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ABSTRACT
The exploration problem is a central issue in mobile robotics.
A complete terrain coverage is not practical if the environ-
ment is large with only a few small hotspots. This paper
presents an adaptive multi-robot exploration strategy that
is novel in performing both wide-area coverage and hotspot
sampling using non-myopic path planning. As a result, the
environmental phenomena can be accurately mapped. It is
based on a dynamic programming formulation, which we
call the Multi-robot Adaptive Sampling Problem (MASP).
A key feature of MASP is in covering the entire adaptiv-
ity spectrum, thus allowing strategies of varying adaptiv-
ity to be formed and theoretically analyzed in their perfor-
mance; a more adaptive strategy improves mapping accu-
racy. We apply MASP to sampling the Gaussian and log-
Gaussian processes, and analyze if the resulting strategies
are adaptive and maximize wide-area coverage and hotspot
sampling. Solving MASP is non-trivial as it comprises con-
tinuous state components. So, it is reformulated for con-
vex analysis, which allows discrete-state monotone-bounding
approximation to be developed. We provide a theoretical
guarantee on the policy quality of the approximate MASP
(aMASP) for using in MASP. Although aMASP can be solved
exactly, its state size grows exponentially with the number
of stages. To alleviate this computational difficulty, anytime
algorithms are proposed based on aMASP, one of which can
guarantee its policy quality for MASP in real time.
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G.1.6 [Optimization]: convex programming; G.3 [Probability
and Statistics]: stochastic processes; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: dynamic program-
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myopic path planning

1. INTRODUCTION
The problem of exploring an unknown environment is a

central issue in mobile robotics. Typically, it requires sam-
pling the entire terrain. However, a complete terrain cov-
erage is not practical in terms of resource costs if the envi-
ronment is large with only a few small, dynamic “hotspots”,
and the robot sensing range is limited. Such an environ-
ment arises in two important real-world applications: (a)
planetary exploration such as geologic reconnaissance and
mineral prospecting [9], and (b) environment and ecological
monitoring such as monitoring of ocean phenomena (e.g.,
algal bloom) [7], forest ecosystems [13], pollution, and con-
tamination. In these applications, it is often necessary to
sample the hotspots for detailed analysis and extraction. At
the same time, the environment has to be adequately cov-
ered to locate these hotspots as well as map the phenomena
accurately. To reduce human effort and risk, it is desirable
to build robot teams that can perform these tasks.

An important issue in designing such a robot team is the
exploration strategy : how do the robots decide where to ex-
plore next? This paper presents an adaptive model-based
exploration strategy that is novel in performing both wide-
area coverage and hotspot sampling, and covering the en-
tire adaptivity spectrum. In contrast, all other model-based
strategies are non-adaptive and achieve only wide-area cov-
erage. Our strategy can also plan non-myopic multi-robot
paths, which are more desirable than greedy or single-robot
paths. These characteristics distinguish our approach from
the existing robot exploration strategies and are discussed
in greater detail with the related work below:

Wide-Area Coverage vs. Hotspot Sampling Explo-
ration strategies [7, 12, 13, 16, 17, 18] that emphasize wide-
area coverage aim to improve the mapping accuracy of the
environmental phenomena. On the other hand, strategies
that focus on locating and sampling hotspots [9] may not be
tailored to satisfy this objective. In contrast, our proposed
approach can tackle both tasks simultaneously.

Model- vs. Design-Based Strategies In design-based
strategies [9, 13, 18], the selection of sampling locations for
exploration is constrained by the sampling design, which is
not devised to consider resource costs. As a result, the loca-
tions have to be chosen by the strategy first before minimiz-
ing the resource costs to sample them. This entails “sunk”
costs in motion; the exploration paths have to traverse ter-
rain that do not require sampling to reach the selected lo-
cations. Furthermore, some strategies [13, 18] require mul-



tiple “passes” through the region of interest such that new
locations are adaptively selected and sampled in each pass.
Modifying the strategy to involve resource costs may inval-
idate the estimators associated with the strategy.

We instead use a model-based strategy [7, 12, 16, 17],
which assumes a certain environmental model and selects
sampling locations to reduce its uncertainty. Resource cost
minimization or constraints may be applied to the selection
process and the resulting strategy is optimal in these con-
straints. In contrast to the strategies [7, 12, 16] that use
a parametric model, our approach utilizes a non-parametric
model, which does not require any assumptions on the dis-
tribution underlying the sampling data. In particular, we
model the environmental phenomena as Gaussian [17] and
log-Gaussian processes.

Adaptive vs. Non-Adaptive Sampling Strategies Adap-
tive sampling refers to strategies [9, 13, 18] in which the pro-
cedure for selecting locations to be included in robot paths
depends on the sampling data observed during exploration.
On the other hand, non-adaptive sampling strategies [7, 12,
16, 17] have no such dependence. When the environmental
phenomena are smoothly varying, non-adaptive strategies
are known to perform well [18]. However, if the environ-
ment contains hotspots, adaptive sampling can exploit the
clustering phenomena to map the environmental field more
accurately than non-adaptive sampling. In contrast to the
above schemes, the adaptivity of our proposed strategy can
be varied (Section 2.3); by increasing adaptivity, its mapping
accuracy can be improved.

Greedy vs. Non-Myopic Path Planning Strategies
In contrast to greedy strategies [12, 17] that face the local
minima problem, our strategy generates non-myopic robot
paths [16]. Non-myopic paths usually approximate the opti-
mal trajectories better, but incur higher computational cost.

Single- vs. Multi-Robot Strategies In contrast to single-
robot exploration strategies [12, 13, 16], our strategy has to
coordinate the exploration of multiple robots like those in
[7, 9, 17, 18]. A robot team can potentially complete the
task faster than a single robot and is also robust to failures
by providing redundancy.

2. MULTI-ROBOT ADAPTIVE SAMPLING
PROBLEM (MASP)

2.1 Terminology and Notation
Let X be the domain of the environmental phenomena

corresponding to a finite, discretized set of grid cell loca-
tions (i.e., cell centers). Let Zx be a random variable rep-
resenting the unobserved quantity at an arbitrary location
x ∈ X ; its realized observed/sampled quantity will be de-
noted by zx. Let the data of m sampled locations d0 be
an ordered list of pairs 〈xi, zxi

〉 for i = 1, . . . , m. So, the
addition of the data of n new sampled locations to d0 re-
sults in dn = [〈x1, zx1〉, . . . , 〈xm+n, zxm+n

〉]. Let xdn and
zdn denote vectors comprising the x and zx components of
the data dn respectively (i.e., xdn = (x1, . . . , xm+n) and
zdn = (zx1 , . . . , zxm+n

)). A robot path P corresponds to a
sequence of l locations. When a robot travels between two
locations x and y, it incurs a motion cost of C(x, y). The cost
C(P) of a robot path P = 〈x1, . . . , xl〉 is defined as the sum

of the motion costs along the path, i.e.,
Pl

i=2 C(xi−1, xi).

We will define more clearly the notion of adaptivity in
an exploration strategy, which is crucial to understanding
MASP. Suppose that the data d0 has been sampled previ-
ously and n new locations are to be selected for sampling.
Formally, an exploration strategy is strictly adaptive if its
procedure to select each new sampling location xm+i+1 for
i = 0, . . . , n − 1 depends only on the previously sampled
data di. A strategy is non-adaptive [7, 12, 16, 17] if its
procedure to select each new sampling location xm+i+1 for
i = 0, . . . , n− 1 is independent of zxm+1 , . . . , zxm+n

. Hence,
all the n new locations can be selected prior to exploration
without needing to observe any new sampling data. By hy-
bridizing the two, a partially adaptive [9, 13, 18] strategy
results, that is, its procedure to select each batch of j new
locations xm+ij+1, . . . , xm+ij+j for i = 0, . . . , n/j − 1 1 de-
pends only on the previously sampled data dij . When j = 1
(n), this strategy becomes strictly adaptive (non-adaptive).
So, by increasing the number of new locations in each batch,
the adaptivity of the hybrid strategy decreases.

2.2 Problem Formulation
The exploration objective is to collect the “best” sam-

pling data from the planned robot paths that maximizes
the mapping accuracy of the environmental field. To achieve
this, we use the mean-squared error criterion as a measure
of the spatial mapping uncertainty. Given the previously
sampled data d0, a predictor Ẑ(x0, d0) of the unobserved
quantity Zx0 at location x0 achieves the mean-squared error

E{[Zx0 − Ẑ(x0, d0)]
2|d0}. Then, the uncertainty in mapping

the environmental field of domain X with predictor Ẑ(x0, d0)
can be represented by the sum of mean-squared errors over
all locations in X (i.e.,

P

x0∈X E{[Zx0−Ẑ(x0, d0)]
2|d0}). Us-

ing the best unbiased predictor Ẑ(x0, d0)
def
= E[Zx0 |d0] (i.e.,

it achieves the lowest mean-squared error among all unbi-
ased predictors), the mean-squared error at each location

x0 can be reduced to the conditional variance σ2
Zx0 |d0

def
=

var[Zx0 |d0]. This results in the spatial mapping uncertainty
P

x0∈X σ2
Zx0 |d0

, which will be used in formulating the explo-

ration problems below.
In essence, the multi-robot exploration problem involves

selecting new sampling locations for the robot exploration
paths that provide the least amount of spatial mapping un-
certainty. One typical way of doing this would be by choos-
ing all the new locations to be added to the existing sample
(say, d0) that minimize the expectation of the sum of pos-
terior variances over all locations in X :

min
P1,...,Pk

E{
X

x0∈X

σ2
Zx0 |d0,DP1

,...,DPk
| d0} (1)

subject to the motion constraint C(Pi) ≤ B for robot i =
1, . . . , k where DPi

is an ordered list of pairs 〈x,Zx〉 con-
structed from the path Pi. To interpret (1), the selection
of new locations xDP1

,...,DPk
to be included in the robot

paths P1, . . . ,Pk does not depend on the previously sam-
pled data along the paths. Hence, this problem formulation
is non-adaptive.

On the other hand, the new locations can also be selected
sequentially such that the selection of subsequent locations
to be included in the robot paths depends on the previously
sampled data along the paths. This form of exploration

1to simplify exposition, we assume that n is divisible by j.



can be achieved by modeling MASP using Dynamic Pro-
gramming (DP) with the following value functions, which
represent the amount of spatial mapping uncertainty:

Vi(dki) = min
ai∈A(x

dk
i
)
E[Vi+1(dki, D

k
i+1) | dki]

Vn(dkn) =
X

x0∈X

σ2
Zx0 |dkn

(2)

for i = 0, . . . , n− 1 where the realized data dk
i is an ordered

list of the last k pairs of dki, xdk
i

= (xm+k(i−1)+1, . . . , xm+ki)

is a vector of k robot locations denoting the current state of
the robot team, A(xdk

i
) is the action space of the robot team

(i.e., a finite set of joint actions) given its current state xdk
i
,

the unobserved data Dk
i+1 is an ordered list of pairs 〈xℓ, Zxℓ

〉
for ℓ = m + ki + 1, . . . , m + ki + k, and xDk

i+1
is the next

state produced by the deterministic transition function of
the robot team T (ai,xdk

i
) based on its current action ai

and state xdk
i
. To interpret (2), the selection of subsequent

locations xDk
i+1

to be included in the robot paths P1, . . . ,Pk

depends on the previously sampled data dki along the paths,
which makes this problem formulation adaptive. Hence, the
random data Dk

1 , . . . , Dk
n corresponds to the sample that is

to be realized by the robot paths P1, . . . ,Pk. The above
motion constraints on the robots also apply in this problem.

Let π = 〈π0(d0), . . . , πn−1(dk(n−1))〉 denote the action

policy of the robot team such that πi(dki)
def
= ai ∈ A(xdk

i
).

By solving (2), the optimal value V0(d0) can be obtained
together with the corresponding optimal action policy π

∗

where

π
∗
i (dki) = arg min

ai∈A(x
dk

i

)

E[Vi+1(dki, D
k
i+1) | dki] . (3)

From (3), the optimal action π
∗
0(d0) can be determined prior

to exploration since data d0 is known. However, each action
rule π

∗
i (dki), i = 1, . . . , n−1 defines the actions to take in re-

sponse to the data dki, part of which (i.e., [〈xm+1, zxm+1〉, . . . ,
〈xm+ki, zxm+ki

〉]) will only be observed during exploration.
Given the starting locations (say, xdk

0
) of the robots, their

paths P1, . . . ,Pk can also be derived by applying the tran-
sition function T (., .) to the optimal action policy π

∗.
In some exploration tasks, a tradeoff may ensue between

adaptivity and task execution cost: for example, the primary
environmental variable to be mapped is sometimes associ-
ated with highly correlated auxiliary variables, which may
be cheaper to sample at a higher spatial resolution or more
reliable for planning the exploration paths. So, if an auxil-
iary variable is used in MASP for path planning instead, an
adaptive strategy has to incur the extra cost of sampling the
auxiliary variable during exploration, which is not required
by non-adaptive exploration.

2.3 Advantage of Adaptive Exploration
Increasing adaptivity can improve mapping accuracy (i.e.,

lower spatial mapping uncertainty) as shown below:

Theorem 2.1. Define the value functions of j-MASP as

V j
i (dkij) = min

aij ,...,aij+j−1

E[V j
i+1(dkij , D

k
ij+1, . . . , D

k
ij+j) | dkij ]

V j
n/j(dkn) =

X

x0∈X

σ2
Zx0 |dkn

(4)

for i = 0, . . . , n/j − 1 where j is the number of robot team
actions per stage, xDk

ij+l
:= T (aij+l−1,xDk

ij+l−1
) for l =

1, . . . , j such that Dk
ij := dk

ij, and assume n is divisible by j.

Then, V j
0 (d0) is monotonically increasing in j.

To elaborate, each stage of j-MASP in (4) consists of a
minimum followed by an expectation. As the number j
of robot team actions per stage decreases, the number of
locations sampled per stage decreases, which implies an in-
crease in adaptivity (Section 2.1). At the same time, the
optimal value (i.e., spatial mapping uncertainty) decreases
with increasing adaptivity. Note that 1-MASP corresponds
to MASP in (2) while n-MASP is of the same form as the
non-adaptive exploration problem in (1).

The computational efficiency of j-MASP does not im-
prove with decreasing adaptivity (i.e., increasing j): for a
fixed number of new locations (i.e., kn) to be sampled, the
required number of stages decreases with decreasing adap-
tivity. But, it is associated with increasing dimensionality
of the action space under each minimum and also, of the
probability distribution for each expectation. If these ex-
pectations have to be evaluated numerically, the number of
value function evaluations required for each expectation has
to grow exponentially with the number of locations sampled
per stage for the numerical approximation to be effective.
Since the action space under each minimum also grows ex-
ponentially with the number of robot team actions per stage,
there is no computational gain by decreasing the adaptivity.

2.4 Alternative Formulation
In this subsection, we provide an alternative formulation

to MASP in (2) that lends itself to a different interpretation.
More importantly, this reformulation can be subject to con-
vex analysis (Section 2.6), which allows monotone-bounding
approximation of MASP to be developed (Section 3.1).

The reformulated MASP comprises the value functions

Ui(dki) = max
ai∈A(x

dk
i
)
R(xDk

i+1
, dki) + E[Ui+1(dki, D

k
i+1) | dki]

Ut(dkt) = max
at∈A(x

dk
t
)
R(xDk

t+1
, dkt)

(5)
for i = 0, . . . , t− 1 with t = n− 1 and the reward functions

R(xDk
i+1

, dki) =
X

x0∈X

var[µZx0 |dki,Dk
i+1
| dki] (6)

where µZx0 |dki,Dk
i+1

def
= E[Zx0 |dki, D

k
i+1]. An analog to The-

orem 2.1 can be derived for the reformulated MASP except
that the optimal value increases, rather than decreases, with
increasing adaptivity.

Theorem 2.2. The value functions of MASPs in (2) and
(5) are related by

Vi(dki) =
X

x0∈X

σ2
Zx0 |dki

− Ui(dki) (7)

for i = 0, . . . , n− 1 and their respective optimal action poli-
cies coincide.

Theorem 2.2 can be generalized to cater to j-MASPs.
The reformulated MASP in (5) is interpreted differently

from the original MASP in (2): from the well-known vari-
ance decomposition formula

σ2
Zx0 |dki

= E[σ2
Zx0 |dki,Dk

i+1
| dki] + var[µZx0 |dki,Dk

i+1
| dki],



the var[µZx0 |dki,Dk
i+1
|dki] term measures the reduction in un-

certainty at location x0 from the prior variance σ2
Zx0 |dki

to

the expected posterior variance E[σ2
Zx0 |dki,Dk

i+1
|dki] by sam-

pling the new locations xDk
i+1

. So, by exploring new loca-

tions xDk
i+1

at every stage that achieve greater reduction

in uncertainty over all locations in X (i.e., maximizing re-
wards in (5)), we remove the largest possible amount of un-
certainty from the initial spatial mapping uncertainty (i.e.,
P

x0∈X σ2
Zx0 |dki

in (7)). This is in contrast to the origi-

nal MASP in (2) whereby the cost to be minimized appears
only in the last stage (i.e., final spatial mapping uncertainty
P

x0∈X σ2
Zx0 |dkn

).

In the next two subsections, we will show how the re-
formulated MASP in (5) can be applied to the Gaussian
and log-Gaussian processes. In particular, we will analyze
whether MASP is adaptive for these processes and the con-
vex properties of MASP for the log-Gaussian process.

2.5 MASP for Gaussian Process (GP)
Let {Zx}x∈X denote a GP defined on the domain X , that

is, the joint distribution over any finite subset of {Zx}x∈X is
Gaussian. The GP can be completely specified by its mean

function µZx

def
= E[Zx] and covariance function σZxZy

def
=

cov[Zx, Zy] for x, y ∈ X . In this paper, it is assumed that
the mean function and covariance structure of Zx are known.
Given the previously sampled data dkn, the distribution of
Zx0 is a Gaussian with the conditional mean and variance

µZx0 |dkn
= µZx0

+ Σx0xdkn
Σ−1

xdkn
xdkn
{z⊤

dkn
− µZdkn

} (8)

σ2
Zx0 |dkn

= σZx0Zx0
− Σx0xdkn

Σ−1
xdkn

xdkn
Σxdkn

x0 (9)

where µZdkn
is a column vector with mean components µZxi

for i = 1, . . . , m + kn, Σx0xdkn
is a covariance vector with

components σZx0Zxi
for i = 1, . . . , m + kn, Σxdkn

x0 is the
transpose of Σx0xdkn

, and Σxdkn
xdkn

is a covariance matrix
with components σZxi

Zxj
for i, j = 1, . . . , m + kn.

For GP, MASP can be reduced to be non-adaptive. This
is a direct consequence of the following lemma:

Lemma 2.3. R(xDk
i+1

, dki) in (6) is independent of zdkt

for i = 0, . . . , t.

The next theorem follows from Lemma 2.3 and (5):

Theorem 2.4. Ui(dki) and π
∗
i (dki) are independent of

zdkt
for i = 0, . . . , t.

Hence, the selection of new sampling locations xDk
i+1

is in-

dependent of zdkt
for i = 0, . . . , t. As a result, MASP for

GP can be reduced to a deterministic planning problem

U0(d0) = max
a0,...,at

t
X

i=0

R(xDk
i+1

, dki) , (10)

which aims to provide sufficient coverage for mapping the
environmental field accurately. However, it does not account
for maximization of sampling at hotspots (Lemma 2.3).

2.6 MASP for log-Gaussian Process (ℓGP)
Let {Yx}x∈X denote a ℓGP defined on the domain X .

That is, if we let Zx = log Yx, then {Zx}x∈X is a GP (Sec-
tion 2.5). So, Yx = exp{Zx} and ℓGP has the mean function

µYx

def
= E[Yx] = exp{µZx + σZxZx/2} and covariance func-

tion σYxYy

def
= cov[Yx, Yy] = µYxµYy (exp{σZxZy} − 1) for

x, y ∈ X . From Section 2.5, we know that the distribution
of Zx0 given dkn is Gaussian. Since the transformation from
zdkn

to ydkn
is invertible, the distribution of Yx0 given dkn

is log-Gaussian with the conditional mean and variance:

µYx0 |dkn
= exp{µZx0 |dkn

+ σ2
Zx0 |dkn

/2} (11)

σ2
Yx0 |dkn

= µ2
Yx0 |dkn

(exp{σ2
Zx0 |dkn

} − 1) (12)

where µZx0 |dkn
and σ2

Zx0 |dkn
are determined using (8) and

(9) respectively.
For ℓGP, MASP is adaptive. This is a direct consequence

of the following lemma:

Lemma 2.5. R(xDk
i+1

, dki) in (6) depends on dki for i =

0, . . . , t.

The next theorem follows from Lemma 2.5 and (5):

Theorem 2.6. Ui(dki) and π
∗
i (dki) depend on dki for i =

0, . . . , t.

Hence, the selection of new sampling locations xDk
i+1

de-

pends on the previously sampled data dki for i = 0, . . . , t.
Besides providing coverage to learn an accurate spatial

mapping, MASP in (5) for ℓGP also maximizes hotspot sam-
pling: it can be shown that a large reward var[µYx0 |dki,Dk

i+1
|dki]

in (6) is associated with a high expected quantity µYx0 |dki
.

So, if x0 is one of the new sampling locations in xDk
i+1

,

MASP in (5) tends to select location x0 with a large reward
var[µYx0 |dki,Dk

i+1
|dki]. Consequently, x0 has a high expected

quantity, thus maximizing sampling of hotspots (i.e., areas
of high measured quantities).

The value functions of MASP in (5) may not be convex
in the sampled quantities yd of the input data d. However,
MASP can be transformed to be convex by a change of vari-
ables Zx = log Yx, x ∈ X as shown below:

Lemma 2.7. R(xDk
i+1

, dki) in (6) is convex in zdki
(i.e.,

(log yx1 , . . . , log yxm+ki
)) for i = 0, . . . , t.

The next theorem follows from Lemma 2.7 and (5):

Theorem 2.8. Ui(dki) is convex in zdki
(i.e., (log yx1 , . . . ,

log yxm+ki
)) for i = 0, . . . , t.

3. VALUE-FUNCTION APPROXIMATIONS
The solution technique presented in this section focuses

on tackling the strictly adaptive MASP in (5) (Section 2.1),
which implies only one new location should be selected at
each stage. The value functions can then be simplified in the
following two ways resulting in (13): (a) rather than choose
a joint action ai ∈ A(.) to move all robots simultaneously in
each stage, only one robot should be chosen at each stage to
sample a new location while the rest of the robots stay put.
This tradeoff between simultaneous actions and strict adap-
tivity results in a reduced set A′(.) of joint actions for the
robot team that grows linearly, rather than exponentially
(Section 2.3), with the number of robots; (b) consequently,
the unobserved data Dk

i+1 can be reduced to a single pair
〈x′, Zx′〉 corresponding to the new location x′ to be sampled



by the chosen robot. Since the other unselected robots are
stationary in that stage, the remaining pairs in Dk

i+1 corre-
spond to locations selected in the previous stages and can be
found in the known data di. The probability distribution for
the conditional expectation in MASP can therefore be sim-
plified to a uni-variate Zx′ , which reduces the computational
burden of solving the problem numerically (Section 2.3).

Ui(di) = max
ai∈A′(xi)

R(x′, di) + E[Ui+1(di, 〈x
′, Zx′〉)|di]

Ut(dt) = max
at∈A′(xt)

R(x′, dt)

(13)
for i = 0, . . . , t− 1 where xi is a vector of the k robot loca-
tions denoting the current state of the robot team that can
be derived from the sampled locations xdi

, and xi+1 is the
next state produced by the deterministic transition function
T (ai,xi). Note that x′ is the component in xi+1 with the
same index as the non-zero component in xi+1 − xi.

Since the random variable Zx′ is continuous, an exact
solution to the above MASP will not be computationally
feasible if the conditional expectation is evaluated by com-
puting Ui+1(di, 〈x

′, Zx′〉) infinitely often over the support of
Zx′ . For MASP with t = 1 in (13), it can be shown that
the conditional expectation can be evaluated in closed form,
which makes the problem computationally feasible. At this
moment, we are not aware of any computationally feasible
methods to solve MASP with t > 1 exactly. Hence, we will
resort to approximating MASP as described below. For ease
of exposition, we will revert to using the Zx variable for ℓGP
(i.e., by transforming Zx = log Yx) in the rest of this paper.

The difficulty in solving the multi-stage MASP lies in eval-
uating the conditional expectation with respect to the con-
tinuous state variable Zx′ . This intricate issue of handling
continuous states is faced by the following related stochastic
decision-theoretic planning problems, which have resolved it
by constructing approximate problems:

Markov decision processes (MDPs) The traditional ap-
proach of generalizing to continuous states in an MDP is to
approximate the value function with a parameterized model;
the resulting solution is usually hard to analyze and may
diverge. To make the problem computationally feasible to
solve, recent approaches such as the time-dependent [8] and
factored MDPs [6] approximate it by constraining the transi-
tion, reward, and value functions to certain function families.
However, time-dependent MDPs suffer from an exponential
blow-up with an increasing number of stages while factored
MDPs induce infinitely many constraints in their linear pro-
gramming formulation.

In contrast, MASP adopts a more complex but realistic
non-Markov structure; the transition function is conditioned
on the entire history of actions and continuous states. More
importantly, by assuming the reward and value functions to
be convex (Section 2.6), piecewise-linear functions can be
constructed to monotonically bound and approximate the
value function (Section 3.1). Note that the form of the tran-
sition function is not restricted.

Non-Markov problems Bayes sequential design problems
[11] and stochastic programs [4, 15] can be modeled as non-
Markov DP problems. In contrast to MASP, they have a
simple structure: (a) their transition functions do not de-
pend on past actions, (b) for Bayes sequential design, the
entire history of continuous states can be reduced to a sum-
mary statistic, and (c) for stochastic programs, the reward

function is often assumed to be linear in the action variable
[4]. To make them computationally feasible to solve, the
conditional expectation is approximated using Monte-Carlo
sampling for both problems [11, 15] and bounding methods
[4] for stochastic programs. The latter technique further as-
sumes the value function to be linear or convex in the contin-
uous state and action variables. The resulting approximate
problems suffer from an exponential blow-up. Our bounding
approximation technique (Section 3.1) utilizes the results on
generalized Jensen bounds for convex functions [5] from the
field of stochastic programming.

3.1 Approximate MASP
In this section, we will formulate the approximate MASP

(aMASP) whose optimal value lower-bounds that of MASP
in (13). To obtain aMASP and its corresponding bound, the
following result is required, which utilizes Jensen’s inequality
to lower-bound the expectation of a convex function:

Theorem 3.1 ([5]). Let W (ξ) be a convex function of
ξ with the support [a, b] that is subdivided at arbitrary points
b0, . . . , bν (i.e., a := b0 < b1 < . . . < bν =: b). Let the ν-fold
generalized Jensen bound be denoted by

Jν
def
=

ν
X

j=1

αjW (βj), ν = 1, 2, . . . , (14)

where

αj
def
=

Z bj

bj−1

f(ξ)dξ, βj
def
=

1

αj

Z bj

bj−1

ξf(ξ)dξ, j = 1, . . . , ν .

If the partition corresponding to k + 1 is at least as fine as
that corresponding to k for k = 1, . . . , ν−1, J1 ≤ . . . ≤ Jν ≤
E[W (ξ)].

Let the support of Zx′ given the sampled data di be Sν
x′i =

[a, b] that is partitioned into ν non-empty, disjoint inter-
vals Sν

x′ij = [bj−1, bj ] for j = 1, . . . , ν. Using Theorem 3.1,
aMASP can be derived from (13) with the structure:

Uν
i (di) = max

ai∈A′(xi)
R(x′, di) +

ν
X

j=1

px′ijU
ν
i+1(di, 〈x

′, zx′ij〉)

Uν
t (dt) = max

at∈A′(xt)
R(x′, dt)

(15)

for i = 0, . . . , t − 1 where px′ij
def
= P (zx′ ∈ Sν

x′ij |di), and

zx′ij
def
= µZx′ |di,Sν

x′ij
, which is the expectation of Zx′ con-

ditioned on di and zx′ ∈ Sν
x′ij . Note that the parameters

of aMASP correspond to that of the Jensen bound in (14).
More importantly, the structure of aMASP in (15) can be
viewed as approximating the continuous state variable Zx′ in
(13) using a discrete one with a distribution at points zx′ij of
probability px′ij > 0 for j = 1, . . . , ν where

Pν
j=1 px′ij = 1.

The optimal action policy π
ν∗ = 〈πν∗

0 (d0), . . . , π
ν∗
t (dt)〉 is

defined in a similar manner as that of (3). Different from (3),
the additional quantities [〈xm+1, zxm+1〉, . . . , 〈xm+i, zxm+i

〉]
observed during exploration are expected to be realized from
discrete, rather than continuous, distributions as explained
above. If replanning is not allowed during exploration, then
we have to choose the most appropriate action rule to apply
to the observed continuous quantities. This is resolved in a
forward stagewise manner: when 〈xm+1, zxm+1〉 is sampled
during exploration, the next action π

ν∗
1 (d0, 〈xm+1, zxm+10j0〉)



is selected such that j0 = arg minj |zxm+1 − zxm+10j |. When
〈xm+2, zxm+2〉 is sampled, the next action π

ν∗
2 (d0, 〈xm+1,

zxm+10j0〉, 〈xm+2, zxm+21j1 〉) is selected such that j1 = arg minj

|zxm+2 − zxm+21j1 |. This goes on for i = 3, . . . , t such that
when 〈xm+i, zxm+i

〉 is sampled, the next action π
ν∗
i (d0, 〈xm+1,

zxm+10j0〉, . . . , 〈xm+i, zxm+i(i−1)ji−1
〉) is selected with ji−1 =

arg minj |zxm+i
− zxm+i(i−1)ji−1

|.
To prove the monotone bounds, the value functions of

MASP are required to be convex, which have been shown
for ℓGP (Section 2.6). Together with Theorem 3.1 and the
following lemma, we can derive the bounds in Theorem 3.3:

Lemma 3.2. Uν
i (di) is convex in zdi

for i = 0, . . . , t.

Theorem 3.3. If Sν+1
x′i is obtained by splitting one of the

intervals in Sν
x′i, Uν

i (di) ≤ Uν+1
i (di) ≤ Ui(di) for i =

0, . . . , t.

More importantly, Theorem 3.3 indicates that aMASP yields
a lower bound Uν

0(d0) to the optimal value U0(d0) of MASP
in (13). Furthermore, by refining the partition (i.e., increas-
ing ν), the bounds can be improved; the optimal value of
aMASP monotonically increases to that of MASP. However,
this increases the computational burden of solving aMASP.
The next corollary is a direct result of Theorems 2.2 and 3.3:

Corollary 3.4. Let V
ν
0(d0) =

P

x0∈X σ2
Zx0 |d0

−Uν
0(d0).

Then, V0(d0) ≤ V
ν+1
0 (d0) ≤ V

ν
0(d0).

Theorem 3.5. Let

Qi(π, di) = R(x′
πi(di)

, di) + E[Qi+1(π, [di, 〈x
′
πi(di)

, Zx′

πi(di)
〉])|di]

Qt(π, dt) = R(x′
πt(dt), dt)

for i = 0, . . . , t − 1 where x′
πi(di)

is the new location to be
sampled by taking the current action πi(di). If π

ν∗ is the
optimal action policy for aMASP, Uν

i (di) ≤ Qi(π
ν∗, di) ≤

Ui(di) for i = 0, . . . , t.

Theorem 3.5 indicates that if the optimal action policy π
ν∗

derived by solving aMASP is used in the original MASP, the
lower bound is improved (i.e., the policy π

ν∗ is guaranteed
to achieve no worse than Uν

i (di) for MASP).

4. REAL-TIME DYNAMIC PROGRAMMING
For our bounding approximation scheme, the state size

grows exponentially with the number of stages. This is due
to the nature of DP-based problems, which takes into ac-
count all possible states. To alleviate this computational
difficulty, we propose anytime algorithms based on aMASP,
one of which can guarantee its policy quality for the original
MASP in real time.

Our proposed anytime algorithms are adapted from the
Real-Time Dynamic Programming (RTDP) [1] technique,
which is a well-known heuristic search algorithm for discrete-
state MDPs. RTDP essentially simulates greedy exploration
paths through a large state space. This results in the follow-
ing desirable properties: (a) the search is focused, that is,
it does not have to evaluate the entire state space to obtain
the optimal policy, and (b) it has a good anytime behav-
ior, that is, it produces a good policy fast and this policy
improves over time. The disadvantage of RTDP is its slow
convergence due to the focused search.

A non-trivial issue arises with generalizing RTDP to han-
dle the non-Markov structure of aMASP: the state space

of MDP is often assumed to be tractable. Based on this
assumption, RTDP has been enhanced in [2, 3] with ad-
ditional procedures to improve convergence, which require
time complexity linear in the state size. More importantly,
improvements of RTDP [2, 3, 10, 19] emphasize the use of in-
formed heuristic bounds, which are preprocessed with time
complexity linear in the state size. This is clearly unac-
ceptable for our anytime algorithms since the state size of
aMASP grows exponentially with the number of stages. In
the next section, we will derive informed heuristic bounds
that are computationally efficient.

4.1 Preprocessing of Heuristic Bounds
The greedy exploration in RTDP is guided by heuristic

bounds, which are used to prune unnecessary, bad searches
of the state space while still guaranteeing policy optimality.
In particular, when the initial bounds are more informed or
tighter (as opposed to non-informed, loose bounds used in
[1]), the anytime and convergence performance can be im-
proved [2, 3, 10]. However, this makes the preprocessing of
bounds more computationally expensive as described earlier.

To obtain computationally efficient informed lower bounds,
we can relax aMASP with ν = 1 by choosing the best action
to maximize the immediate reward at each stage:

Hi(di) = R(x′∗, di) + Hi+1(di, 〈x
′∗, µZx′∗ |di

〉)

Ht(dt) = max
at∈A′(xt)

R(x′, dt) (16)

for i = 0, . . . , t−1 where R(x′∗, di) = maxai∈A′(xi) R(x′, di).

It is easy to see that Hi(di) ≤ U1
i (di) and therefore lower-

bounds Uν
i (di) of aMASP (Theorem 3.3). It can be shown

that

Hi(di) ≤ max
ai∈A′(xi)

R(x′, di) +

ν
X

j=1

px′ijHi+1(di, 〈x
′, zx′ij〉) .

Then, we say that the lower heuristic bound is monotonic.
However, the state space only grows linearly with the num-
ber t of stages for computing this lower bound.

To derive computationally efficient informed upper bounds,
Theorem 2.2 can be exploited to give

Hi(di) =
X

x0∈X

σ2
Yx0 |di

, Ht(dt) = max
at∈A′(xt)

R(x′, dt) (17)

for i = 0, . . . , t − 1. From Theorem 2.2, Hi(di) upper-
bounds Ui(di) since Vi(di) ≥ 0. Therefore, it upper-bounds
Uν

i (di) of aMASP (Theorem 3.3). This upper bound can be
computed with time complexity constant in the number of
stages. It can be shown that

Hi(di) ≥ max
ai∈A′(xi)

R(x′, di) +
ν

X

j=1

px′ijHi+1(di, 〈x
′, zx′ij〉) .

Then, we say that the upper heuristic bound is monotonic.

4.2 Anytime Algorithms
The first anytime algorithm (Algorithm 1) is adapted di-

rectly from RTDP. To elaborate, each simulated exploration
path involves an alternating selection of actions and their
corresponding outcomes until the last stage is reached; each
action is selected based on the upper bound (line 3) and
the corresponding next state/outcome to explore is chosen
based on the discrete distribution of aMASP (line 4). Then,



the algorithm backtracks up the path to update the upper
heuristic bounds (lines 8-10) using maxai

Qi(ai, di) where

Qi(ai, di)
def
= R(x′, di) +

ν
X

j=1

px′ijU i+1(di, 〈x
′, zx′ij〉) .

We assume that whenever a new state is encountered, it
is initialized with the upper bound derived in Section 4.1.
When an action policy is requested at any time during the
algorithm’s execution, we provide the greedy policy induced
by the upper bound. But, its quality is not guaranteed.

RTDP(d0, t):

while true do
SIMULATED-PATH(d0, t)

SIMULATED-PATH(d0, t):

1: i← 0
2: while i < t do
3: a← arg maxai

Qi(ai, di)
4: z ← sample from distribution at points zx′

a
ij of prob-

ability px′
a

ij for j = 1, . . . , ν

5: di+1 ← di, 〈x
′
a, z〉

6: i← i + 1
7: U i(di)← maxai

R(x′, di)
8: while i > 0 do
9: i← i− 1

10: U i(di) ← maxai
Qi(ai, di)

Algorithm 1: RTDP.

The second anytime algorithm (Algorithm 2) is inspired
by the uncertainty-based RTDP (URTDP) techniques [10,
19]. Different from Algorithm 1, it maintains both lower
and upper bounds for each encountered state, which are
used to derive the uncertainty of its corresponding optimal
value function. The algorithm exploits them to guide fu-
ture searches in a more informed manner; it explores the
next state/outcome with the greatest amount of uncertainty
(lines 4-5). Besides updating the upper bounds, the lower
heuristic bounds are also updated during backtracking via
maxai

Q
i
(ai, di) (lines 10-13) where

Q
i
(ai, di)

def
= R(x′, di) +

ν
X

j=1

px′ijU i+1(di, 〈x
′, zx′ij〉) .

When an action policy is requested, we provide the greedy
policy induced by the lower bound. The quality of this policy
has a similar guarantee to Theorem 3.5 whereby the anytime
algorithm for solving aMASP provides a greedy policy that
achieves no worse than U0(d0) for using in MASP.

5. EXPERIMENTS AND DISCUSSION
This section presents empirical evaluations of aMASP on

a real-world dataset, that is, the June 2006 monthly com-
posite plankton density data of Chesapeake Bay from NOAA
CoastWatch bounded within the latitude 38.481-38.591N and
longitude 76.487-76.335W. The bay area (Fig. 1) is discretized
into a 14× 12 grid of sampling units. Each unit x is associ-
ated with a plankton density Yx measured in chlorophyll-a
(chl-a). The exploration region (i.e., sea) comprises |X | =
148 such units enclosed by the dark blue boundary (Fig. 1).
A fleet of two robotic boats is tasked to explore 18 sampling

units in this bay area with their starting locations indicated
in Fig. 1; each robot is constrained to sample 9 adjacent
units in its path including the unit it starts in. If only one
robot is used for exploration, it is placed in the top starting
unit (Fig. 1) and has to sample all 18 units. The actions
of each robot are restricted to moving to the front, left, or
right unit. Instead of assuming the mean function and co-
variance structure of GP and ℓGP to be known, we use the
data of 20 randomly selected units to learn their hyperpa-
rameters through maximum likelihood estimation [14]. So,
the known data d0 comprises the randomly selected units
and the starting units of the robots.

URTDP(d0, t):

while U0(d0)− U0(d0) > α do
SIMULATED-PATH(d0, t)

SIMULATED-PATH(d0, t):

1: i← 0
2: while i < t do
3: a← arg maxai

Qi(ai, di)
4: ∀j, Ξ(j) ← px′

a
ij {U i+1(di, 〈x

′
a, zx′

a
ij〉) −

U i+1(di, 〈x
′
a, zx′

a
ij〉)}

5: z ← sample from distribution at points zx′
a

ij of prob-
ability Ξ(j)/

P

k Ξ(k) for j = 1, . . . , ν
6: di+1 ← di, 〈x

′
a, z〉

7: i← i + 1
8: U i(di)← maxai

R(x′, di)
9: U i(di)← maxai

R(x′, di)
10: while i > 0 do
11: i← i− 1
12: U i(di) ← maxai

Qi(ai, di)
13: U i(di) ← maxai

Q
i
(ai, di)

Algorithm 2: URTDP (α is user-specified bound).

The policy performance of strictly adaptive aMASP is
compared to that of the state-of-the-art exploration strate-
gies, namely, the greedy and non-adaptive strategies. The
greedy strategies are applied to sampling GP and ℓGP; a
greedy strategy repeatedly chooses a reward-maximizing ac-
tion (i.e., by repeatedly solving MASP with t = 0 in (13)) to
obtain the robot paths. The non-adaptive strategy for GP
corresponds to the deterministic planning problem in (10).
Similar to aMASP, its state size grows exponentially with
the number of stages. Therefore, it is approximated by a
deterministic version of RTDP called LRTA∗.

Two performance metrics are used to evaluate the policies
of the above exploration strategies: (a) Mean-Squared Rela-
tive Error (MSRE) |X |−1

P

x∈X{(Yx−µYx|dt
)/µ̄}2 measures

the spatial mapping uncertainty by using µYx|dt
in (11) to

predict the plankton density field where µ̄ = |X |−1 P

x∈X Yx,
and t = 16 (17) for the case of 2 (1) robots. A small MSRE
implies lower uncertainty and thus, better wide-area cover-
age; (b) chl-a yield measures the amount of plankton sam-
pled by the robot paths; a high plankton yield means greater
sampling at hotspots.

Table 1 shows the results of various exploration strate-
gies with different assumed models and robot team size. For
the adaptive aMASPs and non-adaptive MASP, the results
are obtained using the action policies derived after running
100000 simulated paths. The results show that the strate-
gies for ℓGP obtain higher plankton yield than that for GP.
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Figure 1: Plankton density (chl-a) field of Chesa-
peake Bay: 20 units (black dots) are randomly se-
lected as known data. The robots start at locations
marked by ‘×’s. The black and gray robot paths
are produced by adaptive aMASP for ℓGP and non-
adaptive MASP for GP respectively.

Table 1: Performance comparison of robot explo-
ration strategies: 1R and 2R denote 1 and 2 robots
respectively.

MSRE chl-a yield
Exploration strategy Model 1R 2R 1R 2R
Adaptive aMASP/RTDP ℓGP 0.284 0.241 1660 1607
Adaptive aMASP/URTDP ℓGP 0.250 0.197 1652 1815
Greedy ℓGP 0.338 0.260 1840 1647
Non-adaptive MASP GP 0.325 0.333 1165 1240
Greedy GP 0.401 0.407 967 982

In particular, the adaptive aMASP with URTDP achieves
lowest MSRE and very high plankton yield as compared
to the non-adaptive and greedy strategies. Furthermore, it
can be observed from Fig. 1 that the action policy of adap-
tive aMASP with URTDP moves the robots to sample the
hotspots but that of non-adaptive MASP for GP does not.
Therefore, the adaptive aMASP with URTDP is capable of
performing superior wide-area coverage (lowest MSRE) and
hotspot sampling (very high plankton yield).

6. CONCLUSIONS
This paper describes an adaptive multi-robot exploration

strategy based on MASP that is novel in performing both
wide-area coverage and hotspot sampling. A key feature of
MASP is in covering the entire adaptivity spectrum; a the-
oretical analysis of MASP with varying adaptivity reveals
that a more adaptive strategy reduces spatial mapping un-
certainty. We demonstrate its applicability to sampling GP
and ℓGP, which result in non-adaptive and adaptive explo-
ration strategies respectively. We also show that MASP for
ℓGP caters to both wide-area coverage and hotspot sam-
pling while that for GP only achieves the former. Since
it is non-trivial to solve MASP due to its continuous state
components, it is approximated by discrete-state monotone-
bounding aMASP. We provide a theoretical guarantee on the
policy quality of aMASP for using in the original MASP. To
alleviate the computational difficulty of solving aMASP for
ℓGP, anytime algorithms are proposed based on aMASP: the
URTDP algorithm can guarantee its policy quality for the
original MASP in real time and is demonstrated empirically
to achieve superior wide-area coverage and hotspot sampling
as compared to state-of-the-art strategies.
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