
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems

Trong Nghia Hoang1,∗ and Quang Minh Hoang2,∗ and Kian Hsiang Low3 and Jonathan How4

MIT-IBM Watson AI Lab1, Carnegie Mellon University2

National University of Singapore3, Massachusetts Institute of Technology4

nghiaht@ibm.com1, qhoang@cs.cmu.edu2, lowkh@comp.nus.edu.sg3, jhow@mit.edu4

Abstract
This paper presents a novel Collective Online Learning of
Gaussian Processes (COOL-GP) framework for enabling a
massive number of GP inference agents to simultaneously
perform (a) efficient online updates of their GP models using
their local streaming data with varying correlation structures
and (b) decentralized fusion of their resulting online GP mod-
els with different learned hyperparameter settings and induc-
ing inputs. To realize this, we exploit the notion of a common
encoding structure to encapsulate the local streaming data
gathered by any GP inference agent into summary statistics
based on our proposed representation, which is amenable to
both an efficient online update via an importance sampling
trick as well as multi-agent model fusion via decentralized
message passing that can exploit sparse connectivity among
agents for improving efficiency and enhance the robustness
of our framework against transmission loss. We provide a
rigorous theoretical analysis of the approximation loss aris-
ing from our proposed representation to achieve efficient on-
line updates and model fusion. Empirical evaluations show
that COOL-GP is highly effective in model fusion, resilient
to information disparity between agents, robust to transmis-
sion loss, and can scale to thousands of agents.

1 Introduction
Distributed Gaussian process (GP) models (Chen et al.
2013; Deisenroth and Ng 2015; Gal, van der Wilk, and Ras-
mussen 2014; Hoang, Hoang, and Low 2016; Liu et al. 2018;
Low et al. 2015b) are conventionally designed with a server-
client paradigm where a server distributes the computational
load among parallel machines (i.e., client nodes) to achieve
scalability to big data. This paradigm can potentially allow
the richness and expressive power of GP models (Rasmussen
and Williams 2006) (Section 2) to be exploited by multi-
ple predictive inference agents for distributed inference of
the complex latent behavior underlying all their local data.
Such a prospect has inspired the recent development of dis-
tributed GP fusion algorithms (Allamraju and Chowdhary
2017; Chen, Low, and Tan 2013; Chen et al. 2012; 2015;
Ouyang and Low 2018): Essentially, the “client” agents en-
capsulate their own local data into memory-efficient sum-
mary statistics based on a common set of fixed/known GP hy-

∗T. N. Hoang and Q. M. Hoang contribute equally.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

perparameter settings and inducing inputs and communicate
them to some “server” agent(s) to be fused into globally con-
sistent summary statistics that are sent back to the “client”
agents for GP predictive inference. These distributed GP fu-
sion algorithms inherit the advantage of being adjustably
lightweight by restricting the number of inducing inputs
(hence the size of the local and global summary statistics)
to fit the agents’ limited computational and communication
capabilities at the expense of predictive accuracy.

However, such algorithms fall short of achieving the truly
decentralized GP fusion necessary for scaling up to a mas-
sive number of agents grounded in the real world (e.g., traf-
fic sensing, modeling, and prediction by autonomous ve-
hicles cruising in urban road networks (Chen et al. 2015;
Low et al. 2015a; Hoang et al. 2014; Min and Wynter 2011;
Ouyang et al. 2014; Wang and Papageorgiou 2005; Work
et al. 2010), distributed inference on a network of IoTs,
surveillance cameras and mobile devices/robots (Kang and
Larkin 2016; Natarajan et al. 2014; Hoang et al. 2018b;
Zhang et al. 2016)) due to the following critical issues: (a)
An obvious limitation is the single point(s) of failure with
the server agent(s) whose computational and communica-
tion capabilities must be superior and robust (e.g., against
transmission loss); (b) different GP inference agents are
likely to gather data of varying behaviors and correlation
structure from possibly separate localities of the input do-
main (e.g., spatiotemporal) and would therefore incur con-
siderable information loss due to summarization based on a
common set of fixed/known GP hyperparameter settings and
inducing inputs, especially when the inducing inputs are few
and far from the data (in the correlation sense); and (c) like
distributed GP models, distributed GP fusion algorithms im-
plicitly assume a one-time processing of a fixed set of data
and would hence repeat the entire fusion process involving
all local data gathered by the agents whenever new batches
of streaming data arrive, which is prohibitively expensive.

To overcome these limitations, this paper presents a novel
Collective Online Learning of GPs (COOL-GP) framework
for enabling a massive number of agents to simultaneously
perform (a) efficient online updates of their GP models us-
ing their local streaming data with varying correlation struc-
tures and (b) decentralized fusion of their resulting online
GP models with different learned hyperparameter settings
and inducing inputs residing in the original input domain.

A key technical challenge here lies in designing a repre-
sentation of the summary statistics for the streaming data
gathered by any GP inference agent, which can be both up-
dated and fused efficiently with that for another agent based
on possibly different hyperparameter settings and inducing
inputs. To realize this, we exploit the notion of a common
encoding structure to encapsulate the local streaming data
gathered by any GP inference agent into summary statistics
based on our proposed representation, which is amenable to
both an efficient online update via an importance sampling
trick as well as multi-agent model fusion via decentralized
message passing that can exploit sparse connectivity among
agents for improving efficiency and enhance the robustness
of our framework against transmission loss (Section 3). We
provide a rigorous theoretical analysis of the approximation
loss arising from our proposed representation to achieve effi-
cient online updates and model fusion in Section 4. Finally,
we empirically evaluate the performance of COOL-GP on
an extensive benchmark comprising both synthetic and real-
world datasets with thousands of agents (Section 5).

2 Background and Notations
The Gaussian process (GP) model (Rasmussen and
Williams 2006) is a rich class of Bayesian nonparametric
models that can represent the complex latent behavior under-
lying the data. Formally, letX ⊆ Rd denote an input domain
and f : X → R denote a random latent function mapping
each d-dimensional input feature vector x ∈ X to a random
latent output f(x) ∈ R and its noisy measurement y(x) ,
f(x) + ε(x) where ε(x) ∼ N (0, σ2

η) with noise variance
σ2
η . Let {f(x)}x∈X denote a GP, that is, for any finite subset

of inputs D ⊆ X , the corresponding column vector of ran-
dom outputs fD , [f(x)]>x∈D follow a multivariate Gaussian
distribution with mean vector [m(x)]>x∈D and covariance
matrix KDD , [kff(x,x

′)]x,x′∈D induced, respectively,
from user-specified prior mean m(x) , E[f(x)] (assumed
0 for notational simplicity) and covariance kff(x,x

′) ,
cov[f(x), f(x′)] for all x,x′ ∈ X , the latter of which defines
the correlation structure of f via a kernel parameterized by θ.
Supposing a vector of noisy measurements yD , [y(x)]>x∈D
are available for some set of training inputs D ⊆ X , the
GP posterior/predictive belief of f(x∗) for any test input
x∗ ∈ X remains a Gaussian with posterior mean µ(x∗) ,
k>∗ (KDD+σ

2
ηI)
−1yD and variance σ2(x∗) , kff(x∗,x∗)−

k>∗ (KDD + σ2
ηI)
−1k∗ where k∗ , [kff(x∗,x)]

>
x∈X . A GP

predictive belief over input domain X can thus be repre-
sented by 〈(KDD + σ2

ηI)
−1yD, (KDD + σ2

ηI)
−1, θ〉, albeit

inefficiently due to the inverse of KDD+σ2I that incurs cu-
bic time and quadratic memory in the size of training data.

To improve its efficiency, a number of sparse GP mod-
els (Hoang, Hoang, and Low 2016; Low et al. 2015b;
Quiñonero-Candela and Rasmussen 2005; Snelson and
Ghahramani 2007; Titsias 2009; Titsias and Lázaro-Gredilla
2013) exploiting the notion of inducing variables have been
proposed to reduce the incurred time and memory to be
linear in the data size. Among them is the notable work
of Titsias and Lázaro-Gredilla (2013) that introduced a vari-

ational Bayesian sparse GP model capable of learning both
the posterior beliefs of inducing variables and hyperpa-
rameters and hence the predictive belief by marginalizing
them out. Specifically, let Z ⊆ Rd denote an input do-
main and u : Z → R denote a random latent function
mapping each d-dimensional input feature vector z ∈ Z
to a random latent output u(z) ∈ R. Let {u(z)}z∈Z de-
note a standard GP with zero prior mean and prior covari-
ance kuu(z, z

′) , cov[u(z),u(z′)] for all z, z′ ∈ Z de-
fined by a special squared exponential kernel kuu(z, z

′) ,
exp(−0.5(z−z′)>(z−z′)) such that its signal variance and
length-scales are set to unity. Supposing f(x) = σsu(z =
Wx), {f(x)}x∈X is a GP with prior covariance kff(x,x

′) =
σ2
sexp(−0.5(x− x′)>W>W(x− x′)) for all x,x′ ∈ X

parameterized by signal variance σ2
s and a projection matrix

W from x ∈ X to z ∈ Z , and cross covariance kfu(x, z) ,
cov[f(x),u(z)] = σsexp(−0.5(Wx− z)>(Wx− z)) for
all x ∈ X and z ∈ Z .

Efficiency is then achieved by exploiting a vector
uI = [u(z)]>z∈I of latent inducing output variables for
some small set I ⊂ Z of inducing inputs(i.e., |I| �
|D|) to construct summary statistics for training data
〈D,yD〉. Specifically, to efficiently compute the poste-
rior/predictive belief of f(x∗) for any test input x∗ ∈
X given yD via marginalization, it involves approximat-
ing p(uI ,W|yD) by a variational distribution q(uI ,W)
which is in turn optimized by minimizing the Kullback-
Leibler distance DKL(q(fD,uI ,W),p(fD,uI ,W|yD))
between q(fD,uI ,W) , p(fD|uI ,W)q(uI ,W) and
p(fD,uI ,W|yD) or, equivalently, maximizing the varia-
tional lower bound:

L(q) , Eq[log p(yD|fD)]−DKL(q(uI ,W)‖p(uI ,W)) .
(1)

By further factorizing the prior p(uI ,W) = p(uI)p(W)

such that p(uI) , N (uI |0,KII) with KII ,
[kuu(z, z

′)]z,z′∈I and p(W) is a product of standard nor-
mal factors, the following optimal variational distribu-
tion results: q(W) =

∏d
i=1

∏d
j=1N (wij |µij , σ2

ij) where
W , [wij]i,j=1,...,d and the variational parameters θ ,
{µij , σij}i,j=1,...,d (along with the other hyperparameters
such as the signal and noise variances σ2

s and σ2
η) are op-

timized via gradient ascent of L(q). Given q(W), σ2
s , and

σ2
η , q(uI) is also a Gaussian whose mean vector m and co-

variance matrix S can be analytically derived as

m , KII(σ
2
ηKII +CII)

−1CIDyD ,

S , σ2
ηKII(σ

2
ηKII +CII)

−1KII
(2)

where CII , Eq(W)[KIDKDI], CID , Eq(W)[KID],
KDI , [kfu(x, z)]x∈D,z∈I , and KID , K>DI . Then, (2)
yields summary statistics 〈m,S, θ〉 (i.e., for training
data 〈D,yD〉) to efficiently represent p(uI ,W|yD) ≈
q(uI ,W) = q(uI)q(W) and hence the predictive belief
over X since it incurs linear time & memory in the data size.

Remark 1 Let U , {W−1z}z∈I ⊂ X . That is, every in-
ducing input z ∈ I can be mapped to a corresponding input
x ∈ U ⊂ X . Optimizing the variational distribution q(W)

has an effect of optimizing the distribution of mapped induc-
ing inputs U in the original input domain X .

Consider the problem of an input domain X (e.g., urban
road network) being persistently sampled by a massive sys-
tem of GP inference agents, each of whom is gathering a
continuous stream of data with a possibly different corre-
lation structure from some locality of X to train its own
GP or sparse GP model (Hoang, Hoang, and Low 2016;
Low et al. 2015b; Quiñonero-Candela and Rasmussen 2005;
Snelson and Ghahramani 2007; Titsias 2009; Titsias and
Lázaro-Gredilla 2013) for predictive inference. Such GP
models are, however, prohibitively costly to be directly de-
ployed for fusion of streaming data between agents. This
is likewise true for the existing distributed GP models and
GP fusion algorithms which also suffer from other critical
limitations discussed in Section 1. How then can a mas-
sive system of GP inference agents effectively and scalably
fuse their local streaming data with possibly varying cor-
relation structures? In the next section, we will tackle this
challenge by proposing a Collective Online Learning of GPs
(COOL-GP) framework that exploits a common encoding
structure (specifically, inducing inputs I residing in the in-
put domain Z of the standard GP) to encapsulate the local
streaming data gathered by any GP inference agent into sum-
mary statistics based on our proposed representation, which
is amenable to both an efficient online update as well as
model fusion between a massive number of agents.

3 Collective Online Learning of Gaussian
Processes (COOL-GP)

On first thought, one may straightaway consider endowing
each agent with an existing online/stochastic variant of a
GP or sparse GP model (Bui, Nguyen, and Turner 2017;
Cheng and Boots 2016; Csató and Opper 2002; Hensman,
Fusi, and Lawrence 2013; Hoang, Hoang, and Low 2015; Xu
et al. 2014; Hoang, Hoang, and Low 2017) for training with
streaming data scalably. However, such online/stochastic
variants are not naturally amenable to model fusion be-
tween agents, especially when their GP models are updated
to different hyperparameter settings due to their streaming
data with possibly varying correlation structures. Some have
in fact assumed known hyperparameter settings instead of
learning them online. We will now show how the natural pa-
rameterization of q(uI) (2) can be exploited for deriving (a)
its efficient online update with streaming data via an impor-
tance sampling trick (Section 3.1) in order to accommodate
an online update of the hyperparameters (Section 3.2) and in
turn (b) a decentralized message passing algorithm to per-
form online GP model fusion between a massive number of
agents via the common encoding I (Sections 3.3 and 3.4).

3.1 Online Update of q(uI)

Let R , [R? R◦] , [S−1 S−1m] denote the nat-
ural parameters of q(uI). Then, (2) can be reparame-
terized in terms of R to reveal an additive decompos-
ability over a stream of disjoint batches of training data
〈D1,yD1

〉, . . . , 〈DN ,yDN
〉 where the set of training inputs

D ,
⋃N
n=1Dn such that Dn ∩ Dn′ = ∅ for all n, n′ =

1, . . . , N . It follows from (2) that (Hoang et al. 2018a)

R? = K−1
II +

N∑
n=1

En? , En? ,
1

σ2
η

K−1
IIC

n
IIK

−1
II

R◦ =

N∑
n=1

En◦ , En◦ ,
1

σ2
η

K−1
IICIDn

yDn

(3)

where Cn
II , Eq(W)[KIDn

KDnI]. Supposing q(W) is
fixed, (3) reveals an efficient online update of q(uI) as each
update incurs linear time in the size |Dn| of a data batch
only. Specifically, let Rn−1 , [Rn−1

? Rn−1
◦] denote the

natural parameters of q(uI) after being updated by a stream
of n − 1 data batches 〈D1,yD1

〉, . . . , 〈Dn−1,yDn−1
〉 re-

ceived previously and En , [En? En◦] denote the summary
statistics for an incoming data batch 〈Dn,yDn

〉. It follows
directly from (3) that

Rn = Rn−1 +En . (4)

Updating Rn−1 to Rn (4) is efficient as it only requires
evaluating En which incurs linear time in the size |Dn|
of the incoming data batch. However, if q(W) is also up-
dated by every incoming data batch, then C1

II , . . . ,C
n−1
II

and CID1 , . . . ,CIDn−1 have to be recomputed with re-
spect to the updated q(W) and hence incur linear time in
the size of the accumulating data batches, which becomes
prohibitively expensive when data streams in at a high ve-
locity. To sidestep the inefficiency from such recomputa-
tions, we exploit an importance sampling trick to approxi-
mate Cn

II ≈ Ĉn
II and CIDn

≈ ĈIDn
with M i.i.d. sam-

ples W1, . . . ,WM drawn from the prior p(W):

Ĉn
II ,

1

M

M∑
m=1

q(Wm)

p(Wm)
Km
IDn

Km
DnI ,

ĈIDn ,
1

M

M∑
m=1

q(Wm)

p(Wm)
Km
IDn

(5)

where Km
IDn

and Km
DnI denote, respectively, KIDn and

KDnI parameterized by sample Wm. Using (5), we can
then approximate En ≈ Ên , [Ên? Ên◦] where

Ên? ,
1

σ2
η

K−1
IIĈ

n
IIK

−1
II , Ên◦ ,

1

σ2
η

K−1
IIĈIDn

yDn
. (6)

Finally, the online update of q(uI) in (4) can be approx-
imated by R̂n = R̂n−1 + Ên. To see why this is effi-
cient, since W1, . . . ,WM can be generated a priori, the
Km
IDn

Km
DnI and Km

IDn
yDn

terms for m = 1, . . . ,M in (5)
and (6) can be computed only once in O(M |Dn|) time (by
treating |I| as a constant) for every incoming data batch
〈Dn,yDn〉 and cached for use in recomputing Ên (6) effi-
ciently in O(M) time whenever q(W) is updated by each
subsequent incoming data batch. As a result, the update to
R̂N after receiving the incoming data batch 〈DN ,yDN

〉will
incur a total ofO(MN +M |DN |) time due to recomputing
R̂N−1 =

∑N−1
n=1 Ên and evaluating ÊN . As will be shown

in Lemma 1 (Section 4), an appropriate choice ofM guaran-
tees an arbitrarily small approximation loss, which is made
possible by our choices of Ĉn

II and ĈIDn
in (5) that are

unbiased estimates of Cn
II and CIDn

.

3.2 Online Update of q(W)

Naively, the online update of q(W) can be achieved via gra-
dient ascent θ ← θ + ∂L(q)/∂θ. This is however ineffi-
cient as the exact gradient ∂L(q)/∂θ needs to be recomputed
with respect to the accumulating data batches and the up-
dated q(uI). To overcome this issue, we first derive an addi-
tive decomposability of the variational lower bound L(q) (1)
over disjoint batches of data 〈D1,yD1

〉, . . . , 〈DN ′ ,yDN′ 〉,
as shown in (Hoang et al. 2018a):

L(q) =
∑N ′

n=1 LDn(q)−DKL(q(uI ,W)‖p(uI ,W))

with LDn(q) , Eq(uI ,W)[Ep(fDn |uI ,W)[log p(yDn
|fDn

)]].
Suppose that an agent has received a stream of data batches
sampled in a uniformly random order from the training
data with the most recent incoming data batch denoted by
〈D∗,yD∗〉. Using only 〈D∗,yD∗〉, we can construct an un-
biased stochastic gradient ∂L̂(q)/∂θ of L(q):

∂L̂(q)

∂θ
= N ′

∂LD∗(q)

∂θ
− ∂

∂θ
DKL(q(uI ,W)‖p(uI ,W))

which satisfies E〈D∗,yD∗ 〉[∂L̂(q)/∂θ] = ∂L(q)/∂θ (Hoang
et al. 2018a) and its evaluation incurs linear time in the
size |D∗| of the data batch instead of that of the accumu-
lating data batches. The resulting stochastic gradient ascent
is guaranteed to converge to a local optimum given an appro-
priate schedule of learning rates (Robbins and Monro 1951).
Note that the signal and noise variance hyperparameters can
be updated in a similar manner by stochastic gradient ascent.

Remark 2 Though the stochastic gradient ∂L̂(q)/∂θ is eval-
uated using only 〈D∗,yD∗〉, it depends on the natural param-
eters of the updated q(uI) that are summary statistics for the
stream of data batches received previously (Section 3.1).

3.3 Model Fusion between Pairwise Agents
In this subsection, we will describe a novel model fu-
sion mechanism between pairwise agents to exchange and
fuse their online sparse GP models of possibly different
learned hyperparameter settings (Sections 3.1 and 3.2).
Then, we will generalize such a mechanism for online GP
model fusion between a massive number of agents in Sec-
tion 3.4. Suppose that two agents a and b have performed on-
line updates of their corresponding variational distributions
qa(uI ,Wa) = qa(uI)qa(Wa) ≈ p(uI ,Wa|yDa

) and
qb(uI ,Wb) = qb(uI)qb(Wb) ≈ p(uI ,Wb|yDb

) with
their respective streaming data 〈Da,yDa〉 and 〈Db,yDb

〉
(Sections 3.1 and 3.2). Since Wa and Wb will be marginal-
ized out for predictive inference, we can focus on approxi-
mating p(uI |yDa ,yDb

) directly. To achieve this, note that

p(uI |yDa ,yDb
)∝ p(uI |yDa

)p(uI |yDb
)

p(uI)
≈ qa(uI)qb(uI)

p(uI)
(7)

where the first step is derived in (Hoang et al.
2018a). (7) implies that p(uI |yDa ,yDb

) can be ap-
proximated by fusing the summary statistics (i.e., for
〈Da,yDa

〉 and 〈Db,yDb
〉) that represent qa(uI) and

qb(uI): qab(uI) ∝ qa(uI)qb(uI)/p(uI). Specifically, let
qa(uI) = N (uI |ma,Sa) and qb(uI) = N (uI |mb,Sb)
where the parameters ma,mb,Sa, and Sb are computed us-
ing (2). Then, it can be derived (Hoang et al. 2018a) that
qab(uI) = N (uI |mab,Sab) where

Sab , (S−1
a + S−1

b −K−1
II)
−1 ,

mab , Sab(S
−1
a ma + S−1

b mb) .
(8)

Let Rab, Ra, Rb, and R0 denote the natural parameters
of qab(uI), qa(uI), qb(uI), and p(uI), respectively (Sec-
tion 3.1). It follows that (8) can be rewritten concisely as

Rab = Ra +Rb −R0 . (9)

In practice, since maintaining the exact natural parameters
Ra and Rb is inefficient for their respective online updates
of qa(uI) and qb(uI), we instead use their efficient coun-
terparts R̂a and R̂b (Section 3.1) to approximate Rab by

R̂ab = R̂a + R̂b −R0 . (10)

The time incurred by this fusion (10) depends only on the
constant number |I| of inducing inputs and is thus indepen-
dent of the total size |Da|+ |Db| of the streaming data.
Remark 3 Though qa(Wa) and qb(Wb) are not explicitly
fused, they will be updated, respectively, by agents a and
b using the fused qab(uI), as explained in Remark 2. This
consequently improves their distributions of mapped induc-
ing inputs in the original input domain X (Remark 1), which
in turn reduces information loss arising from encapsulating
their streaming data into summary statistics (Section 3.1) for
fusion (10) via the common encoding structure I.

3.4 Decentralized Message Passing for
Multi-Agent Model Fusion

This subsection generalizes the model fusion mechanism
in (10) to that beyond two agents. Specifically, consider a
massive system ofAGP inference agents, each of whom has
performed an online update of qa(uI) ≈ p(uI |yDa

) with
streaming data 〈Da,yDa

〉 to obtain the exact natural param-
eters Ra for a = 1, . . . , A (Section 3.1). It can be shown
(Hoang et al. 2018a) that the exact natural parameters RF
of their fused qF (uI) ≈ p(uI |yD1 , . . . ,yDA

) is

RF =
∑A
a=1 Ra − (A− 1)R0 . (11)

Naively, RF (11) can be approximated by

R̂F =
∑A
a=1 R̂a − (A− 1)R0 (12)

using R̂a obtained from the efficient online update of
qa(uI) by agent a for a = 1, . . . , A (Section 3.1). How-
ever, computing (12) requires either direct communication
between every pairwise agents or a central server through
which all agents coordinate their communications. The for-
mer implies a fully connected network which is not desirable

in large spatial input domains (e.g., urban road networks,
ocean phenomena) where the agents have limited commu-
nication range (Chen et al. 2015; Ouyang and Low 2018)
while the latter introduces a single point of failure (Sec-
tion 1). To circumvent these issues, we will describe a de-
centralized message passing algorithm to compute (12) that
allows agents to exchange their summary statistics as mes-
sages among one another within their communication range.

Let Mt+1
ab denote the message that agent a sends to agent

b (i.e., within its communication range) in iteration t + 1,
which fuses the summary statistics of agent a with that re-
ceived from the other agents in the previous t iterations of
transmission. This must not include the summary statistics
of agent b to avoid aggregating duplicates of information.
Thus, Mt+1

ab essentially fuses the summary statistics of all
agents (except that of agent b) whose messages can reach
agent a within t iterations of direct transmission.

As such, Mt+1
ab can be recursively computed by aggre-

gating only messages received from those agents within the
communication range of agent a (except that of agent b) in
the previous iteration t:

Mt+1
ab = R̂a +

∑
k∈N (a)\{b}(M

t
ka −R0)

where N (a) denotes the set of agents in the communica-
tion range of agent a and the subtraction of R0 from Mt

ka
prevents aggregating multiple copies of the natural param-
eters R0 of the prior p(uI), which has already been fused
into R̂a. In iteration t = 0, the message only contains the
summary statistics of agent a (i.e., M0

ab = R̂a) since no
message from other agents can reach agent a in 0 iteration
of transmission. Upon convergence in iteration t = tmax

1,
every agent a can aggregate the received messages to yield
the same globally consistent summary statistics:

R̂F = R̂a +
∑
k∈N (a)(M

tmax

ka −R0)

where the repeated subtraction of R0 from Mtmax

ka is to pre-
vent aggregating multiple copies of R0 into R̂F .

4 Theoretical Analysis
In this section, we will prove that the approximate globally
consistent summary statistics R̂F is theoretically guaran-
teed to be arbitrarily close to the exact counterpart RF with
high confidence (Theorem 1). In particular, we are interested
to bound the approximation loss of R̂F relative to RF in
terms of the numbers M of samples of projection matrices
drawn from the prior p(W) (Section 3.1), A of agents, and
|I| of inducing inputs. To do this, we will first probabilisti-
cally bound the approximation loss of R̂a relative to Ra for
any agent a due to our choice of approximate representation
that results from our importance sampling trick to achieve
efficient online update of qa(uI) (Section 3.1):

1For a tree-topology network, our message passing algorithm
converges to the exact optimum after tmax iterations where tmax is
the tree’s diameter. The agents can run a decentralized minimum
spanning tree algorithm to eliminate redundant connections with
high latency to guarantee that their connection topology is a tree.

Lemma 1 (Representation Loss) Given ε > 0 and δ ∈
(0, 1), ‖Ra − R̂a‖ ≤ ε with probability of at least 1 − δ

by setting M , O((|I|2/ε2) log(|I|/δ)).
Its proof is in (Hoang et al. 2018a). Using Lemma 1, we can
now bound the approximation loss of R̂F relative to RF due
to multi-agent model fusion (Section 3.4):
Theorem 1 (Fusion Loss) Given ε > 0 and δ ∈ (0, 1),
‖RF − R̂F‖ ≤ ε with probability of at least 1− δ by setting
M , O((|I|2A2/ε2) log(|I|A/δ)).
Its proof is in (Hoang et al. 2018a).
Remark 4 The above results imply that both the represen-
tation and fusion losses can be guaranteed to be arbitrarily
small with high probability by choosing a sufficiently large
numberM of samples of projection matrices drawn from the
prior p(W) (Section 3.1). Theorem 1 also indicates that the
required number M of samples has to grow quadratically in
the numbers A of agents and |I| of inducing inputs in order
to guarantee the same fusion quality at the expense of the
time efficiency of the online updates of qa(uI) by agents
a = 1, . . . , A (Section 3.1).

5 Experiments and Discussion
This section empirically evaluates the fusion performance of
our COOL-GP framework, its resilience to information dis-
parity between agents, and robustness to transmission loss
on both synthetic and real-world experimental domains:
(a) The SYNTHETIC domain features two streaming
datasets generated by f(x) , u(Wx) and f ′(x) , u(W′x)
with the respective projection matrices W and W′ where
the common random function u(z) is sampled from a stan-
dard GP (Section 2). Each streaming dataset of size 8000
comprises 200 batches of 6-dimensional data of size 40. A
separate test data of size 4000 is generated from f and f ′.
(b) The AIRLINE domain (Hensman, Fusi, and Lawrence
2013; Hoang, Hoang, and Low 2015) features an air trans-
portation delay phenomenon that generates streaming data
of size 600000 comprising 30000 batches of 20 observa-
tions each. Each observation has a 8-dimensional input fea-
ture vector containing the information log of a commercial
flight and a corresponding output recording its time delay
(min). The system comprises 1000 agents, each of whom is
evaluated using a separate test data of size 10000.
(c) The AIMPEAK domain (Hoang, Hoang, and Low 2016)
features a traffic phenomenon which took place over an ur-
ban road network comprising 775 road segments. 10000
data batches are then generated from the traffic phenomenon
and streamed in random order to a system of 100 GP in-
ference agents. Each observation has a 5-dimensional input
feature vector and a corresponding output of the traffic speed
(km/h). The predictive performance of each agent is then
evaluated using a separate test data of size 2000.

In all experiments, each data batch arrives sequentially in
a random order and is dispatched to a random agent. This
simulates collective online learning scenarios with stream-
ing data where agents gather one data batch at a time. We
report the averaged predictive performance before and after

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19
A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19

A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

(a) |I| = 50 &M = 5 (b) |I| = 50 &M = 10

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19

A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19

A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

(c) |I| = 100 &M = 5 (d) |I| = 100 &M = 10

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19

A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

5 10 15 20 25 30 35 40
No. data batches (per agent)

17

18

19

A
v
e.

R
M
S
E

Pre-Fusion
Post-Fusion

(e) |I| = 150 &M = 5 (f) |I| = 150 &M = 10

Figure 1: Graphs of averaged pre- and post-fusion perfor-
mance vs. the no. of data batches dispatched to 2 agents with
varying numbers |I| of and M .

fusion by the agents vs. the number of streamed data batches
to demonstrate the fusion performance of our COOL-GP
framework in such distributed streaming data settings.

Fig. 1 reports the results of our COOL-GP framework in
a collective online learning scenario where two agents fuse
their online sparse GP models of two correlated, synthetic
phenomena to improve their averaged performance on test
instances from their input localities. Fig. 2 further reports the
performance of COOL-GP in a real-world traffic monitoring
application deployed on a large, decentralized network con-
sisting of 100 agents. Both of these cases demonstrate the ef-
fectiveness of COOL-GP fusion on the averaged predictive
accuracy vs. varying numbers of streamed data batches for
different numbers |I| of inducing inputs and M of projec-
tion matrix samples (Section 3.1). Across all configurations,
a consistent pattern can be observed: (a) post-fusion predic-
tions exhibit significant performance gain as compared to
pre-fusion predictions, and (b) the performance gap gradu-
ally reduces with more gathered data, which suggests a di-
minishing marginal gain of model fusion.

Fig. 3a demonstrates the computational benefit of COOL-
GP (100 agents, 30 data batches per agent) by comparing
the total of its averaged incurred time (per agent) against
the running time of DTC and PITC (Quiñonero-Candela and
Rasmussen 2005), which correspond to the sequential ver-

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

(a) |I| = 50 &M = 5 (b) |I| = 50 &M = 20

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

(c) |I| = 100 &M = 5 (d) |I| = 100 &M = 20

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

5 10 15 20 25 30
No. data batches (per agent)

14

16

18

20

22

24

A
v
e.

R
M
S
E

(k
m
/
h
)

Pre-Fusion
Post-Fusion

(e) |I| = 200 &M = 5 (f) |I| = 200 &M = 20

Figure 2: Graphs of averaged pre- and post-fusion perfor-
mance vs. no. of data batches of 100 agents gathering data
from the same traffic phenomenon with varying |I| and M .

sions of dDTC and dPITC. The result shows that for 6000
data points, DTC and PITC incur 445 and 1145 seconds re-
spectively. On the other hand, COOL-GP’s averaged pro-
cessing time per agent is 13 seconds, which is 34.23 and
88.07 times faster than DTC and PITC, respectively. Fig. 3b
further shows that the predictive performance and process-
ing time (per agent) of COOL-GP, respectively, increases
and decreases with more participating agents.

Fig. 4 visualizes a comprehensive collection of individual
performance profiles of 1000 agents in the AIRLINE do-
main; each profile is represented by a pair of pre- and post-
fusion RMSEs. The result shows that with more gathered
data, clusters of performance profiles (i.e., each cluster is
visualized by a colored point cloud) gradually migrate to-
wards regions with superior pre- and post-fusion accuracy.
The migration distance, however, reduces rapidly in later
stages of data gathering, which is consistent with the previ-
ous observation on the diminishing return of model fusion.
Interestingly, it can also be observed that within each cluster,
the performance profiles exhibit high variance for pre-fusion
and low variance for post-fusion performance, which sug-
gests that agents are able to achieve post-fusion consensus
within small range of variation (i.e., fusion stability).

We also investigate an interesting case study of model fu-
sion between agents allocated with different amounts of data
in the AIMPEAK traffic domain. Specifically, Fig. 5a re-
ports the performance of two agents A1 (fixed amount of

2000 3000 4000 5000 6000

Total no. data points

10
0

10
1

10
2

10
3

10
4

P
ro
ce
ss
in
g
ti
m
e
(s
ec
) COOL-GP

DTC
PITC

25 50 100

No. agents

10

15

R
M

S
E

 (
k
m

/h
)

0

10

20

30

T
im

e
 (

s
e
c
)

Performance

Processing Time

(a) (b)

Figure 3: Graphs of (a) processing time vs. total no. of data
points of DTC, PITC and COOL-GP; and (b) RMSE vs. no.
of agents (25, 50 and 100) of COOL-GP (30 batches per
agent and M = 20) tested on AIMPEAK dataset.

38 38.2 38.4 38.6 38.8 39 39.2 39.4 39.6

Post-Fusion RMSE (min)

39

40

41

42

43

44

45

46

47

Pr
e-

Fu
si

on
 R

M
SE

 (
m

in
)

05 batches
10 batches
15 batches
20 batches
25 batches
30 batches

Data per agent

Figure 4: Graphs of individual performance profiles (pre-
vs. post-fusion RMSE) of a 1000-agent system collectively
learning using our COOL-GP framework in the AIRLINE
domain (Hensman, Fusi, and Lawrence 2013).

data) and A2 (continuous stream of data). Without fusion,
A1 fails to update its model and improve its performance
as expected whereas A2 still exhibits gain in performance
as it receives more data. With fusion, however, the perfor-
mance of A1 is brought close to that of A2 and far exceeds
its original accuracy. More interestingly, it can be observed
that the performance of A2 also marginally improves upon
fusion with a conservative A1 who never gathers new data to
update its model. This demonstrates that COOL-GP greatly
benefits agents with lesser learning capabilities and, at the
same time, mildly improves the performance of those with
better capabilities (i.e., resilience to information disparity).

Finally, in the traffic domain (i.e., AIMPEAK), we present
another interesting case study that features a collective on-
line learning scenario among 100 agents where each mes-
sage transmission (or local statistics in the cases of dis-
tributed GPs such as dDTC (Gal, van der Wilk, and Ras-
mussen 2014) and dPITC (Hoang, Hoang, and Low 2016))
may not reach its destination with a certain probability. The
averaged post-fusion performance are plotted against the
rate of transmission loss to demonstrate the robustness of
COOL-GP to transmission loss. Fig. 5b shows that as trans-

5 10 15 20 25 30
No. N of streaming data batches

14

15

16

17

18

19

R
M
S
E

(k
m
/
h
)

Post-Fusion (A1)
Post-Fusion (A2)
Pre-Fusion (A1)
Pre-Fusion (A2)

0 0.1 0.2 0.3 0.4 0.5
Rate of Transmission Loss

12

14

16

18

20

R
M
S
E

(k
m
/
h
)

COOL-GP
dDTC
dPITC

(a) (b)

Figure 5: Graphs of (a) pre- and post-fusion individual per-
formance of two agents with different learning capabilities,
and (b) post-fusion performance of COOL-GP in compari-
son to those of state-of-the-art distributed GPs (e.g., dDTC
and dPITC) vs. rate of transmission loss in AIMPEAK.

mission losses occur more frequently, the averaged perfor-
mance of COOL-GP agents degrades more gracefully than
those of the state-of-the-art2 distributed dDTC and dPITC
frameworks which employ a central server to coordinate the
communications between agents. This is expected since both
dDTC and dPITC require every agent to successfully trans-
mit its summary statistics directly to a single master server.
Failing to achieve this immediately leads to irrecoverable in-
formation loss. In contrast, COOL-GP allows each agent to
exchange its summary statistics with multiple agents within
its communication range (Section 3.4), thus lowering the
risk of losing information.

6 Conclusion
This paper describes a novel COOL-GP framework for en-
abling a massive number of agents to simultaneously per-
form (a) efficient online updates of their GP models using
their local streaming data with varying correlation struc-
tures and (b) decentralized fusion of their resulting online
GP models with different learned hyperparameters and in-
ducing inputs. We exploit the notion of a common encod-
ing structure to encapsulate the local streaming data gath-
ered by any GP inference agent into summary statistics,
which is amenable to both efficient online update as well
as multi-agent model fusion that exploits sparse connectiv-
ity among agents for improving efficiency and enhance the
robustness of our framework against transmission loss (Sec-
tion 3). We also provide a rigorous theoretical analysis of the
approximation loss arising from our proposed representation
to achieve efficient online updates and model fusion (Sec-
tion 4). Empirical evaluations on real-world datasets show
that our framework performs efficiently on various settings
and can scale to thousands of agents (Section 5).

Acknowledgments. This research was funded in part by
the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-17-2-0181 and
by ONR under the BRC N00014-17-1-2072. It was also sup-
ported in part by Singapore Ministry of Education Academic
Research Fund Tier 2, MOE2016-T2-2-156.

2We do not compare with dPIC (Hoang, Hoang, and Low 2016)
as it needs to store local data and is not suitable for online learning.

References
Allamraju, R., and Chowdhary, G. 2017. Communication ef-
ficient decentralized Gaussian process fusion for multi-UAS
path planning. In Proc. ACC.
Bui, T. D.; Nguyen, C. V.; and Turner, R. E. 2017. Streaming
sparse Gaussian process approximations. In Proc. NIPS.
Chen, J.; Low, K. H.; Tan, C. K.-Y.; Oran, A.; Jaillet, P.;
Dolan, J. M.; and Sukhatme, G. S. 2012. Decentralized data
fusion and active sensing with mobile sensors for modeling
and predicting spatiotemporal traffic phenomena. In Proc.
UAI, 163–173.
Chen, J.; Cao, N.; Low, K. H.; Ouyang, R.; Tan, C. K.-Y.;
and Jaillet, P. 2013. Parallel Gaussian process regression
with low-rank covariance matrix approximations. In Proc.
UAI, 152–161.
Chen, J.; Low, K. H.; Jaillet, P.; and Yao, Y. 2015. Gaussian
process decentralized data fusion and active sensing for spa-
tiotemporal traffic modeling and prediction in mobility-on-
demand systems. IEEE Transactions on Automation Science
and Engineering 12(3):901–921.
Chen, J.; Low, K. H.; and Tan, C. K.-Y. 2013. Gaussian
process-based decentralized data fusion and active sensing
for mobility-on-demand system. In Proc. RSS.
Cheng, C.-A., and Boots, B. 2016. Incremental variational
sparse Gaussian process regression. In Proc. NIPS.
Csató, L., and Opper, M. 2002. Sparse online Gaussian
processes. Neural Computation 14(3):641–669.
Deisenroth, M. P., and Ng, J. W. 2015. Distributed Gaussian
processes. In Proc. ICML.
Gal, Y.; van der Wilk, M.; and Rasmussen, C. 2014. Dis-
tributed variational inference in sparse Gaussian process re-
gression and latent variable models. In Proc. NIPS.
Hensman, J.; Fusi, N.; and Lawrence, N. D. 2013. Gaussian
processes for big data. In Proc. UAI, 282–290.
Hoang, T. N.; Low, K. H.; Jaillet, P.; and Kankanhalli, M.
2014. Nonmyopic ε-Bayes-optimal active learning of Gaus-
sian processes. In Proc. ICML, 739–747.
Hoang, T. N.; Hoang, Q. M.; Low, K. H.; and How, J. P.
2018a. Collective online learning of Gaussian processes in
massive multi-agent systems. arXiv:1805.09266.
Hoang, T. N.; Xiao, Y.; Sivakumar, K.; Amato, C.; and How,
J. 2018b. Near-optimal adversarial policy switching for
decentralized asynchronous multi-agent systems. In Proc.
ICRA.
Hoang, T. N.; Hoang, Q. M.; and Low, K. H. 2015. A
unifying framework of anytime sparse Gaussian process re-
gression models with stochastic variational inference for big
data. In Proc. ICML, 569–578.
Hoang, T. N.; Hoang, Q. M.; and Low, K. H. 2016. A dis-
tributed variational inference framework for unifying par-
allel sparse Gaussian process regression models. In Proc.
ICML, 382–391.
Hoang, Q. M.; Hoang, T. N.; and Low, K. H. 2017. A gener-
alized stochastic variational Bayesian hyperparameter learn-

ing framework for sparse spectrum Gaussian process regres-
sion. In Proc. AAAI, 2007–2014.
Kang, J. J., and Larkin, H. 2016. Inference of personal
sensors in internet of things. International Journal of Infor-
mation, Communication Technology and Applications 2:1.
Liu, H.; Cai, J.; Wang, Y.; and Ong, Y.-S. 2018. Gener-
alized robust Bayesian committee machine for large-scale
Gaussian process regression. In Proc. ICML.
Low, K. H.; Chen, J.; Hoang, T. N.; Xu, N.; and Jaillet, P.
2015a. Recent advances in scaling up Gaussian process pre-
dictive models for large spatiotemporal data. In Proc. Dy-
DESS, 167–181.
Low, K. H.; Yu, J.; Chen, J.; and Jaillet, P. 2015b. Parallel
Gaussian process regression for big data: Low-rank repre-
sentation meets Markov approximation. In Proc. AAAI.
Min, W., and Wynter, L. 2011. Real-time road traffic pre-
diction with spatio-temporal correlations. Transport. Res.
C-Emer. 19(4):606–616.
Natarajan, P.; Hoang, T. N.; Wong, Y.; Low, K. H.; and
Kankanhalli, M. S. 2014. Scalable decision-theoretic co-
ordination and control for real-time active multi-camera
surveillance. In Proc. ICDSC, 115–120.
Ouyang, R., and Low, K. H. 2018. Gaussian process de-
centralized data fusion meets transfer learning in large-scale
distributed cooperative perception. In Proc. AAAI.
Ouyang, R.; Low, K. H.; Chen, J.; and Jaillet, P. 2014. Multi-
robot active sensing of non-stationary Gaussian process-
based environmental phenomena. In Proc. AAMAS.
Quiñonero-Candela, J., and Rasmussen, C. E. 2005. A uni-
fying view of sparse approximate Gaussian process regres-
sion. Journal of Machine Learning Research 6:1939–1959.
Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. MIT Press.
Robbins, H., and Monro, S. 1951. A stochastic approxima-
tion method. Ann. Math. Statist. 22(3):400–407.
Snelson, E. L., and Ghahramani, Z. 2007. Local and global
sparse Gaussian process approximation. In Proc. AISTATS.
Titsias, M. K., and Lázaro-Gredilla, M. 2013. Variational
inference for Mahalanobis distance metrics in Gaussian pro-
cess regression. In Proc. NIPS.
Titsias, M. K. 2009. Variational learning of inducing vari-
ables in sparse Gaussian processes. In Proc. AISTATS.
Wang, Y., and Papageorgiou, M. 2005. Real-time freeway
traffic state estimation based on extended Kalman filter: a
general approach. Transport. Res. B-Meth. 39(2):141–167.
Work, D. B.; Blandin, S.; Tossavainen, O.; Piccoli, B.; and
Bayen, A. 2010. A traffic model for velocity data assimila-
tion. AMRX 2010(1):1–35.
Xu, N.; Low, K. H.; Chen, J.; Lim, K. K.; and Özgül, E. B.
2014. GP-Localize: Persistent mobile robot localization us-
ing online sparse Gaussian process observation model. In
Proc. AAAI, 2585–2592.
Zhang, Y.; Hoang, T. N.; Low, K. H.; and Kankanhalli, M.
2016. Near-optimal active learning of multi-output Gaussian
processes. In Proc. AAAI, 2351–2357.

