 2010))
can only vary support set size (number of spectral points) to
obtain the desired predictive performance.
Remark 4. We have illustrated through a simple toy example
in (Low et al. 2014c) that, unlike the local GPs approach,
LMA does not exhibit any discontinuity in its predictions
despite data partitioning.

4 Experiments and Discussion
This section first empirically evaluates the predictive perfor-
mance and scalability of our proposed centralized and par-
allel LMA methods against that of the state-of-the-art cen-
tralized PIC (Snelson and Ghahramani 2007), parallel PIC
(Chen et al. 2013), sparse spectrum GP (SSGP) (Lázaro-
Gredilla et al. 2010), and FGP on two real-world datasets: (a)
The SARCOS dataset (Vijayakumar, D’Souza, and Schaal
2005) of size 48933 is obtained from an inverse dynamics
problem for a 7 degrees-of-freedom SARCOS robot arm.
Each input is specified by a 21D feature vector of joint posi-
tions, velocities, and accelerations. The output corresponds
to one of the 7 joint torques. (b) The AIMPEAK dataset
(Chen et al. 2013) of size 41850 comprises traffic speeds
(km/h) along 775 road segments of an urban road network
during morning peak hours on April 20, 2011. Each input
(i.e., road segment) denotes a 5D feature vector of length,
number of lanes, speed limit, direction, and time. The time
dimension comprises 54 five-minute time slots. This traffic
dataset is modeled using a relational GP (Chen et al. 2012)
whose correlation structure can exploit the road segment fea-
tures and road network topology information. The outputs
correspond to the traffic speeds.

Both datasets are modeled using GPs whose prior co-
variance σxx′ is defined by the squared exponential covari-
ance function4 σxx′ , σ2

s exp(−0.5
∑d

i=1(xi − x′i)2/`2i ) +
σ2
nδxx′ where xi (x′i) is the i-th component of input fea-

ture vector x (x′), the hyperparameters σ2
s , σ

2
n, `1, . . . , `d

3Speedup is the incurred time of a sequential/centralized algo-
rithm divided by that of its parallel counterpart.

4For AIMPEAK dataset, multi-dimensional scaling is used to
map the input domain (i.e., of road segments) onto the Euclidean
space (Chen et al. 2012) before applying the covariance function.



|D| 8000 16000 24000 32000
FGP 2.4(285) 2.2(1799) 2.1(5324) 2.0(16209)
SSGP 2.4(2029) 2.2(3783) 2.1(5575) 2.0(7310)

M = 32
LMA 2.4(56) 2.2(87) 2.1(157) 2.0(251)
PIC 2.4(254) 2.2(294) 2.1(323) 2.0(363)

M = 48
LMA 2.4(51) 2.2(84) 2.1(126) 2.0(192)
PIC 2.4(273) 2.2(308) 2.1(309) 2.0(332)

M = 64
LMA 2.4(61) 2.2(87) 2.1(111) 2.0(155)
PIC 2.4(281) 2.2(286) 2.1(290) 2.0(324)

(a) Parallel LMA (B = 1, |S| = 2048), parallel PIC (|S| = 4096), SSGP (|S| = 4096)

|D| 8000 16000 24000 32000
FGP 7.9(271) 7.3(1575) 7.0(5233) 6.9(14656)
SSGP 8.1(2029) 7.5(3781) 7.3(5552) 7.2(7309)

M = 32
LMA 8.4(20) 7.5(44) 7.1(112) 6.9(216)
PIC 8.1(484) 7.5(536) 7.3(600) 7.2(598)

M = 48
LMA 8.4(18) 7.5(33) 7.0(74) 6.8(120)
PIC 8.1(542) 7.5(590) 7.3(598) 7.2(616)

M = 64
LMA 8.4(17) 7.5(28) 7.0(57) 6.7(87)
PIC 8.1(544) 7.5(570) 7.3(589) 7.2(615)

(b) Parallel LMA (B = 1, |S| = 1024), parallel PIC (|S| = 5120), SSGP (|S| = 4096)

Table 1: RMSEs and incurred times (seconds) reported in
brackets of parallel LMA, parallel PIC, SSGP, and FGP with
varying data sizes |D| and numbersM of cores for (a) SAR-
COS and (b) AIMPEAK datasets.

are, respectively, signal variance, noise variance, and length-
scales, and δxx′ is a Kronecker delta that is 1 if x = x′

and 0 otherwise. The hyperparameters are learned using ran-
domly selected data of size 10000 via maximum likelihood
estimation. Test data of size |U| = 3000 are randomly se-
lected from each dataset for predictions. From remaining
data, training data of varying |D| are randomly selected.
Support sets for LMA and PIC and the set S of spectral
points for SSGP are selected randomly from both datasets5.

The experimental platform is a cluster of 32 computing
nodes connected via gigabit links: Each node runs a Linux
system with Intelr Xeonr E5620 at 2.4 GHz with 24 GB
memory and 16 cores. Our parallel LMA method and par-
allel PIC are tested with different numbers M = 32, 48,
and 64 of cores; all 32 computing nodes with 1, 1-2, and
2 cores each are used, respectively. For parallel LMA and
parallel PIC, each computing node will be storing, respec-
tively, a subset of the training data (Dm ∪ DB

m, yDm∪DB
m

)
and (Dm, yDm

) associated with its own core m.
Three performance metrics are used to evaluate the

tested methods: (a) Root mean square error (RMSE)
(|U|−1 ∑x∈U (yx − µx|D)2)1/2, (b) incurred time, and (c)
speedup. For RMSE metric, each tested method has to plug
its predictive mean into µx|D.

Table 1 shows results of RMSEs and incurred times of
parallel LMA, parallel PIC, SSGP, and FGP averaged over
5 random instances with varying data sizes |D| and cores M
for both datasets. The observations are as follows:
(a) Predictive performances of all tested methods improve
with more data, which is expected. For SARCOS dataset,
parallel LMA, parallel PIC, and SSGP achieve predictive

5Varying the set S of spectral points over 50 random instances
hardly changes the predictive performance of SSGP in our experi-
ments because a very large set of spectral points (|S| = 4096) is
used in order to achieve predictive performance as close as possible
to FGP and our LMA method (see Table 1).

performances comparable to that of FGP. For AIMPEAK
dataset, parallel LMA does likewise and outperforms par-
allel PIC and SSGP with more data (|D| ≥ 24000), which
may be due to its more relaxed conditional independence as-
sumption with larger data (Remark 1 after Proposition 1).
(b) The incurred times of all tested methods increase with
more data, which is also expected. FGP scales very poorly
with larger data such that it incurs > 4 hours for |D| =
32000. In contrast, parallel LMA incurs only 1-5 minutes
for both datasets when |D| = 32000. Parallel LMA incurs
much less time than parallel PIC and SSGP while achieving
a comparable or better predictive performance because it re-
quires a significantly smaller |S| than parallel PIC and SSGP
simply by imposing a 1-order Markov property (B = 1) on
the residual process (Remark 3 after Theorem 2). Though B
is only set to 1, the dense residual covariance matrix approx-
imation provided by LMA (as opposed to sparse approxima-
tion of PIC) is good enough to achieve its predictive perfor-
mances reported in Table 1. From Table 1b, when training
data is small (|D| = 8000) for AIMPEAK dataset, parallel
PIC incurs more time than FGP due to its huge |S| = 5120,
which causes communication latency to dominate the in-
curred time (Chen et al. 2013). When |D| ≤ 24000, SSGP
also incurs more time than FGP due to its large |S| = 4096.
(c) Predictive performances of parallel LMA and PIC gener-
ally remain stable with more cores, thus justifying the practi-
cality of their structural assumptions to gain time efficiency.

Table 2 shows results of speedups of parallel LMA and
parallel PIC as well as incurred times of their centralized
counterparts averaged over 5 random instances with vary-
ing data sizes |D| and numbers M of cores for AIMPEAK
dataset. The observations are as follows:
(a) The incurred times of centralized LMA and central-
ized PIC increase with more data, which is expected. When
|D| ≥ 32000, centralized LMA incurs only 16-30 minutes
(as compared to FGP incurring > 4 hours) while centralized
PIC and SSGP incur, respectively, more than 3.5 and 2 hours
due to their huge |S|. In fact, Table 2 shows that centralized
PIC incurs even more time than FGP for almost all possible
settings of |D| and M due to its huge support set.
(b) The speedups of parallel LMA and parallel PIC gener-
ally increase with more data, as explained in Remark 2 after
Theorem 2, except for that of parallel LMA being slightly
higher than expected when |D| = 16000.
(c) The incurred time of centralized LMA decreases with
more blocks (i.e., larger M ), as explained in Remark 2 after
Theorem 2. This is also expected of centralized PIC, but its
incurred time increases with more blocks instead due to its
huge support set, which entails large-scale matrix operations
causing a huge number of cache misses6. This highlights the
need to use a sufficiently small support set on a single cen-
tralized machine so that cache misses will contribute less to
incurred time, as compared to data processing.
(d) The speedup of parallel LMA increases with more cores,
as explained in Remark 2 after Theorem 2. Though the
speedup of parallel PIC appears to increase considerably

6A cache miss causes the processor to access the data from main
memory, which costs 10× more time than a cache memory access.



|D| 8000 16000 24000 32000
FGP −(271) −(1575) −(5233) −(14656)
SSGP −(2029) −(3781) −(5552) −(7309)

M = 32
LMA 6.9(139) 9.4(414) 8.0(894) 8.2(1764)
PIC 19.4(9432) 18.8(10105) 19.3(11581) 21.6(12954)

M = 48
LMA 6.9(125) 10.2(338) 9.2(678) 10.2(1227)
PIC 25.3(13713) 24.1(14241) 26.2(15684) 26.8(16515)

M = 64
LMA 7.1(120) 10.8(302) 10.1(576) 11.5(1003)
PIC 31.6(17219) 31.5(17983) 33.0(19469) 33.3(20503)

Table 2: Speedups of parallel LMA (B = 1, |S| = 1024)
and parallel PIC (|S| = 5120) and incurred times (seconds)
reported in brackets of their centralized counterparts with
varying data sizes |D| and cores M for AIMPEAK dataset.
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Figure 2: RMSEs and incurred times (seconds) of par-
allel LMA with varying support set sizes |S| =
128, 512, 1024, 2048, 4096 and Markov orders B =
1, 3, 5, 7, 9, 13, 15, 19, 21, |D| = 8000, and M = 32 for
AIMPEAK dataset. Darker gray implies longer incurred
time (larger RMSE) for the left (right) plot.

with more cores, it is primarily due to the substantial num-
ber of cache misses (see observation c above) that inflates
the incurred time of centralized PIC excessively.

Fig. 2 shows results of RMSEs and incurred times of par-
allel LMA averaged over 5 random instances with varying
support set sizes |S| and Markov orders B, |D| = 8000, and
M = 32 obtained using 8 computing nodes (each using 4
cores) for AIMPEAK dataset. Observations are as follows:
(a) To achieve RMSEs of 8.1 and 8.0 with least incurred
times, one should trade off a larger support set size |S| for
a larger Markov order B (or vice versa) to arrive at the re-
spective settings of |S| = 1024, B = 5 (34 seconds) and
|S| = 1024, B = 9 (68 seconds), which agrees with Remark
3 after Theorem 2. However, to achieve the same RMSE of
7.9 as FGP, the setting of |S| = 128, B = 21 incurs the least
time (i.e., 205 seconds), which seems to indicate that, with
small data (|D| = 8000), we should instead focus on in-
creasing Markov order B for LMA to achieve the same pre-
dictive performance as FGP; recall that when B = M − 1,
LMA becomes FGP. This provides an empirically cheaper
and more reliable alternative to increasing |S| for achiev-
ing predictive performance comparable to FGP, the latter
of which, in our experiments, causes Cholesky factorization
failure easily when |S| becomes excessively large.
(b) When |S| = 1024, B = 1, and M = 32, parallel LMA
using 8 computing nodes incurs less time (i.e., 10 seconds)
than that using 32 nodes (i.e., 20 seconds; see Table 1b)
because the communication latency between cores within a
machine is significantly less than that between machines.

Next, the predictive performance and scalability of our
parallel LMA method are empirically compared with that of
parallel PIC using the large EMULATE mean sea level pres-

|D| 128000 256000 384000 512000 1000000
LMA 823(155) 774(614) 728(3125) 682(7154) 506(78984)
PIC 836(948) −(−) −(−) −(−) −(−)

Table 3: RMSEs and incurred times (seconds) reported in
brackets of parallel LMA (B = 1, |S| = 512) and parallel
PIC (|S| = 3400) with M = 512 cores and varying data
sizes |D| for EMSLP dataset.

sure (EMSLP) dataset (Ansell et al. 2006) of size 1278250
on a 5◦ lat.-lon. grid bounded within lat. 25-70N and lon.
70W-50E from 1900 to 2003. Each input denotes a 6D fea-
ture vector of latitude, longitude, year, month, day, and in-
cremental day count (starting from 0 on first day). The out-
put is the mean sea level pressure (Pa). The experimental
setup is the same as before, except for the platform that is a
cluster of 16 computing nodes connected via gigabit links:
Each node runs a Linux system with AMD OpteronTM 6272
at 2.1 GHz with 32 GB memory and 32 cores.

Table 3 shows results of RMSEs and incurred times of
parallel LMA and parallel PIC averaged over 5 random in-
stances with M = 512 cores and varying data sizes |D|
for EMSLP dataset. When |D| = 128000, parallel LMA in-
curs much less time than parallel PIC while achieving bet-
ter predictive performance because it requires a significantly
smaller |S| by setting B = 1, as explained earlier. When
|D| ≥ 256000, parallel PIC fails due to insufficient shared
memory between cores. On the other hand, parallel LMA
does not experience this issue and incurs from 10 minutes
for |D| = 256000 to about 22 hours for |D| = 1000000.
Summary of Experimental Results. LMA is significantly
more scalable than FGP in the data size while achieving a
comparable predictive performance for SARCOS and AIM-
PEAK datasets. For example, when |D| = 32000 and M ≥
48, our centralized and parallel LMA methods are, respec-
tively, at least 1 and 2 orders of magnitude faster than FGP
while achieving comparable predictive performances for
AIMPEAK dataset. Our centralized (parallel) LMA method
also incurs much less time than centralized PIC (parallel
PIC) and SSGP while achieving comparable or better pre-
dictive performance because LMA requires a considerably
smaller support set size |S| than PIC and SSGP simply by
setting Markov order B = 1, as explained earlier. Trading
off between support set size and Markov order of LMA re-
sults in less incurred time while achieving the desired pre-
dictive performance. LMA gives a more reliable alternative
of increasing the Markov order (i.e., to increasing support set
size) for achieving predictive performance similar to FGP;
in practice, a huge support set causes Cholesky factorization
failure and insufficient shared memory between cores eas-
ily. Finally, parallel LMA can scale up to work for EMSLP
dataset of more than a million in size.

5 Conclusion
This paper describes a LMA method that leverages the dual
computational advantages stemming from complementing
the low-rank covariance matrix approximation based on sup-
port set with the dense residual covariance matrix approxi-
mation due to Markov assumption. As a result, LMA can
make a more relaxed conditional independence assump-
tion (especially with larger data) than many existing sparse
GP regression methods utilizing low-rank representations,



the latter of which utilize a sparse residual covariance ma-
trix approximation. Empirical results have shown that our
centralized (parallel) LMA method is much more scalable
than FGP and time-efficient than centralized PIC (parallel
PIC) and SSGP while achieving comparable predictive per-
formance. In our future work, we plan to develop a tech-
nique to automatically determine the “optimal” support set
size and Markov order and devise an “anytime” variant of
LMA using stochastic variational inference like (Hensman,
Fusi, and Lawrence 2013) so that it can train with a small
subset of data in each iteration instead of learning using
all the data. We also plan to release the source code at
http://code.google.com/p/pgpr/.
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