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Abstract
This paper presents a novel nonmyopic adaptive Gaus-
sian process planning (GPP) framework endowed with
a general class of Lipschitz continuous reward func-
tions that can unify some active learning/sensing and
Bayesian optimization criteria and offer practition-
ers some flexibility to specify their desired choices
for defining new tasks/problems. In particular, it uti-
lizes a principled Bayesian sequential decision prob-
lem framework for jointly and naturally optimizing the
exploration-exploitation trade-off. In general, the re-
sulting induced GPP policy cannot be derived exactly
due to an uncountable set of candidate observations.
A key contribution of our work here thus lies in ex-
ploiting the Lipschitz continuity of the reward func-
tions to solve for a nonmyopic adaptive ε-optimal GPP
(ε-GPP) policy. To plan in real time, we further pro-
pose an asymptotically optimal, branch-and-bound any-
time variant of ε-GPP with performance guarantee. We
empirically demonstrate the effectiveness of our ε-GPP
policy and its anytime variant in Bayesian optimization
and an energy harvesting task.

1 Introduction
The fundamental challenge of integrated planning and learn-
ing is to design an autonomous agent that can plan its ac-
tions to maximize its expected total rewards while interact-
ing with an unknown task environment. Recent research ef-
forts tackling this challenge have progressed from the use
of simple Markov models assuming discrete-valued, inde-
pendent observations (e.g., in Bayesian reinforcement learn-
ing (BRL) (Poupart et al. 2006)) to that of a rich class
of Bayesian nonparametric Gaussian process (GP) models
characterizing continuous-valued, correlated observations in
order to represent the latent structure of more complex, pos-
sibly noisy task environments with higher fidelity. Such a
challenge is posed by the following important problems in
machine learning, among others:
Active learning/sensing (AL). In the context of environ-
mental sensing (e.g., adaptive sampling in oceanography
(Leonard et al. 2007), traffic sensing (Chen et al. 2012;
Chen, Low, and Tan 2013; Chen et al. 2015)), its objec-
tive is to select the most informative (possibly noisy) ob-
servations for predicting a spatially varying environmental
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field (i.e., task environment) modeled by a GP subject to
some sampling budget constraints (e.g., number of sensors,
energy consumption). The rewards of an AL agent are de-
fined based on some formal measure of predictive uncer-
tainty such as the entropy or mutual information criterion. To
resolve the issue of sub-optimality (i.e., local maxima) faced
by greedy algorithms (Krause, Singh, and Guestrin 2008;
Low et al. 2012; Ouyang et al. 2014; Zhang et al. 2016), re-
cent developments have made nonmyopic AL computation-
ally tractable with provable performance guarantees (Cao,
Low, and Dolan 2013; Hoang et al. 2014; Low, Dolan,
and Khosla 2009; 2008; 2011), some of which have fur-
ther investigated the performance advantage of adaptivity by
proposing nonmyopic adaptive observation selection poli-
cies that depend on past observations.
Bayesian optimization (BO). Its objective is to select and
gather the most informative (possibly noisy) observations
for finding the global maximum of an unknown, highly
complex (e.g., non-convex, no closed-form expression nor
derivative) objective function (i.e., task environment) mod-
eled by a GP given a sampling budget (e.g., number of costly
function evaluations). The rewards of a BO agent are defined
using an improvement-based (Brochu, Cora, and de Freitas
2010) (e.g., probability of improvement (PI) or expected im-
provement (EI) over currently found maximum), entropy-
based (Hennig and Schuler 2012; Hernández-Lobato, Hoff-
man, and Ghahramani 2014), or upper confidence bound
(UCB) acquisition function (Srinivas et al. 2010). A limi-
tation of most BO algorithms is that they are myopic. To
overcome this limitation, approximation algorithms for non-
myopic adaptive BO (Marchant, Ramos, and Sanner 2014;
Osborne, Garnett, and Roberts 2009) have been proposed,
but their performances are not theoretically guaranteed.
General tasks/problems. In practice, other types of rewards
(e.g., logarithmic, unit step functions) need to be specified
for an agent to plan and operate effectively in a given real-
world task environment (e.g., natural phenomenon like wind
or temperature) modeled by a GP, as detailed in Section 2.

As shall be elucidated later, similarities in the structure
of the above problems motivate us to consider whether it is
possible to tackle the overall challenge by devising a nonmy-
opic adaptive GP planning framework with a general class
of reward functions unifying some AL and BO criteria and
affording practitioners some flexibility to specify their de-



sired choices for defining new tasks/problems. Such an in-
tegrated planning and learning framework has to address
the exploration-exploitation trade-off common to the above
problems: The agent faces a dilemma between gathering ob-
servations to maximize its expected total rewards given its
current, possibly imprecise belief of the task environment
(exploitation) vs. that to improve its belief to learn more
about the environment (exploration).

This paper presents a novel nonmyopic adaptive Gaussian
process planning (GPP) framework endowed with a gen-
eral class of Lipschitz continuous reward functions that can
unify some AL and BO criteria (e.g., UCB) discussed earlier
and offer practitioners some flexibility to specify their de-
sired choices for defining new tasks/problems (Section 2). In
particular, it utilizes a principled Bayesian sequential deci-
sion problem framework for jointly and naturally optimizing
the exploration-exploitation trade-off, consequently allow-
ing planning and learning to be integrated seamlessly and
performed simultaneously instead of separately (Deisenroth,
Fox, and Rasmussen 2015). In general, the resulting induced
GPP policy cannot be derived exactly due to an uncount-
able set of candidate observations. A key contribution of
our work here thus lies in exploiting the Lipschitz continu-
ity of the reward functions to solve for a nonmyopic adap-
tive ε-optimal GPP (ε-GPP) policy given an arbitrarily user-
specified loss bound ε (Section 3). To plan in real time,
we further propose an asymptotically optimal, branch-and-
bound anytime variant of ε-GPP with performance guaran-
tee. Finally, we empirically evaluate the performances of our
ε-GPP policy and its anytime variant in BO and an energy
harvesting task on simulated and real-world environmental
fields (Section 4). To ease exposition, the rest of this paper
will be described by assuming the task environment to be
an environmental field and the agent to be a mobile robot,
which coincide with the setup of our experiments.

2 Gaussian Process Planning (GPP)
Notations and Preliminaries. Let S be the domain of an
environmental field corresponding to a set of sampling lo-
cations. At time step t > 0, a robot can deterministically
move from its previous location st−1 to visit location st ∈
A(st−1) and observes it by taking a corresponding realized
(random) field measurement zt (Zt) where A(st−1) ⊆ S
denotes a finite set of sampling locations reachable from its
previous location st−1 in a single time step. The state of the
robot at its initial starting location s0 is represented by prior
observations/data d0 , 〈s0, z0〉 available before planning
where s0 and z0 denote, respectively, vectors comprising lo-
cations visited/observed and corresponding field measure-
ments taken by the robot prior to planning and s0 is the last
component of s0. Similarly, at time step t > 0, the state of
the robot at its current location st is represented by obser-
vations/data dt , 〈st, zt〉 where st , s0 ⊕ (s1, · · · st) and
zt , z0 ⊕ (z1, · · · zt) denote, respectively, vectors compris-
ing locations visited/observed and corresponding field mea-
surements taken by the robot up until time step t and ‘⊕’
denotes vector concatenation. At time step t > 0, the robot
also receives a reward R(zt, st) to be defined later.
Modeling Environmental Fields with Gaussian Processes

(GPs). The GP can be used to model a spatially varying en-
vironmental field as follows: The field is assumed to be a re-
alization of a GP. Each location s ∈ S is associated with a la-
tent field measurement Ys. Let YS , {Ys}s∈S denote a GP,
that is, every finite subset of YS has a multivariate Gaussian
distribution (Rasmussen and Williams 2006). Then, the GP
is fully specified by its prior mean µs , E[Ys] and covari-
ance kss′ , cov[Ys, Ys′ ] for all s, s′ ∈ S, the latter of which
characterizes the spatial correlation structure of the environ-
ment field and can be defined using a covariance function. A
common choice is the squared exponential covariance func-
tion kss′ , σ2

y exp{−0.5(s−s′)>M−2(s−s′)}where σ2
y is

the signal variance controlling the intensity of measurements
and M is a diagonal matrix with length-scale components l1
and l2 governing the degree of spatial correlation or “sim-
ilarity” between measurements in the respective horizontal
and vertical directions of the 2D fields in our experiments.

The field measurements taken by the robot are assumed
to be corrupted by Gaussian white noise, i.e., Zt , Yst + ε
where ε ∼ N (0, σ2

n) and σ2
n is the noise variance. Suppos-

ing the robot has gathered observations dt = 〈st, zt〉 from
time steps 0 to t, the GP model can perform probabilistic re-
gression by using dt to predict the noisy measurement at any
unobserved location st+1 ∈ A(st) as well as provide its pre-
dictive uncertainty using a Gaussian predictive distribution
p(zt+1|dt, st+1) = N (µst+1|dt , σ

2
st+1|st) with the following

posterior mean and variance, respectively:
µst+1|dt , µst+1

+ Σst+1stΓ
−1
stst(zt − µst)

>

σ2
st+1|st , kst+1st+1

+ σ2
n − Σst+1stΓ

−1
ststΣstst+1

where µst is a row vector with mean components µs for ev-
ery location s of st, Σst+1st is a row vector with covariance
components kst+1s for every location s of st, Σstst+1

is the
transpose of Σst+1st , and Γstst , Σstst + σ2

nI such that
Σstst is a covariance matrix with components kss′ for every
pair of locations s, s′ of st. An important property of the GP
model is that, unlike µst+1|dt , σ

2
st+1|st is independent of zt.

Problem Formulation. To frame nonmyopic adaptive
Gaussian process planning (GPP) as a Bayesian sequential
decision problem, let an adaptive policy π be defined to se-
quentially decide the next location π(dt) ∈ A(st) to be ob-
served at each time step t using observations dt over a finite
planning horizon of H time steps/stages (i.e., sampling bud-
get of H locations). The value V π0 (d0) under an adaptive
policy π is defined to be the expected total rewards achieved
by its selected observations when starting with some prior
observations d0 and following π thereafter and can be com-
puted using the following H-stage Bellman equations:

V πt (dt) , Qπt (dt, π(dt))

Qπt (dt, st+1) , E[R(Zt+1, st+1) +
V πt+1(〈st+1, zt ⊕ Zt+1〉)|dt, st+1]

for stages t = 0, . . . ,H − 1 where V πH(dH) , 0. To
solve the GPP problem, the notion of Bayes-optimalityis
exploited for selecting observations to achieve the largest
possible expected total rewards with respect to all possi-
ble induced sequences of future Gaussian posterior beliefs
p(zt+1|dt, st+1) for t = 0, . . . ,H − 1 to be discussed next.



Formally, this involves choosing an adaptive policy π to
maximize V π0 (d0), which we call the GPP policy π∗. That
is, V ∗0 (d0) , V π

∗

0 (d0) = maxπ V
π
0 (d0). By plugging π∗

into V πt (dt) and Qπt (dt, st+1) above,
V ∗t (dt) , maxst+1∈A(st)Q

∗
t (dt, st+1)

Q∗t (dt, st+1) , E[R(Zt+1, st+1)|dt, st+1] +
E[V ∗t+1(〈st+1, zt ⊕ Zt+1〉)|dt, st+1]

(1)

for stages t = 0, . . . ,H − 1 where V ∗H(dH) , 0. To
see how the GPP policy π∗ jointly and naturally opti-
mizes the exploration-exploitation trade-off, its selected lo-
cation π∗(dt) = arg maxst+1∈A(st)Q

∗
t (dt, st+1) at each

time step t affects both the immediate expected reward
E[R(Zt+1, st ⊕ π∗(dt))|dt, π∗(dt)] given current belief
p(zt+1|dt, π∗(dt)) (i.e., exploitation) as well as the Gaussian
posterior belief p(zt+2|〈st ⊕ π∗(dt), zt ⊕ zt+1〉, π∗(〈st ⊕
π∗(dt), zt ⊕ zt+1〉)) at next time step t + 1 (i.e., explo-
ration), the latter of which influences expected future re-
wards E[V ∗t+1(〈st ⊕ π∗(dt), zt ⊕ Zt+1〉)|dt, π∗(dt)].

In general, the GPP policy π∗ cannot be derived exactly
because the expectation terms in (1) usually cannot be eval-
uated in closed form due to an uncountable set of candidate
measurements (Section 1) except for degenerate cases like
R(zt+1, st+1) being independent of zt+1 and H ≤ 2. To
overcome this difficulty, we will show in Section 3 later how
the Lipschitz continuity of the reward functions can be ex-
ploited for theoretically guaranteeing the performance of our
proposed nonmyopic adaptive ε-optimal GPP policy, that is,
the expected total rewards achieved by its selected observa-
tions closely approximates that of π∗ within an arbitrarily
user-specified loss bound ε > 0.
Lipschitz Continuous Reward Functions. R(zt, st) ,
R1(zt)+R2(zt)+R3(st) whereR1,R2, andR3 are user-de-
fined reward functions that satisfy the conditions below:
• R1(zt) is Lipschitz continuous in zt with Lipschitz con-

stant `1. So, hσ(u) , (R1 ∗ N (0, σ2))(u) is Lipschitz
continuous in u with `1 where ‘∗’ denotes convolution;

• R2(zt): Define gσ(u) , (R2 ∗ N (0, σ2))(u) such that
(a) gσ(u) is well-defined for all u ∈ R, (b) gσ(u) can be
evaluated in closed form or computed up to an arbitrary
precision in reasonable time for all u ∈ R, and (c) gσ(u) is
Lipschitz continuous1 in u with Lipschitz constant `2(σ);

• R3(st) only depends on locations st visited/observed by
the robot up until time step t and is independent of real-
ized measurement zt. It can be used to represent some
sampling or motion costs or explicitly consider explo-
ration by defining it as a function of σ2

st+1|st .
Using the above definition of R(zt, st), the immediate ex-
pected reward in (1) evaluates to E[R(Zt+1, st+1)|dt, st+1]
= (hσst+1|st

+gσst+1|st
)
(
µst+1|dt

)
+R3(st+1) which is Lip-

schitz continuous in the realized measurements zt:
Lemma 1 Let α(st+1) , ‖Σst+1stΓ

−1
stst‖ and d′t , 〈st, z′t〉.

Then,|E[R(Zt+1,st+1)|dt,st+1]−E[R(Zt+1,st+1)|d′t,st+1]|
≤ α(st+1)

(
`1 + `2(σst+1|st)

)
‖zt − z′t‖ .

1Unlike R1, R2 does not need to be Lipschitz continuous (or
continuous); it must only be Lipschitz continuous after convolution
with any Gaussian kernel. An example of R2 is unit step function.

Its proof is in (Ling, Low, and Jaillet 2016). Lemma 1 will
be used to prove the Lipschitz continuity of V ∗t in (1) later.
Before doing this, let us consider how the Lipschitz continu-
ous reward functions defined above can unify some AL and
BO criteria discussed in Section 1 and be used for defining
new tasks/problems.

Active learning/sensing (AL). Setting R(zt+1, st+1) =
R3(st+1) = 0.5 log(2πeσ2

st+1|st) yields the well-known
nonmyopic AL algorithm called maximum entropy sampling
(MES) (Shewry and Wynn 1987) which plans/decides loca-
tions with maximum entropy to be observed that minimize
the posterior entropy remaining in the unobserved areas of
the field. Since R(zt+1, st+1) is independent of zt+1, the
expectations in (1) go away, thus making MES non-adaptive
and hence a straightforward search algorithm not plagued
by the issue of uncountable set of candidate measurements.
As such, we will not focus on such a degenerate case. This
degeneracy vanishes when the environment field is instead
a realization of log-Gaussian process. Then, MES becomes
adaptive (Low, Dolan, and Khosla 2009) and its reward
function can be represented by our Lipschitz continuous re-
ward functions: By setting R1(zt+1) = 0, R2 and gσst+1|st

as identity functions with `2(σst+1|st) = 1, and R3(st+1) =

0.5 log(2πeσ2
st+1|st), E[R(Zt+1, st+1)|dt, st+1] =

µst+1|dt + 0.5 log(2πeσ2
st+1|st).

Bayesian optimization (BO). The greedy BO algorithm
of Srinivas et al. (2010) utilizes the UCB selection crite-
rion µst+1|dt + βσst+1|st (β ≥ 0) to approximately opti-
mize the global BO objective of total field measurements∑H
t=1 zt taken by the robot or, equivalently, minimize its to-

tal regret. UCB can be represented by our Lipschitz con-
tinuous reward functions: By setting R1(zt+1) = 0, R2

and gσst+1|st
as identity functions with `2(σst+1|st) = 1,

and R3(st+1) = βσst+1|st , E[R(Zt+1, st+1)|dt, st+1] =
µst+1|dt + βσst+1|st . In particular, when β = 0, it can be
derived that our GPP policy π∗ maximizes the expected to-
tal field measurements taken by the robot, hence optimizing
the exact global BO objective of Srinivas et al. (2010) in
the expected sense. So, unlike greedy UCB, our nonmyopic
GPP framework does not have to explicitly consider an ad-
ditional weighted exploration term (i.e., βσst+1|st ) in its re-
ward function because it can jointly and naturally optimize
the exploration-exploitation trade-off, as explained earlier.
Nevertheless, if a stronger exploration behavior is desired
(e.g., in online planning), then β has to be fine-tuned. Dif-
ferent from nonmyopic BO algorithm of Marchant, Ramos,
and Sanner (2014) using UCB-based rewards, our proposed
nonmyopic ε-optimal GPP policy (Section 3) does not need
to impose an extreme assumption of maximum likelihood
observations during planning and, more importantly, pro-
vides a performance guarantee, including for the extreme
assumption made by nonmyopic UCB. Our GPP framework
differs from nonmyopic BO algorithm of Osborne, Garnett,
and Roberts (2009) in that every selected observation con-
tributes to the total field measurements taken by the robot
instead of considering just the expected improvement for the
last observation. So, it usually does not have to expend all



the given sampling budget to find the global maximum.
General tasks/problems. In practice, the necessary reward
function can be more complex than the ones specified above
that are formed from an identity function of the field mea-
surement. For example, consider the problem of placing
wind turbines in optimal locations to maximize the total
power production. Though the average wind speed in a re-
gion can be modeled by a GP, the power output is not a linear
function of the steady-state wind speed. In fact, power pro-
duction requires a certain minimum speed known as the cut-
in speed. After this threshold is met, power output increases
and eventually plateaus. Assuming the cut-in speed is 1, this
effect can be modeled with a logarithmic reward function2:
R(zt+1, st+1) = R1(zt+1) gives a value of log(zt+1) if
zt+1 > 1, and 0 otherwise where `1 = 1. To the best of
our knowledge, hσst+1|st

(u) has no closed-form expression.
In (Ling, Low, and Jaillet 2016), we present other interesting
reward functions like unit step function1 and Gaussian dis-
tribution that can be represented by R(zt+1, st+1) and used
in real-world tasks.

Theorem 1 below reveals that V ∗t (dt) (1) with Lipschitz
continuous reward functions is Lipschitz continuous in zt
with Lipschitz constant Lt(st) defined below:
Definition 1 Let LH(sH) , 0. For t = 0, . . . ,H − 1, de-
fine Lt(st) , maxst+1∈A(st) α(st+1)

(
`1 + `2(σst+1|st)

)
+

Lt+1(st+1)
√

1 + α(st+1)2 .

Theorem 1 (Lipschitz Continuity of V ∗t ) For
t = 0, . . . ,H , |V ∗t (dt)− V ∗t (d′t)| ≤ Lt(st)‖zt − z′t‖ .
Its proof uses Lemma 1 and is in (Ling, Low, and Jaillet
2016). The result below is a direct consequence of Theo-
rem 1 and will be used to theoretically guarantee the perfor-
mance of our proposed nonmyopic adaptive ε-optimal GPP
policy in Section 3:
Corollary 1 For t = 0, . . . ,H , |V ∗t (〈st, zt−1 ⊕ zt〉) −
V ∗t (〈st, zt−1 ⊕ z′t〉)| ≤ Lt(st)|zt − z′t|.

3 ε-Optimal GPP (ε-GPP)
The key idea of constructing our proposed nonmyopic adap-
tive ε-GPP policy is to approximate the expectation terms in
(1) at every stage using a form of deterministic sampling,
as illustrated in the figure below. Specifically, the measure-
ment space of p(zt+1|dt, st+1) is first partitioned into n ≥ 2
intervals ζ0, . . . , ζn−1 such that intervals ζ1, . . . , ζn−2 are
equally spaced within the bounded gray region [µst+1|dt −
τσst+1|st , µst+1|dt + τσst+1|st ] specified by a user-defined
width parameter τ ≥ 0 while intervals ζ0 and ζn−1 span the
two infinitely long red tails. Note that τ > 0 requires n > 2
for the partition to be valid. The n sample measurements
z0 . . . zn−1 are then selected by setting z0 as upper limit
of red interval ζ0, zn−1 as lower limit of red interval ζn−1,
and z1, . . . , zn−2 as centers of the respective gray intervals
ζ1, . . . , ζn−2. Next, the weights w0 . . . wn−1 for the cor-
responding sample measurements z0, . . . , zn−1 are defined
as the areas under their respective intervals ζ0, . . . , ζn−1

of the Gaussian predictive distribution p(zt+1|dt, st+1). So,

2In reality, the speed-power relationship is not exactly logarith-
mic, but this approximation suffices for the purpose of modeling.

p(zt+1|dt, st+1)

z0 , µst+1|dt−τσst+1|st ;

zn−1 , µst+1|dt+τσst+1|st ;

zi,z0+i−0.5
n−2 (zn−1−z0)

for i = 1, . . . , n− 2.

wi,Φ( 2iτ
n−2−τ)−Φ( 2(i−1)τ

n−2 −τ)
for i = 1, . . . , n− 2;

w0 = wn−1 , Φ(−τ).

z0

w0

z1

w1

. . .

. . .

. . .

. . .

zi-1

wi-1

zi

wi

zi+1

wi+1

zn-1

wn-1

zn-2

wn-2

. . .

. . .

. . .

. . .

zt+1

ζ1 ζi-1 ζi ζi+1 ζn-2ζ0 ζn-1∑n−1
i=0 w

i = 1. An example of such a partition is given in
(Ling, Low, and Jaillet 2016). The selected sample measure-
ments and their corresponding weights can be exploited for
approximating V ∗t with Lipschitz continuous reward func-
tions (1) using the following H-stage Bellman equations:

V εt (dt) , maxst+1∈A(st)Q
ε
t(dt, st+1)

Qεt(dt, st+1) , gσst+1|st

(
µst+1|dt

)
+R3(st+1) +

n−1∑
i=0

wi
(
R1(zi) + V εt+1(〈st+1, zt ⊕ zi〉)

)(2)

for stages t = 0, . . . ,H− 1 where V εH(dH) , 0. The result-
ing induced ε-GPP policy πε jointly and naturally optimizes
the exploration-exploitation trade-off in a similar manner as
that of the GPP policy π∗, as explained in Section 2. It is
interesting to note that setting τ = 0 yields z0 = . . . =
zn−1 = µst+1|dt , which is equivalent to selecting a single
sample measurement of µst+1|dt with corresponding weight
of 1. This is identical to the special case of maximum likeli-
hood observations during planning which is the extreme as-
sumption used by nonmyopic UCB (Marchant, Ramos, and
Sanner 2014) for sampling to gain time efficiency.
Performance Guarantee. The difficulty in theoretically
guaranteeing the performance of our ε-GPP policy πε (i.e.,
relative to that of GPP policy π∗) lies in analyzing how the
values of the width parameter τ and deterministic sampling
size n can be chosen to satisfy the user-specified loss bound
ε, as discussed below. The first step is to prove that V εt in
(2) approximates V ∗t in (1) closely for some chosen τ and
n values, which relies on the Lipschitz continuity of V ∗t in
Corollary 1. Define Λ(n, τ) to be equal to the value of

√
2/π

if n ≥ 2∧τ = 0, and value of κ(τ)+η(n, τ) if n > 2∧τ > 0

where κ(τ) ,
√

2/π exp(−0.5τ2) − 2τΦ(−τ), η(n, τ) ,
2τ(0.5−Φ(−τ))/(n− 2), and Φ is a standard normal CDF.
Theorem 2 Suppose that λ > 0 is given. For all dt and
t = 0, . . . ,H , if

λ ≥ Λ(n, τ)σst+1|st(`1 + Lt+1(st+1)) (3)

for all st+1 ∈ A(st), then |V εt (dt)− V ∗t (dt)| ≤ λ(H − t) .
Its proof uses Corollary 1 and is given in (Ling, Low, and
Jaillet 2016).
Remark 1. From Theorem 2, a tighter bound on the error
|V εt (dt) − V ∗t (dt)| can be achieved by decreasing the sam-
pling budget of H locations3 and increasing the determinis-
tic sampling size n; increasing n reduces η(n, τ) and hence

3This changes ε-GPP by reducing its planning horizon though.



Λ(n, τ), which allows λ to be reduced as well. The width
parameter τ has a mixed effect on this error bound: Note
that κ(τ) (η(n, τ)) is proportional to some upper bound on
the error incurred by the extreme sample measurements z0

and zn−1 (z1, . . . , zn−2), as shown in (Ling, Low, and Jail-
let 2016). Increasing τ reduces κ(τ) but unfortunately raises
η(n, τ). So, in order to reduce Λ(n, τ) further by increas-
ing τ , it has to be complemented by raising n fast enough to
keep η(n, τ) from increasing. This allows λ to be reduced
further as well.
Remark 2. A feasible choice of τ and n satisfying (3) can
be expressed analytically in terms of the given λ and hence
computed prior to planning, as shown in (Ling, Low, and
Jaillet 2016).
Remark 3. σst+1|st and Lt+1(st+1) for all st+1 and t =
0, . . . ,H − 1 can be computed prior to planning as they de-
pend on s0 and all reachable locations from s0 but not on
their measurements.

Using Theorem 2, the next step is to bound the perfor-
mance loss of our ε-GPP policy πε relative to that of GPP
policy π∗, that is, policy πε is ε-optimal:

Theorem 3 Given the user-specified loss bound ε > 0,
V ∗0 (d0) − V πε0 (d0) ≤ ε by substituting λ = ε/(H(H + 1))
into the choice of τ and n stated in Remark 2 above.

Its proof is in (Ling, Low, and Jaillet 2016). It can be ob-
served from Theorem 3 that a tighter bound ε on the error
V ∗0 (d0) − V πε0 (d0) can be achieved by decreasing the sam-
pling budget of H locations3 and increasing the determin-
istic sampling size n. The effect of width parameter τ on
this error bound ε is the same as that on the error bound of
|V εt (dt)− V ∗t (dt)|, as explained in Remark 1 above.
Anytime ε-GPP. Unlike GPP policy π∗, our ε-GPP policy
πε can be derived exactly since its incurred time is indepen-
dent of the size of the uncountable set of candidate mea-
surements. However, expanding the entire search tree of ε-
GPP (2) incurs time containing a O(nH) term and is not
always necessary to achieve ε-optimality in practice. To mit-
igate this computational difficulty4, we propose an anytime
variant of ε-GPP that can produce a good policy fast and
improve its approximation quality over time, as briefly dis-
cussed here and detailed with the pseudocode in (Ling, Low,
and Jaillet 2016).

The key intuition is to expand the sub-trees rooted at
“promising” nodes with the highest weighted uncertainty of
their corresponding values V ∗t (dt) so as to improve their es-
timates. To represent such uncertainty at each encountered
node, upper & lower heuristic bounds (respectively, V

∗
t (dt)

and V ∗t (dt)) are maintained, like in (Smith and Simmons
2006). A partial construction of the entire tree is maintained
and expanded incrementally in each iteration of anytime ε-
GPP that incurs linear time in n and comprises 3 steps:
Node selection. Traverse down the partially constructed tree
by repeatedly selecting nodes with largest difference be-
tween their upper and lower bounds (i.e., uncertainty) dis-
counted by weightwi

∗
of its preceding sample measurement

4The value of n is a bigger computational issue than that of H
when ε is small and in online planning.

zi
∗

until an unexpanded node, denoted by dt, is reached.
Expand tree. Construct a “minimal” sub-tree rooted at node
dt by sampling all possible next locations and only their me-
dian sample measurements z ī recursively up to full heightH.
Backpropagation. Backpropagate bounds from the leaves
of the newly constructed sub-tree to node dt, during which
the refined bounds of expanded nodes are used to inform the
bounds of unexpanded siblings by exploiting the Lipschitz
continuity of V ∗t (Corollary 1), as explained in (Ling, Low,
and Jaillet 2016). Backpropagate bounds to the root of the
partially constructed tree in a similar manner.

By using the lower heuristic bound to produce our any-
time ε-GPP policy, its performance loss relative to that of
GPP policy π∗ can be bounded, as proven in (Ling, Low,
and Jaillet 2016).

4 Experiments and Discussion
This section empirically evaluates the online planning per-
formance and time efficiency of our ε-GPP policy πε and its
anytime variant under limited sampling budget in an energy
harvesting task on a simulated wind speed field and in BO on
simulated plankton density (chl-a) field and real-world log-
potassium (lg-K) concentration (mg l−1) field (Ling, Low,
and Jaillet 2016) of Broom’s Barn farm (Webster and Oliver
2007). Each simulated (real-world lg-K) field is spatially
distributed over a 0.95 km by 0.95 km (520 m by 440 m)
region discretized into a 20× 20 (14× 12) grid of sampling
locations. These fields are assumed to be realizations of GPs.
The wind speed (chl-a) field is simulated using hyperparam-
eters µs = 0,5 l1 = l2 = 0.2236 (0.2) km, σ2

n = 10−5, and
σ2
y = 1. The hyperparameters µs = 3.26, l1 = 42.8 m,
l2 = 103.6 m, σ2

n = 0.0222, and σ2
y = 0.057 of lg-K

field are learned using maximum likelihood estimation (Ras-
mussen and Williams 2006). The robot’s initial starting lo-
cation is near to the center of each simulated field and ran-
domly selected for lg-K field. It can move to any of its 4
adjacent grid locations at each time step and is tasked to
maximize its total rewards over 20 time steps (i.e., sampling
budget of 20 locations).

In BO, the performances of our ε-GPP policy πε and its
anytime variant are compared with that of state-of-the-art
nonmyopic UCB (Marchant, Ramos, and Sanner 2014) and
greedy PI, EI, UCB (Brochu, Cora, and de Freitas 2010;
Srinivas et al. 2010). Three performance metrics are used:
(a) Total rewards achieved over the evolved time steps (i.e.,
higher total rewards imply less total regret in BO (Sec-
tion 2)), (b) maximum reward achieved during experiment,
and (c) search tree size in terms of no. of nodes (i.e., larger
tree size implies higher incurred time). All experiments are
run on a Linux machine with Intel Core i5 at 1.7 GHz.
Energy Harvesting Task on Simulated Wind Speed Field.
A robotic rover equipped with a wind turbine is tasked to
harvest energy/power from the wind while exploring a polar
region (Chen et al. 2014). It is driven by the logarithmic re-
ward function described under ‘General tasks/problems’ in
Section 2. Fig. 1 shows results of performances of our ε-GPP

5Its actual prior mean is not zero; we have applied zero-mean
GP to Ys − µs for simplicity.



Figure 1: Graphs
of total rewards
and tree size of
ε-GPP policies
with (a-b) online
planning horizon
H ′ = 4 and
varying ε and
(c-d) varying
H ′ = 1, 2, 3, 4
(respectively, ε =
0.002, 0.06, 0.8, 5)

(a) (b)

(c) (d)

vs. no. of time steps for energy harvesting task. The plot of
ε∗ = 5 uses our anytime variant with a maximum tree size of
5× 104 nodes while the plot of ε = 250 effectively assumes
maximum likelihood observations during planning like that
of nonmyopic UCB (Marchant, Ramos, and Sanner 2014).

policy and its anytime variant averaged over 30 indepen-
dent realizations of the wind speed field. It can be observed
that the gradients of the achieved total rewards (i.e., power
production) increase over time, which indicate a higher ob-
tained reward with an increasing number of time steps as the
robot can exploit the environment more effectively with the
aid of exploration from previous time steps. The gradients
eventually stop increasing when the robot enters a perceived
high-reward region. Further exploration is deemed unnec-
essary as it is unlikely to find another preferable location
within H ′ time steps; so, the robot remains near-stationary
for the remaining time steps. It can also be observed that the
incurred time is much higher in the first few time steps. This
is expected because the posterior variance σst+1|st decreases
with increasing time step t, thus requiring a decreasing de-
terministic sampling size n to satisfy (3).

Initially, all ε-GPP policies achieve similar total rewards
as the robots begin from the same starting location. After
some time, ε-GPP policies with lower user-specified loss
bound ε and longer online planning horizonH ′ achieve con-
siderably higher total rewards at the cost of more incurred
time. In particular, it can be observed that a robot assum-
ing maximum likelihood observations during planning (i.e.,
ε = 250) like that of nonmyopic UCB or using a greedy
policy (i.e., H ′ = 1) performs poorly very quickly. In the
former case (Fig. 1a), the gradient of its total rewards stops
increasing quite early (i.e., from time step 9 onwards), which
indicates that its perceived local maximum is reached pre-
maturely. Interestingly, it can be observed from Fig. 1d that
the ε-GPP policy with H ′ = 2 and ε = 0.06 incurs more
time than that with H ′ = 3 and ε = 0.8 despite the lat-
ter achieving higher total rewards. This suggests trading off
tighter loss bound ε for longer online planning horizon H ′,
especially when ε is too small that in turn requires a very
large n and consequently incurs significantly more time4.
BO on Real-World Log-Potassium Concentration Field.
An agricultural robot is tasked to find the peak lg-K mea-
surement (i.e., possibly in an over-fertilized area) while ex-
ploring the Broom’s Barn farm (Webster and Oliver 2007). It
is driven by the UCB-based reward function described under
‘BO’ in Section 2. Fig. 2 shows results of performances of

(a) (b) (c)
Figure 2: Graphs of total normalized6 rewards of ε-GPP poli-
cies using UCB-based rewards with (a) H ′ = 4, β = 0,
and varying ε, (b) varying H ′ = 1, 2, 3, 4 (respectively,
ε = 0.002, 0.003, 0.4, 2) and β = 0, and (c) H ′ = 4, ε = 1,
and varying β vs. no. of time steps for BO on real-world lg-
K field. The plot of ε∗ = 1 uses our anytime variant with a
maximum tree size of 3×104 nodes while the plot of ε = 25
effectively assumes maximum likelihood observations dur-
ing planning like that of nonmyopic UCB.

our ε-GPP policy and its anytime variant, nonmyopic UCB
(i.e., ε = 25), and greedy PI, EI, UCB (i.e., H ′ = 1) aver-
aged over 25 randomly selected robot’s initial starting lo-
cation. It can be observed from Figs. 2a and 2b that the
gradients of the achieved total normalized6 rewards gener-
ally increase over time. In particular, from Fig. 2a, nonmy-
opic UCB assuming maximum likelihood observations dur-
ing planning obtains much less total rewards than the other ε-
GPP policies and the anytime variant after 20 time steps and
finds a maximum lg-K measurement of 3.62 that is at least
0.4σy worse after 20 time steps. The performance of the any-
time variant is comparable to that of our best-performing ε-
GPP policy with ε = 3. From Fig. 2b, the greedy policy (i.e.,
H ′ = 1) with β = 0 performs much more poorly than its
nonmyopic ε-GPP counterparts and finds a maximum lg-K
measurement of 3.56 that is lower than that of greedy PI and
EI due to its lack of exploration. By increasing H ′ to 2-4,
our ε-GPP policies with β = 0 outperform greedy PI and EI
as they can naturally and jointly optimize the exploration-
exploitation trade-off. Interestingly, Fig. 2c shows that our
ε-GPP policy with β = 2 achieves the highest total rewards
after 20 time steps, which indicates the need of a slightly
stronger exploration behavior than that with β = 0. This
may be explained by a small length-scale (i.e., spatial corre-
lation) of the lg-K field, thus requiring some exploration to
find the peak measurement. By increasing H ′ beyond 4 or
with larger spatial correlation (Ling, Low, and Jaillet 2016),
we expect a diminishing role of the βσst+1|st term. It can
also be observed that aggressive exploration (i.e., β ≥ 10)
hurts the performance. Results of the tree size (i.e., incurred
time) of our ε-GPP policy and its anytime variant are in
(Ling, Low, and Jaillet 2016).

5 Conclusion
This paper describes a novel nonmyopic adaptive ε-GPP
framework endowed with a general class of Lipschitz con-
tinuous reward functions that can unify some AL and BO
criteria and be used for defining new tasks/problems. In par-
ticular, it can jointly and naturally optimize the exploration-
exploitation trade-off. We theoretically guarantee the perfor-
mances of our ε-GPP policy and its anytime variant and em-
pirically demonstrate their effectiveness in BO and an en-

6To ease interpretation of the results, each reward is normalized
by subtracting the prior mean from it.



ergy harvesting task. For our future work, we plan to scale
up ε-GPP and its anytime variant for big data using paral-
lelization (Chen et al. 2013; Low et al. 2015), online learn-
ing (Xu et al. 2014), and stochastic variational inference
(Hoang, Hoang, and Low 2015) and extend them to handle
unknown hyperparameters (Hoang et al. 2014).
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