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Abstract

This paper presents novel Gaussian process decentralized
data fusion algorithms exploiting the notion of agent-centric
support sets for distributed cooperative perception of large-
scale environmental phenomena. To overcome the limitations
of scale in existing works, our proposed algorithms allow ev-
ery mobile sensing agent to choose a different support set and
dynamically switch to another during execution for encapsu-
lating its own data into a local summary that, perhaps surpris-
ingly, can still be assimilated with the other agents’ local sum-
maries (i.e., based on their current choices of support sets)
into a globally consistent summary to be used for predicting
the phenomenon. To achieve this, we propose a novel trans-
fer learning mechanism for a team of agents capable of shar-
ing and transferring information encapsulated in a summary
based on a support set to that utilizing a different support set
with some loss that can be theoretically bounded and ana-
lyzed. To alleviate the issue of information loss accumulating
over multiple instances of transfer learning, we propose a new
information sharing mechanism to be incorporated into our
algorithms in order to achieve memory-efficient lazy transfer
learning. Empirical evaluation on real-world datasets show
that our algorithms outperform the state-of-the-art methods.

1 Introduction
Central to many environmental sensing and monitoring ap-
plications (e.g., traffic flow and mobility demand predic-
tions over urban road networks (Chen et al. 2015), mon-
itoring of ocean and freshwater phenomena (Dolan et al.
2009), adaptive sampling and active sensing/learning (Cao,
Low, and Dolan 2013; Hoang et al. 2014; Low, Dolan,
and Khosla 2008; 2009; 2011; Low et al. 2007; 2012;
Ouyang et al. 2014; Zhang et al. 2016), Bayesian optimiza-
tion (Daxberger and Low 2017; Hoang, Hoang, and Low
2018; Ling, Low, and Jaillet 2016), among others) is the
need to scale up data fusion algorithms for big data because
massive volumes of data/observations gathered by multiple
static and/or mobile sensing agents have to be assimilated
to form a globally consistent predictive belief of the envi-
ronmental phenomenon of interest. A centralized approach
to data fusion is ill-suited here because it suffers from poor
scalability in the data size and a single point of failure.
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To this end, decentralized data fusion algorithms such as
distributed Bayesian filtering (Olfati-Saber 2005) and dis-
tributed regression (Guestrin et al. 2004) have been devel-
oped to improve scalability and robustness to failure.

Recent works (Chen et al. 2012; 2015; Chen, Low, and
Tan 2013; Cortes 2009) have progressed from the use of sim-
ple Markov parametric models assuming independent obser-
vations (e.g., in distributed Bayesian filtering) to that of a
rich class of Bayesian nonparametric Gaussian process (GP)
models characterizing continuous-valued, spatially corre-
lated observations in order to represent the latent structure
of the spatially varying, possibly noisy phenomenon with
higher fidelity. Instead of communicating the local data of
each sensing agent directly to every other agent which is
not scalable, the GP decentralized data fusion (GP-DDF)
algorithms of Chen et al. (2015) enable the agents to encap-
sulate their own data into constant-sized local summaries,
exchange them, and finally assimilate them into a globally
consistent summary to be exploited for predicting the phe-
nomenon. Different from the above distributed regression
algorithms, they do not need to exploit spatial locality as-
sumptions for gaining efficiency and can thus be used for
mobile sensing agents whose paths are not constrained by lo-
cality. They also do not suffer from the drawbacks of the GP
distributed data fusion algorithm of Cortes (2009) relying
on an iterative procedure of weighted least squares, which
assumes bounded correlation and uncorrelated past obser-
vations that can severely compromise its predictive perfor-
mance and converges very slowly in the case of a large
number of agents. In contrast, the GP-DDF algorithms can
be computed exactly and efficiently. More importantly, their
predictive performance can be theoretically guaranteed to be
equivalent to that of sophisticated centralized sparse approx-
imations (Chen et al. 2013; Hoang, Hoang, and Low 2015;
2016; 2017; Low et al. 2015; Quiñonero-Candela and Ras-
mussen 2005; Snelson and Ghahramani 2007; Xu et al.
2014) of the GP model.

However, like their centralized counterparts, the GP-DDF
algorithms rely on the notion of a fixed support set of input
locations common to all agents for encapsulating their own
data into local summaries, which raises three non-trivial is-
sues limiting their scalability to small domains of spatial
phenomena and hence small data sizes: (a) When the do-
main is expanded, the support set must be increased propor-
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Figure 1: (a-d) Maps of log-predictive variance/uncertainty (i.e., log σ2
x (5) for all x ∈ X ) over a simulated spatial phenomenon

with length-scale of 10 achieved by various decentralized data fusion algorithms given the same data and support set size for
each agent, and (e) graphs of reduction in RMSE of GP-DDF, full PITCs, and GP-DDF-ASS over local PITCs vs. varying
length-scales. Experimental setup, results, and analysis for this simulated experiment are detailed in Section 4.1.

tionally in size to cover and predict the phenomenon well
at the expense of greater time, space, and communication
overheads, which grows prohibitively costly; (b) supposing
the support set is restricted in size to limit the overheads
and thus only sparsely covers the large-scale phenomenon,
huge information loss due to summarization (and conse-
quently high predictive uncertainty, as shown in Fig. 1a) is
expected, especially when the local data gathered by the pos-
sibly “close” agents are “far” (i.e., in the correlation sense)
from the support set; and (c) if the current support set needs
to be replaced by a new support set of different size and input
locations (e.g., due to change in domain size or time, space,
and communication requirements, using an improved active
learning criterion to select a support set that better covers
and predicts the phenomenon), then all previously gathered
data (if not already discarded after summarization using old
support set) have to be re-encapsulated into local summaries
based on the new support set, which is not scalable.

To address these challenging issues faced by GP-DDF
algorithms, this paper presents novel Gaussian process de-
centralized data fusion algorithms with agent-centric sup-
port sets (Section 3) for distributed cooperative perception
of large-scale environmental phenomena. In contrast to ex-
isting GP-DDF algorithms, our proposed algorithms allow
every sensing agent to choose a possibly different support set
and dynamically switch to another during execution for en-
capsulating its own data into a local summary that, perhaps
surprisingly, can still be assimilated with the other agents’
local summaries (i.e., based on their current choices of sup-
port sets) into a globally consistent summary to be used for
predicting the phenomenon. To achieve this, we propose a
novel transfer learning mechanism for a team of mobile
sensing agents capable of sharing and transferring informa-
tion encapsulated in a summary based on a support set to
that utilizing a different support set with some loss that can
be theoretically bounded and analyzed, which is the main
contribution of our work here. To alleviate the issue of infor-
mation loss accumulating over multiple instances of transfer
learning, we propose a new information sharing mechanism
to be incorporated into our GP-DDF algorithms with agent-
centric support sets in order to achieve memory-efficient lazy
transfer learning. As a result, our algorithms can resolve the
above-mentioned critical issues plaguing existing GP-DDF
algorithms: (a) For any unobserved input location, an agent

can choose a small, constant-sized (i.e., independent of do-
main size of phenomenon) but sufficiently dense support set
surrounding it to predict its measurement accurately with
much lower predictive uncertainty (see Fig. 1d) while pre-
serving time, space, and communication efficiencies; (b) the
agents can reduce the information loss due to summariza-
tion by choosing or dynamically switching to a support set
“close” to their local data; and (c) without needing to retain
previously gathered data, an agent can choose or dynami-
cally switch to a new support set whose summary can be
constructed using information transferred from the summary
based on its current support set, thus preserving scalability to
big data. We empirically evaluate the performance of our al-
gorithms using real-world datasets featuring indoor lighting
quality gathered by a team of 3 real Pioneer 3-DX mobile
robots and sea surface temperature of the Indian ocean ex-
plored by 64 agents; the latter is millions in size (Section 4).

2 Background and Notations
Modeling Spatially Varying Environmental Phenomena
with Gaussian Processes (GPs). A GP can model a spa-
tially varying environmental phenomenon as follows: The
phenomenon is defined to vary as a realization of a GP.
Let X be a set representing the domain of the phenomenon
such that each location x ∈ X is associated with a real-
ized (random) measurement yx (Yx) if it is observed (un-
observed). Let {Yx}x∈X denote a GP, that is, any finite sub-
set of {Yx}x∈X follows a multivariate Gaussian distribution.
Then, the GP is fully specified by its prior mean µx , E[Yx]

and covariance σxx′ , cov[Yx, Yx′ ] for all x, x′ ∈ X , the
latter of which characterizes the spatial correlation structure
of the phenomenon and can be defined, for example, by the
squared exponential covariance function

σxx′ , σ2
s exp(−0.5‖Λ−1(x− x′)‖2) + σ2

nδxx′ (1)

where σ2
s (σ2

n) is its signal (noise) variance hyperparameter
controlling the intensity (noise) of the measurements, Λ is
a diagonal matrix with length-scale hyperparameters `1 and
`2 controlling, respectively, the degree of spatial correlation
or “similarity” between measurements in the horizontal and
vertical directions of the phenomenon, and δxx′ is a Kro-
necker delta that is 1 if x = x′, and 0 otherwise.

Supposing a column vector yD , (yx′)>x′∈D of realized
measurements is observed for some set D ⊂ X of loca-



tions, a GP model can exploit these observations/data to per-
form probabilistic regression by providing a Gaussian pos-
terior/predictive distribution

N (µx + ΣxDΣ−1DD(yD − µD), σxx − ΣxDΣ−1DDΣDx) (2)

of the measurement for any unobserved location x ∈ X \ D
where µD , (µx′)>x′∈D, ΣxD , (σxx′)x′∈D, ΣDD ,
(σx′x′′)x′,x′′∈D, and ΣDx , Σ>xD. To predict the phe-
nomenon, a naive approach to data fusion is to fully com-
municate all the data to every mobile sensing agent, each
of which then predicts the phenomenon separately using the
Gaussian predictive distribution in (2). Such an approach,
however, scales poorly in the data size |D| due to the need
to invert ΣDD which incurs O(|D|3) time.

GP Decentralized Data Fusion (GP-DDF). To improve
the scalability of the GP model for practical use in data fu-
sion, the work of Chen et al. (2015) has proposed efficient
and scalable GP decentralized data fusion algorithms for co-
operative perception of environmental phenomena that can
distribute the computational load among the mobile sens-
ing agents. The intuition of the GP-DDF algorithm of Chen
et al. (2015) is as follows: Each of the N mobile sensing
agents constructs a local summary of the data/observations
taken along its own path based on a common support set
S ⊂ X known to all the other agents and communicates its
local summary to them. Then, it assimilates the local sum-
maries received from the other agents into a globally consis-
tent summary which is used to compute a Gaussian predic-
tive distribution for predicting the phenomenon. Formally,
the local and global summaries and the Gaussian predictive
distribution induced by GP-DDF are defined as follows:

Definition 1 (Local Summary) Given a common support
set S ⊂ X known to all N mobile sensing agents, each
agent i encapsulates a column vector yDi

of realized mea-
surements for its observed locations Di into a local sum-
mary (νS|Di

,ΨSS|Di
) where

νB|Di
, ΣBDi

Σ−1DiDi|S(yDi
− µDi

) ,

ΨBB′|Di
, ΣBDiΣ

−1
DiDi|SΣDiB′

(3)

for all B,B′ ⊂ X and ΣDiDi|S , ΣDiDi
−ΣDiSΣ−1SSΣSDi

.

Definition 2 (Global Summary) Given a common support
set S ⊂ X known to allN mobile sensing agents and the lo-
cal summary (νS|Di

,ΨSS|Di
) of every agent i = 1, . . . , N ,

a global summary is defined as a tuple (ν̇S , Ψ̇SS) where

ν̇S ,
∑N

i=1 νS|Di
, Ψ̇SS ,

∑N
i=1 ΨSS|Di

+ ΣSS . (4)

Definition 3 (GP-DDF) Given a common support set S ⊂
X known to all N agents and the global summary
(ν̇S , Ψ̇SS), the GP-DDF algorithm run by each agent com-
putes a Gaussian predictive distribution N (µx, σ

2
x) of the

measurement for any unobserved location x ∈ X \D where

µx , µx + ΣxSΨ̇−1SS ν̇S ,

σ2
x , σxx − ΣxS(Σ−1SS − Ψ̇−1SS)ΣSx .

(5)

The Gaussian predictive distribution (5) computed by the
GP-DDF algorithm is theoretically guaranteed by Chen et
al. (2015) to be equivalent to that induced by the centralized
partially independent training conditional (PITC) approx-
imation (Quiñonero-Candela and Rasmussen 2005) of the
GP model. Running GP-DDF on each of the N agents can,
however, reduce theO(|D|((|D|/N)2+|S|2)) time incurred
by PITC to only O((|D|/N)3 + |S|3 + |S|2N) time, hence
scaling considerably better with increasing data size |D|.

Though GP-DDF scales well with big data, it can pre-
dict poorly due to information loss caused by summa-
rizing the measurements and correlation structure of the
data/observations and sparse coverage of the areas with
highly varying measurements by the support set. To ad-
dress its shortcoming, the GP-DDF+ algorithm of Chen et
al. (2015) additionally exploits the data local to an agent to
improve the predictions for unobserved locations “close” to
its data (in the correlation sense) while preserving the ef-
ficiency of GP-DDF by adopting its idea of summarizing
information into local and global summaries (Definitions 1
and 2). The Gaussian predictive distribution computed by
GP-DDF+ (Ouyang and Low 2017) is theoretically guaran-
teed by Chen et al. (2015) to be equivalent to that induced
by the centralized partially independent conditional (PIC)
approximation (Snelson and Ghahramani 2007) of the GP
model. GP-DDF+ shares the same improvement in scalabil-
ity over PIC as that of GP-DDF over PITC.

3 GP-DDF with Agent-Centric Support Sets
Transfer Learning. It can be observed from Section 2 that
the GP-DDF and GP-DDF+ algorithms depend on a com-
mon support set S known to all N mobile sensing agents,
which raises three non-trivial issues previously discussed in
Section 1: (a) Their cubic time cost in |S| prohibits increas-
ing the size of S too much to preserve their efficiency, which
consequently limits the expansion of the domain of the phe-
nomenon for which it can still be covered and predicted well;
(b) if S sparsely covers the large-scale phenomenon due to
its restricted size and is thus “far” from the data and un-
observed locations to be predicted, then the values of the
components in terms like ΣSDi and ΣxS tend to zero, which
degrade their predictive performance; and (c) when switch-
ing to a new support set, they have to wastefully discard all
previous summaries based on the old support set.

To address the above issues, a straightforward approach
inspired by the local GPs method is to partition the domain
of the phenomenon into local areas and run GP-DDF or GP-
DDF+ with a different, sufficiently dense support set for
each local area. Such an approach often suffers from dis-
continuities in predictions and very high predictive uncer-
tainty at the boundaries between local areas (see Fig. 1b) and
only utilizes the data within a local area for its predictions,
thereby performing poorly in local areas with little/no data.
These drawbacks motivate the need to design and develop
a transfer learning mechanism for a team of mobile sensing
agents capable of sharing and transferring information en-
capsulated in a summary based on a support set for a local
area to that utilizing a different support set for another area.
In this section, we will describe our novel transfer learning



mechanism and its use in our GP-DDF or GP-DDF+ algo-
rithm with agent-centric support sets and theoretically bound
and analyze its resulting loss of information.

Specifically, supposing a mobile sensing agent i moves
from a local area with support set S to another local area
with a different support set S ′ (i.e., S

⋂
S ′ = ∅), the

local summary (νS′|Di
,ΨS′S′|Di

) based on the new sup-
port set S ′ can be derived exactly from the local summary
(νS|Di

,ΨSS|Di
) utilizing the old support set S only when

the data (Di, yDi) gathered by agent i (i.e., discarded after
encapsulating into (νS|Di

,ΨSS|Di
)) in the local area with

support set S can be fully recovered from (νS|Di
,ΨSS|Di

),
which is unfortunately not possible. Our key idea is thus to
derive the local summary (νS′|Di

,ΨS′S′|Di
) approximately

from (νS|Di
,ΨSS|Di

) in an efficient and scalable manner by
exploiting the following important definition:
Definition 4 (Prior Summary) Given a support set S ⊂ X
for a local area, each mobile sensing agent i encapsulates a
column vector yDi

of realized measurements for its observed
locations Di into a prior summary (ωS|Di

,ΦSS|Di
) where

ωS|Di
, ΣSDi

Σ−1DiDi
(yDi
− µDi

) ,

ΦSS|Di
, ΣSDiΣ

−1
DiDi

ΣDiS .
(6)

The prior summary (ωS|Di
,ΦSS|Di

) (6) is defined in a simi-
lar manner to the local summary (νS|Di

,ΨSS|Di
) (3) except

for the ΣDiDi term in the former replacing the ΣDiDi|S term
in the latter and is the main ingredient for making our pro-
posed transfer learning mechanism efficient and scalable. In-
terestingly, the prior summary based on the new support set
S ′ can be approximated from the prior summary utilizing
the old support set S as follows:
Proposition 1 If YS′ and YDi

are conditionally independent
given YS (i.e., ΣS′Di|S = ΣS′Di

−ΣS′SΣ−1SSΣSDi
= 0) for

i = 1, . . . , N , then

ωS′|Di
= ΣS′SΣ−1SSωS|Di

,
ΦS′S′|Di

= ΣS′SΣ−1SSΦSS|Di
Σ−1SSΣSS′ .

(7)

Its proof is in (Ouyang and Low 2017).
Remark. The conditional independence assumption in
Proposition 1 extends that on the training conditionals of
PITC and PIC (Section 2) which have already assumed con-
ditional independence of YD1 , . . . , YDN

given YS . Alterna-
tively, it can be interpreted as a low-rank covariance matrix
approximation ΣS′SΣ−1SSΣSDi of ΣS′Di . The quality of this
approximation will be theoretically guaranteed later.

To efficiently and scalably derive the local summary
(νS′|Di

,ΨS′S′|Di
) approximately from (νS|Di

,ΨSS|Di
),

our transfer learning mechanism will first have to transform
the local summary (νS|Di

,ΨSS|Di
) to the prior summary

(ωS|Di
,ΦSS|Di

) based on the old support set S, then use the
latter to approximate the prior summary (ωS′|Di

,ΦS′S′|Di
)

based on the new support set S ′ by exploiting Proposition 1,
and finally transform the approximated prior summary back
to approximate the local summary (νS′|Di

,ΨS′S′|Di
), as de-

tailed in Algorithm 1 below. The above two transformations
can be achieved by establishing the following relationship
between the local summary and prior summary:

Proposition 2 Given a support set S ⊂ X for a local area,
the local summary (νS|Di

,ΨSS|Di
) (3) and the prior sum-

mary (ωS|Di
,ΦSS|Di

) (6) of agent i are related by

Φ−1SS|Di
ωS|Di

=Ψ−1SS|Di
νS|Di

, Φ−1SS|Di
=Ψ−1SS|Di

+Σ−1SS .

(8)
Its proof is in (Ouyang and Low 2017).

Supposing agent i has gathered additional data (D′i, yD′
i
)

from the local area with the new support set S ′, it can
be encapsulated into a local summary (νS′|D′

i
,ΨS′S′|D′

i
)

that is assimilated with the approximated local summary
(νS′|Di

,ΨS′S′|Di
) by simply summing them up:

νS′|Di
⋃
D′

i
= νS′|Di

+ νS′|D′
i
,

ΨS′S′|Di
⋃
D′

i
= ΨS′S′|Di

+ ΨS′S′|D′
i
,

(9)

which require making a further assumption of conditional
independence between D′i and Dj given the support set S ′
for j = 1, . . . , N .

Finally, to assimilate the local summary of agent i with
the other agents’ local summaries (i.e., based on their cur-
rent choices of support sets) into a global summary to be
used for predicting the phenomenon, the local summary
(νS′|Dj

,ΨS′S′|Dj
) of every other agent j 6= i based on agent

i’s support set S ′ can be derived approximately from the re-
ceived local summary (νS′′|Dj

,ΨS′′S′′|Dj
) based on agent

j’s support set S ′′ 6= S ′ using exactly the same transfer
learning mechanism described above. Then, the global sum-
mary (ν̇S′ , Ψ̇S′S′) can be computed via (4) and used by the
GP-DDF or GP-DDF+ algorithm (Section 2).

Supposing |S| = |S ′| = |S ′′| for simplicity, our trans-
fer learning mechanism in Algorithm 1 incurs only O(|S|3)
time (i.e., independent of data size |D|) due to multiplica-
tion and inversion of matrices of size |S| by |S|. Since the
support set for every local area is expected to be small, our
transfer learning mechanism is efficient and scalable.

Information Loss from Low-Rank Approximation. Re-
call from the remark after Proposition 1 that our transfer
learning mechanism has utilized a low-rank covariance ma-
trix approximation ΣS′SΣ−1SSΣSDi

of ΣS′Di
. To theoreti-

cally bound the information loss resulting from such an ap-
proximation, we first observe that it resembles the Nyström
low-rank approximation except that the latter typically in-
volves approximating a symmetric positive semi-definite
matrix like ΣS′S′ or ΣDiDi instead of ΣS′Di , which pre-
cludes a direct application of existing results on Nyström
approximation to our theoretical analysis. Fortunately, we
can exploit the idea of clustering with respect to S for our
theoretical analysis which is inspired by that of the Nyström
approximation of Zhang, Tsang, and Kwok (2008) but re-
sults in a different loss bound depending on the GP hyper-
parameters (Section 2) and the “closeness” of S ′ and Di to
S in the correlation sense.

Define c(x) as a function mapping each x ∈ Di

⋃
S ′ to

the “closest” c(x) ∈ S, that is, c : Di

⋃
S ′ → S where

c(x) , arg mins∈S ||Λ−1(x − s)||. Then, partition Di (S ′)
into |S| disjoint subsets Dis , {x ∈ Di | c(x) = s} (S ′s ,
{x ∈ S ′ | c(x) = s}) for s ∈ S . Intuitively, Dis (S ′s) is



Algorithm 1: GP-DDF/GP-DDF+ with agent-centric
support sets based on transfer learning for agent i

if agent i transits from local area with support set S to local
area with support set S ′ then

/* Transfer learning mechanism */
Construct local summary (νS|Di

,ΨSS|Di
) and transform

it to prior summary (ωS|Di
,ΦSS|Di

) by (8);
Derive prior summary (ωS′|Di

,ΦS′S′|Di
) based on S ′

approximately from (ωS|Di
,ΦSS|Di

) by (7);
Transform prior summary (ωS′|Di

,ΦS′S′|Di
) to local

summary (νS′|Di
,ΨS′S′|Di

) by (8);

if agent i has to predict the phenomenon then
if data (D′

i, yD′
i
) is available from local area with support

set S ′ then
Assimilate local summaries (νS′|Di

,ΨS′S′|Di
) with

(νS′|D′
i
,ΨS′S′|D′

i
) to yield

(νS′|Di
⋃

D′
i
,ΨS′S′|Di

⋃
D′

i
) by (9);

Exchange local summary with every agent j 6= i;
foreach agent j 6= i in local area with support set
S ′′ 6= S ′ do

Derive local summary (νS′|Dj
,ΨS′S′|Dj

) based on
S ′ approximately from received local summary
(νS′′|Dj

,ΨS′′S′′|Dj
) based on S ′′ using the above

transfer learning mechanism;

Compute global summary (ν̇S′ , Ψ̇S′S′) by (4) using local
summaries (νS′|Di

⋃
D′

i
,ΨS′S′|Di

⋃
D′

i
) and

(νS′|Dj
,ΨS′S′|Dj

) of every agent j 6= i;
Run GP-DDF or GP-DDF+ (Section 2);

a cluster of locations in Di (S ′) that are closest to location
s in the support set S. Our main result below theoretically
bounds the information loss ||ΣS′Di − ΣS′SΣ−1SSΣSDi ||F
resulting from the low-rank approximation ΣS′SΣ−1SSΣSDi

of ΣS′Di with respect to the Frobenius norm:

Theorem 1 Let σxx′ be defined by a squared exponential
covariance function (1), T , arg maxs∈S |Dis|, T ′ ,
arg maxs∈S |S ′s|, εS′ , |S ′|−1

∑
x∈S′ ||Λ−1(x − c(x))||2,

and εDi , |Di|−1
∑

x∈Di
||Λ−1(x− c(x))||2. Then,

||ΣS′Di
− ΣS′SΣ−1SSΣSDi

||F ≤
√

3/eσ2
s |S|TT ′(

√
εS′

+
√
εS′ + εDi

+
√
εDi

+ σ2
s ||Σ−1SS ||F |S|

√
3εS′εDi

/e) .

Its proof is in (Ouyang and Low 2017). Note that a simi-
lar result to Theorem 1 can be derived for other commonly-
used covariance functions such as those presented in the
work of Zhang, Tsang, and Kwok (2008). It can be ob-
served from Theorem 1 that the information loss ||ΣS′Di

−
ΣS′SΣ−1SSΣSDi

||F can be reduced when the signal variance
σ2
s is small, the length-scales `1 and/or `2 are large, the mo-

bile sensing agent i utilizes a support set S “close” to its
observed locations Di in a local area (i.e., smaller εDi ) and
moves to another local area with a support set S ′ “close” to
S (i.e., smaller εS′ ).

Lazy Transfer Learning. Theorem 1 above further re-
veals that every instance of transfer learning in Algorithm 1

incurs some information loss which accumulates over mul-
tiple instances when the agent transits between many local
areas and consequently degrades its resulting predictive per-
formance. This motivates the need to be frugal in the number
of instances of transfer learning to be performed.

To achieve this, our key idea is to delay transfer learn-
ing till prediction time but in a memory-efficient man-
ner1. Specifically, we propose the following new informa-
tion sharing mechanism to reduce memory requirements for
a team of mobile sensing agents: When agent i leaves a local
area, its local summary is communicated to another agent in
the same area who assimilates it with its own local summary
using (4). However, if no other agent is in the same area,
then agent i stores a backup of its local summary. On the
other hand, when agent i enters a local area containing other
agents, it simply obtains its corresponding support set to en-
capsulate its new data gathered in this area. But, if no other
agent is in this area, then agent i retrieves (and removes) the
backup of its corresponding local summary from an agent
who has previously visited this area2. If no agent has such
a backup, then agent i is the first to visit this area and con-
structs a new support set for it. Algorithm 2 in (Ouyang and
Low 2017) details GP-DDF/GP-DDF+ with agent-centric
support sets by incorporating the above information sharing
mechanism in order to achieve memory-efficient lazy trans-
fer learning.

To analyze the memory requirements of our information
sharing mechanism in Algorithm 2 in (Ouyang and Low
2017), let the domain of the phenomenon be partitioned
into K local areas. Then, the team of N mobile sensing
agents incurs a total of O((K + N)|S|2) memory in the
worst case when all the agents reside in the same local area
and the last agent entering this area stores the backups of
the local summaries for the other K − 1 local areas. How-
ever, the agents are usually well-distributed over the entire
phenomenon in practice: In the case of evenly distributed
agents, the team incurs a total of O(max(K,N)|S|2) mem-
ory. So, each agent incurs an amortized memory cost of
O(max(K,N)|S|2/N).

A limitation of the information sharing mechanism in Al-
gorithm 2 in (Ouyang and Low 2017) is its susceptibility
to agent failure: If an agent stores the backups of the local
summaries for many local areas and breaks down, then all
the information on these local areas will be lost. Its robust-
ness to agent failure can be improved by distributing mul-
tiple agents to every local area to reduce its risk of being
empty and hence its likelihood of inducing a backup.

4 Experiments and Discussion
This section empirically evaluates the performance of our
GP-DDF and GP-DDF+ algorithms with agent-centric sup-

1Naively, an agent can delay transfer learning by simply stor-
ing a separate local summary based on the support set for every
previously visited local area, which is not memory-efficient.

2Multiple backups of the local summary for the same local area
may exist if agents leave this area at the same time, which rarely
happens. In this case, agent i should retrieve (and remove) all these
backups from the agents storing them.



port sets using simulated spatial phenomena (Section 4.1)
and two real-world environmental phenomena (Section 4.2).

Performance Metrics. Two performance metrics are used
in our experiments: (a) Root-mean-square error (RMSE)√
|X |−1

∑
x∈X (µx − yx)2 measures the predictive perfor-

mance of the tested algorithms while (b) incurred time mea-
sures their efficiency and scalability.

4.1 Simulated Spatial Phenomena
The simulated experiment here is set up to demonstrate the
effectiveness of our proposed lazy transfer learning mecha-
nism (Section 3) that is driving our GP-DDF/GP-DDF+ al-
gorithms with agent-centric support sets (Ouyang and Low
2017): A number of 2-dimensional spatial phenomena of
size 50 by 50 are generated using signal variance σ2

s = 1,
noise variance σ2

n = 0.01, and by varying the length-scale
`1 = `2 from 1 to 20. The domain of the spatial phenomenon
is partitioned into 4 disjoint local areas of size 25 by 25
(Fig. 1), each of which contains an agent moving randomly
within to gather 25 local data/observations. We compare the
predictive performance of the following decentralized data
fusion algorithms: (a) Original GP-DDF (Chen et al. 2012;
2015) with a common support set of size 18 uniformly dis-
tributed over the entire phenomenon and known to all 4
agents, (b) PITCs utilizing local information (local PITCs)
with agent-centric support sets assign a different PITC to
each agent summarizing its gathered local data based on a
support set of size 18 uniformly distributed over its residing
local area, (c) PITCs utilizing full information (full PITCs)
with agent-centric support sets assign a different PITC to
each agent summarizing its gathered local data as well as
those communicated by the other agents (i.e., full data gath-
ered by all agents) based on a support set of size 18 uni-
formly distributed over its residing local area, (d) GP-DDF
with agent-centric support sets (GP-DDF-ASS) each of size
18 and uniformly distributed3 over a different local area (Al-
gorithm 2 in (Ouyang and Low 2017)). Note that if our pro-
posed lazy transfer learning mechanism in GP-DDF-ASS in-
curs minimal (total) information loss, then its predictive per-
formance will be similar to that of full PITCs (local PITCs).

Fig. 1 shows results of the maps of log-predictive vari-
ance (i.e., log σ2

x for all x ∈ X ) over a spatial phenomenon
with length-scale of 10 achieved by the tested decentralized
data fusion algorithms. It can be observed from Fig. 1a that
GP-DDF achieves the worst predictive performance since its
common support set, which is uniformly distributed over the
entire phenomenon, is of the same size as an agent-centric
support set uniformly distributed over each of the 4 smaller
disjoint local areas to be used by the other tested algorithms.
From Fig. 1b, though local PITCs can predict better than
GP-DDF, the predictive uncertainty at the boundaries be-
tween local areas remains very high, which is previously

3Alternatively, active learning can be used to select an infor-
mative support set a priori for each local area (Chen et al. 2015).
Empirically, this yields little performance improvement due to a
sufficiently dense (yet small) support set uniformly distributed over
the local area and slightly beyond its boundary by 10% of its width.

explained in Section 3. Fig. 1c shows the most ideal predic-
tive performance achieved by full PITCs because each agent
exploits the full data gathered by and exchanged with all
agents for encapsulating into a global summary based on the
support set distributed over its residing local area. Fig. 1d re-
veals that GP-DDF-ASS can achieve predictive performance
comparable to that of full PITCs without needing to ex-
change the full data between all agents due to minimal in-
formation loss by our lazy transfer learning mechanism.

Recall from Theorem 1 (Section 3) that the informa-
tion loss incurred by our proposed transfer learning mech-
anism depends on the closeness between the support sets
distributed over different local areas as well as the close-
ness (i.e., in the correlation sense) between the support sets
and the data/observations. The effect of varying such close-
ness on the performance of our transfer learning mecha-
nism can be empirically investigated by alternatively chang-
ing the length-scale to control the degree of spatial correla-
tion between the measurements of the phenomenon. Fig. 1e
shows results of the reduction in RMSE of GP-DDF, full
PITCs, and GP-DDF-ASS over local PITCs with varying
lengthscales from 1 to 20. It can be observed that only GP-
DDF performs worse than local PITCs while both GP-DDF-
ASS and full PITCs perform significantly better than local
PITCs, all of which are explained previously. Interestingly,
the reduction in RMSEs varies for different length-scales
and tends to zero when the length-scale is either too small
or large. With a very small length-scale, the correlations be-
tween the support sets distributed over different local areas
and between the support sets and the data/observations be-
come near-zero, hence resulting in poor transfer learning for
GP-DDF-ASS. This agrees with the observation in our theo-
retical analysis for Theorem 1 (Section 3). With a very large
length-scale, though their correlations are strong, the local
observations/data can be used by local PITCs to predict very
well, hence making transfer learning redundant. Our transfer
learning mechanism performs best with intermediate length-
scales where the correlations between the support sets dis-
tributed over different local areas and between the support
sets and the data are sufficiently strong but not to the extent
of achieving good predictions with simply local data.

4.2 Real-World Environmental Phenomena
The performance of our GP-DDF and GP-DDF+ algorithms
with agent-centric support sets are empirically evaluated
using the following two real-world datasets (as well as
the MODIS plankton density dataset in (Ouyang and Low
2017)): (a) The indoor lighting quality dataset contains 1200
observations of relative lighting level gathered simultane-
ously by three real Pioneer 3-DX mobile robots mounted
with SICK LMS200 laser rangefinders and weather boards
while patrolling an office environment, as shown in (Ouyang
and Low 2017). The domain of interest is partitioned into
K = 8 consecutive local areas and the robots patrol to
and fro across them such that they visit all K = 8 lo-
cal areas exactly twice to gather observations of relative
lighting level; and (b) the monthly sea surface temperature
(◦C) dataset (Ouyang and Low 2017) is bounded within
lat. 35.75-14.25S and lon. 80.25-104.25E (i.e., in the In-



dian ocean) and gathered from Dec. 2002 to Dec. 2015 with
a data size of 1083608. The huge spatiotemporal domain
of this phenomenon comprises 5-dimensional input feature
vectors of latitude, longitude, year, month, and season, and
is spatially partitioned into 32 disjoint local areas, each of
which is temporally split into 64 disjoint intervals (hence,
K = 2048) and assigned 2 agents moving randomly within
to gather local observations (hence, a total of 64 agents); the
results are averaged over 10 runs.

The performance of our GP-DDF and GP-DDF+ algo-
rithms with agent-centric support sets (respectively, GP-
DDF-ASS and GP-DDF+-ASS), each of which is of size
64 (324) and uniformly distributed3 over a different local
area of the office environment (temperature phenomenon),
are compared against that of the local GPs4 method and
state-of-the-art GP-DDF and GP-DDF+ (Chen et al. 2015)
with a common support set of size 64 (324) uniformly dis-
tributed over the entire office environment (temperature phe-
nomenon) and known to all agents; consequently, the lat-
ter construct local summaries of the same size. The hy-
perparameters of GP-DDF-ASS and GP-DDF+-ASS are
learned using maximum likelihood estimation, as detailed
in (Ouyang and Low 2017).

Predictive Performance. Figs. 2a and 2c show results of
decreasing RMSE achieved by tested algorithms with an in-
creasing total number of observations, which is expected.
It can be observed that GP-DDF-ASS and GP-DDF+-ASS,
respectively, outperform GP-DDF and GP-DDF+, as ex-
plained previously in the last paragraph of Section 1. Fur-
thermore, the performance improvement of GP-DDF-ASS
over GP-DDF is larger than that of GP-DDF+-ASS over
GP-DDF+, which demonstrates the effectiveness of our lazy
transfer learning mechanism, especially when some local ar-
eas lack data/observations. This also explains the better pre-
dictive performance of GP-DDF+-ASS over local GPs, even
though they both exploit local data.

Time Efficiency. In this experiment, we specifically eval-
uate the time efficiency of our transfer learning mechanism
(Section 3) in GP-DDF-ASS and GP-DDF+-ASS with re-
spect to the number of observations; to do this, we have in-
tentionally ignored the time incurred by their information
sharing mechanism (i.e., first if-then construct in Algorithm
2 in (Ouyang and Low 2017)) and compared their result-
ing incurred time with that of GP-DDF and GP-DDF+ (i.e.,
without transfer learning). Figs. 2b and 2d show results of
increasing total time incurred by tested algorithms when the
total number of observations increases, which is expected
(Section 2). It can be observed that GP-DDF-ASS and GP-
DDF+-ASS, respectively, incur only slightly more time than
GP-DDF and GP-DDF+ (i.e., due to an extra small fixed
cost of O(|S|3) time for transfer learning (Section 3)) to
achieve more superior predictive performance, especially for
GP-DDF-ASS. GP-DDF+-ASS incurs more time than GP-
DDF-ASS (local GPs) to further exploit local data (support
set and transfer learning) for improving its predictive perfor-
mance. For time-critical applications, we recommend using

4Local GPs result from a sparse block-diagonal ΣDD (2).

GP-DDF-ASS over GP-DDF+-ASS since its incurred time
is small and increases very gradually with more observations
while its performance improvement over GP-DDF is signif-
icant. For big data applications, GP-DDF+-ASS is instead
preferred since a large amount of local data is often available
in nearly every local area for prediction.

Scalability in the Number of Agents. Fig. 2e shows re-
sults of total time incurred by tested algorithms averaged
over 30 runs with an increasing number N of agents (i.e.,
up to 128 agents) to gather a total number of 1235 observa-
tions from a plankton density phenomenon; the experimen-
tal setup is detailed in (Ouyang and Low 2017). It can be
observed that the total time incurred by GP-DDF-ASS and
GP-DDF+-ASS decrease with more agents, as explained in
Section 2, and they, respectively, incur only slightly more
time than GP-DDF and GP-DDF+ due to their information
sharing mechanism described in Section 3 (i.e., first if-then
construct in Algorithm 2 in (Ouyang and Low 2017)). Addi-
tional empirical results and analysis for the plankton density
phenomenon are reported in (Ouyang and Low 2017).

5 Conclusion
This paper describes novel GP-DDF-ASS and GP-DDF+-
ASS algorithms for distributed cooperative perception of
large-scale environmental phenomena. To overcome the lim-
itations of scale of GP-DDF and GP-DDF+, our proposed
algorithms employ a novel transfer learning mechanism be-
tween agents which is capable of sharing and transferring
information encapsulated in a summary based on a support
set to that utilizing a different support set with some loss
that can be theoretically bounded and analyzed. To allevi-
ate the issue of information loss accumulating over multi-
ple instances of transfer learning, GP-DDF-ASS and GP-
DDF+-ASS exploit a new information sharing mechanism
to achieve memory-efficient lazy transfer learning. Empir-
ical evaluation on real-world datasets show that our trans-
fer learning and information sharing mechanisms make GP-
DDF-ASS and GP-DDF+-ASS incur only slightly more
time than GP-DDF and GP-DDF+ (i.e., without transfer
learning) to achieve more superior predictive performance.
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