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ABSTRACT
Central to the problem of active multi-camera surveillance
is the fundamental issue of fairness in the observation of
multiple targets such that no target is left unobserved by the
cameras for a long time. To address this important issue,
we propose a novel principled decision-theoretic approach to
control and coordinate multiple active cameras to achieve
fairness in the observation of multiple moving targets.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Tracking; I.2.9 [Robotics]: Com-
mercial robots and applications, Sensors

General Terms
Algorithms, Performance, Experimentation, Security

Keywords
Surveillance and security; robot teams; multi-robot systems;
robot coordination

1. INTRODUCTION
Active cameras are increasingly used in surveillance for

monitoring and tracking targets in high-resolution images/videos.
These cameras are commonly known as PTZ (pan-tilt-zoom)
cameras and are needed to be controlled and coordinated ef-
ficiently to achieve a desired surveillance task. Recent works
in controlling and coordinating active cameras are designed
to maximize the number of targets to be observed in ac-
tive cameras [5, 6] and to observe certain targets at a de-
sired resolution [2, 7]. When the cameras are controlled to
achieve these surveillance tasks, one or more targets may re-
ceive less attention by the active cameras. In the worst case,
these targets may not be observed at all. These targets that
are not observed by the active cameras for long duration
may be adversarial and cause potential threats to the en-
vironment. Therefore, it is necessary to achieve fairness in
observation of targets in active camera surveillance. That
is, we need to maximize the observations of those targets
that are not observed or least observed by the active cam-
eras. In this paper, we propose a novel decision-theoretic
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approach to control and coordinate multiple active cameras
to maximize the fairness in observation of multiple targets.
Our decision-theoretic approach is based on Markov Deci-
sion Process (MDP) framework and max-min fairness met-
ric.

2. MDP FRAMEWORK
Our surveillance setup consists of m targets, n active cam-

eras, one or more static cameras, and a MDP controller. The
targets are moving objects whose motion is stochastic in na-
ture and active cameras are PTZ cameras that can obtain
high-resolution images of the targets. The static cameras
observe the surveillance environment at a low resolution.
These static cameras are assumed to be calibrated and can
obtain the 3D location, direction, and speed information of
the targets to be passed to our MDP controller. Based on
these information, our MDP controller computes the opti-
mal PTZ actions of the active cameras to coordinate them in
achieving our surveillance objective. The MDP controller is
defined as a tuple (S,A, Tf , R) that consists of the following:

States: Let S be set of joint states of targets and active
cameras in the surveillance environment such that a joint
state S , (TM, C) ∈ S consists of a pair of joint states
TM ∈ T m of m = |M| targets and C ∈ Cn of n active
cameras. The sets T and C denote all possible states of each
target and each active camera, respectively, and the set M
denotes indices of the m targets. So, S = T m × Cn. Let
TM , (t1, t2, . . . , tm) ∈ T m and C , (c1, c2, . . . , cn) ∈ Cn
where tk ∈ T and ci ∈ C denote the states of target k and
camera i, respectively. Let tk , (tlk , tdk , tvk , tok ) ∈ Tl×Td×
Tv×To where tlk , tdk , tvk , and tok denote target k’s location,
direction, speed, and observation time, respectively. So, T =
Tl × Td × Tv × To.

The state space C of an active camera is a finite set of
discrete PTZ positions. Let fov(C) ⊂ Tl be a subset of
target locations lying within the fov of all the cameras in
state C.

Actions: The joint actions of the active cameras are PTZ
commands that move the corresponding cameras to their
specified states. Let a joint action of the n cameras be de-
noted by A , (a1, a2, . . . , an) ∈ A where ai denotes the PTZ
command of camera i.

Transition Function: The transition function Tf : S ×
A × S → [0, 1] models the probability P (S′|S,A) of chang-
ing from the current joint state S ∈ S to the next joint state
S′ ∈ S using the joint action A ∈ A. By exploiting the
state transition dynamics of the surveillance environment,



the transition model Tf can be factored into transition mod-
els of individual targets and active cameras [5, 6] as follows:

P (S′|S,A)

=


m∏

k=1

P (t′k|tk, C′) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.
(1)

where the transition model of individual target is given by

P (t′k|tk, C′) = P (t′lk |tlk , t
′
dk , t

′
vk )P (t′dk |tdk )P (t′vk |tvk )

P (t′ok |t
′
lk , tok , C

′) .

The transition probabilities P (t′lk |tlk , t
′
dk
, t′vk ), P (t′dk |tdk ),

and P (t′vk |tvk ) are Gaussian distributions, as reported in
[5]. The transition probability for target’s observation time
is given by

P (t′ok = tok + 1|t′lk , tok , C
′) =

{
1 if t′lk ∈ fov(C′),
0 otherwise.

P (t′ok = tok |t
′
lk , tok , C

′) =

{
1 if t′lk /∈ fov(C′),
0 otherwise.

Objective/Reward Function: Let R : S → R be a real-
valued reward function that represents the surveillance goal.
Our goal is to maximize the fairness in observation of multi-
ple targets in active cameras, which is defined in terms of the
max-min fairness metric. Supposing the transition models
of all targets are deterministic, we define a reward function
R that measures the minimum observation time over all tar-
gets:

R(S) = R((TM, C)) , min
k∈M

tok . (2)

Policy Computation: A policy function π(S) in the MDP
controller maps from each state S to a joint action A of
cameras, that is, π : S → A. Since the states of the targets in
the next time step are uncertain due to stochasticity of their
motion, we compute optimal policy π∗(S) that maximizes
the expected minimum observation time over all targets in
the next time step:

A∗ = arg max
A∈A

∑
T ′
M∈T

m

R((T ′M, C
′))P (T ′M|TM, C′) (3)

where T ′M and C′ are, respectively, the joint states of the
targets and active cameras in the next time step. Comput-
ing optimal policy using (3) incurs time that is exponential
in number m of targets. We exploit the conditional inde-
pendence property in the transition model to reduce the
exponential computation time and, as a result, the policy
function π(S) (3) can be simplified to

A∗ = arg max
A∈A

∏
k∈Y

∑
t′
k
∈TC′

P (t′k|tk, C′) . (4)

where Y ⊆ M denotes the set of indices of all targets with
minimum observation time in the current time step and TC′

denotes the set of a target’s states whose locations are ob-
served by the active cameras in their joint state C′. Policy
computation time in (4) is linear in number m of targets.

Computing the policy in (4) only needs to consider all tar-
gets with minimum observation time. These targets may be
beyond the fov’s of some active cameras due to their spatial

localities. To remedy this situation, the key idea is to re-
peatedly refine the set of optimal joint actions by preserving
fairness in the observation of the remaining targets using (4)
after ignoring those with minimum observation times.

3. RESULTS AND CONCLUSIONS
The proposed MDP Framework has been evaluated un-

der various experimental setups [5, 6] like hall, corridor and
junction. The results show that our approach maximizes
the fairness in observation of targets efficiently in all three
setups, as compared to the work in [5].

To summarize, we have proposed a decision-theoretic ap-
proach to control and coordinate multiple active cameras to
improve the fairness in observation of targets. Our approach
is based on MDP framework whose reward function is for-
mulated as a max-min fairness metric. In future, we would
like to improve fairness by exploiting the interactions of the
targets [1] in the environment and also consider fairness in
coordinating a team of mobile robots [3, 4] in surveillance.
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