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Abstract

This paper presents a multi-staged approach
to nonmyopic adaptive Gaussian process op-
timization (GPO) for Bayesian optimization
(BO) of unknown, highly complex objective
functions that, in contrast to existing non-
myopic adaptive BO algorithms, exploits the
notion of macro-actions for scaling up to a
further lookahead to match up to a larger
available budget. To achieve this, we gen-
eralize GP upper confidence bound to a new
acquisition function defined w.r.t. a nonmy-
opic adaptive macro-action policy, which is
intractable to be optimized exactly due to an
uncountable set of candidate outputs. The
contribution of our work here is thus to de-
rive a nonmyopic adaptive ε-Bayes-optimal
macro-action GPO (ε-Macro-GPO) policy.
To perform nonmyopic adaptive BO in real
time, we then propose an asymptotically op-
timal anytime variant of our ε-Macro-GPO
policy with a performance guarantee. We
empirically evaluate the performance of our
ε-Macro-GPO policy and its anytime variant
in BO with synthetic and real-world datasets.

1 Introduction

Recent advances in Bayesian optimization (BO) have
delivered a promising suite of tools for optimizing an
unknown (possibly noisy, non-convex, with no closed-
form expression/derivative) objective function with
a finite budget of function evaluations, as demon-
strated in a wide range of applications like auto-
mated machine learning, robotics, sensor networks,
environmental monitoring, among others (Shahriari
et al., 2016). Conventionally, a BO algorithm relies
on some choice of acquisition function (e.g., probabil-
ity of improvement or expected improvement (EI) over
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currently found maximum, information-based (Hennig
and Schuler, 2012; Hernández-Lobato et al., 2014), or
upper confidence bound (UCB) (Srinivas et al., 2010))
as a heuristic to guide its search for the global max-
imum. To do this, the BO algorithm exploits the
chosen acquisition function to repeatedly select an in-
put for evaluating the unknown objective function that
trades off between observing a likely maximum based
on a GP belief of the unknown objective function (ex-
ploitation) vs. improving the GP belief (exploration)
until the budget is expended.

Unfortunately, such a conventional BO algorithm is
greedy/myopic and hence performs suboptimally with
respect to the given finite budget1. To be nonmyopic,
its policy to select the next input has to additionally
account for its subsequent selections of inputs for eval-
uating the unknown objective function. Perhaps sur-
prisingly, this can be partially achieved by batch BO
algorithms capable of jointly2 optimizing a batch of in-
puts (Chevalier and Ginsbourger, 2013; Daxberger and
Low, 2017; Shah and Ghahramani, 2015; Wu and Fra-
zier, 2016) because their selection of each input has to
account for that of all other inputs of the batch3. How-
ever, since the batch size is typically set to be much
smaller than the given budget, they have to repeat-
edly select the next batch greedily. Unlike the conven-
tional BO algorithm described above, their selection
of each input is independent of the outputs observed
from evaluating the objective function at the other se-
lected inputs of the batch, thus sacrificing some degree
of adaptivity. Hence, they also perform suboptimally
with respect to the given budget.

1Acquisition functions like EI (Bull, 2011; Vazquez and
Bect, 2010) and UCB (Srinivas et al., 2010) offer theoretical
guarantees for the convergence rate of their BO algorithms
(i.e., in the limit) via regret bounds. In practice, since
the budget is limited, such bounds are suboptimal as they
cannot be specified to be arbitrarily small.

2In contrast, a greedy batch BO algorithm (Contal et al.,
2013; Desautels et al., 2014; González et al., 2016a) selects
the inputs of a batch one at a time myopically.

3Batch BO is traditionally considered when resources
are available to evaluate the objective function in parallel.
We suggest a further possibility of using batch BO for a
non-myopic selection of inputs of the batch here.
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Some nonmyopic adaptive BO algorithms (Lam and
Willcox, 2017; Lam et al., 2016; Ling et al., 2016;
Marchant et al., 2014; Osborne et al., 2009) have been
developed to combine the best of both worlds. But,
they have been empirically demonstrated to be effec-
tive and tractable for at most a lookahead of 5 ob-
servations which is usually much less than the size of
the available budget in practice, thus causing them
to behave myopically in this case. To increase the
lookahead, the work of (González et al., 2016b) has
proposed a two-staged approach that utilizes a greedy
batch BO algorithm2 in its second stage to efficiently
but myopically optimize all but the first input afforded
by the budget. Note that the above works on non-
myopic adaptive BO do not provide theoretical per-
formance guarantees except for that of (Ling et al.,
2016). The challenge therefore remains in devising
a multi-staged approach to nonmyopic adaptive BO
that can empirically scale well to a further lookahead
(and hence match up to a larger budget) and still be
amenable to a theoretical analysis of its performance,
which is the focus of our work here.

To address this challenge, we exploit the notion of
macro-actions (i.e., each denoting a sequence of prim-
itive actions executed in full without considering any
observation taken after performing each primitive ac-
tion in the sequence) inherent to the structure of sev-
eral real-world task environments/applications such as
environmental sensing and monitoring, mobile sensor
networks, and robotics. Some examples are given be-
low and described in detail in Section 4 (see Fig. 1 for
more examples): (a) In monitoring of algal bloom in
the coastal ocean, an autonomous underwater vehicle
(AUV) is deployed on board a research vessel in search
for a hotspot of peak phytoplankton abundance and
tasked to take dives from the vessel to gather “Gulper”
water samples for on-deck testing that can be cast as
macro-actions (Pennington et al., 2016), and (b) in ser-
vicing the mobility demands within an urban city, an
autonomous robotic vehicle in a mobility-on-demand
system cruises along different road trajectories ab-
stracted as macro-actions to find a hotspot of highest
mobility demand to pick up a user (Chen et al., 2015b).
Macro-actions have in fact been well-studied and used
by the planning community4 to scale up algorithms for
planning under uncertainty to a further lookahead (He
et al., 2010, 2011; Lim et al., 2011), which is realized
from a much reduced space of possible sequences of
primitive actions (i.e., macro-actions) induced by the
structure of the task environment/application.

The use of macro-actions in the context of nonmy-

4Macro-actions are also studied in reinforcement learn-
ing community but named as options instead (Konidaris
and Barto, 2007; Stolle and Precup, 2002).

opic adaptive BO poses an interesting research ques-
tion: How can an acquisition function be defined with
respect to a nonmyopic adaptive macro-action5 policy
and optimized tractably to yield such a policy with a
provable performance guarantee for a given finite bud-
get? The main technical difficulty in answering this
question stems from the need to account for the cor-
relation of outputs to be observed from evaluating the
unknown objective function at inputs found within
a macro-action and between different macro-actions
(Section 3). Such a correlation structure is the chief
ingredient to be exploited for selecting informative ob-
servations to find the global maximum.

This paper presents a principled multi-staged Bayesian
sequential decision problem framework for nonmy-
opic adaptive GP optimization (GPO) (Section 3)
that, in particular, exploits macro-actions inherent
to the structure of several real-world task environ-
ments/applications for scaling up to a further looka-
head (as compared to the existing nonmyopic adap-
tive BO algorithms discussed above) to match up to a
larger available budget. To achieve this, we first gen-
eralize GP-UCB to a new acquisition function defined
with respect to a nonmyopic adaptive macro-action
policy, which, unfortunately, is intractable to be op-
timized exactly due to an uncountable set of candi-
date outputs. The key novel contribution of our work
here is to show that it is in fact possible to solve for
a nonmyopic adaptive ε-Bayes-optimal macro-action
GPO (ε-Macro-GPO) policy given an arbitrarily user-
specified loss bound ε via stochastic sampling in each
planning stage which requires only a polynomial num-
ber of samples in the length of macro-actions6. To
perform nonmyopic adaptive BO in real time, we then
propose an asymptotically optimal anytime variant of
our ε-Macro-GPO policy with a performance guaran-
tee. We empirically evaluate the performance of our
ε-Macro-GPO policy and its anytime variant in BO
with synthetic and real-world datasets (Section 4).

2 Modeling Spatially Varying Phe-
nomena with Gaussian Processes

To simplify exposition of our work here, we will as-
sume the task environment to be a spatially varying
phenomenon (e.g., indoor environmental quality of an
office environment, plankton bloom in the ocean, mo-
bility demand within an urban city, as described in
Section 1). A mobile sensing agent utilizes our pro-

5In BO, each macro-action denotes a sequence of inputs
for evaluating the unknown objective function.

6In contrast, though the nonmyopic adaptive BO algo-
rithm of (Ling et al., 2016) based on deterministic sam-
pling can be naively generalized to exploit macro-actions,
it requires an exponential number of samples per planning
stage, as detailed in (Kharkovskii et al., 2020).
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posed nonmyopic adaptive ε-Macro-GPO policy or its
anytime variant to select and gather observations from
the task environment for finding the global maximum.

Notations and Preliminaries. Let S be the do-
main of a spatially varying phenomenon corresponding
to a set of input locations. In every stage t > 0, the
agent executes one of the available macro-actions of
length κ at its current input location by deterministi-
cally moving through a sequence of κ input locations,
denoted by a vector st ∈ A(st−1), and observes the
corresponding output measurements zt ∈ Rκ, where
A(st−1) ⊆ Sκ denotes a finite set of available macro-
actions at the agent’s current input location7 (see vi-
sual illustration in Fig. 1 and its caption b). The state
of the agent at its initial starting input location is
represented by prior observations/data d0 , 〈s0, z0〉
available before planning where s0 and z0 denote, re-
spectively, vectors comprising input locations visited
and corresponding output measurements observed by
the agent prior to planning. The agent’s initial start-
ing input location is the last component of s0. In stage
t > 0, the state of the agent is represented by obser-
vations/data dt , 〈st, zt〉 where st , s0 ⊕ . . .⊕ st and
zt , z0⊕ . . .⊕zt denote, respectively, vectors compris-
ing input locations visited and corresponding output
measurements observed by the agent up till stage t and
‘⊕’ denotes vector concatenation.

Gaussian Process (GP). The spatially varying phe-
nomenon is modeled as a realization of a GP: Each
input location s ∈ S is associated with an output
measurement ys. Let yS , {ys}s∈S denote a GP,
that is, every finite subset of yS has a multivari-
ate Gaussian distribution. Then, the GP is fully
specified by its prior mean µs , E[ys] (we assume
w.l.o.g. that µs = 0 for all s ∈ S) and covariance
σss′ , cov[ys, ys′ ] for all s, s′ ∈ S, the latter of which
characterizes the spatial correlation structure of the
phenomenon. For example, σss′ can be defined by the
commonly-used squared exponential covariance func-
tion σss′ , σ2

y exp{−0.5(s − s′)>Γ−2(s − s′)} where
σ2
y is the signal variance controlling the intensity of

output measurements and Γ is a diagonal matrix with
length-scale components `1 and `2 controlling the spa-
tial correlation or “similarity” between output mea-
surements in the respective east-west and north-south
directions of the 2D phenomenon.

All output measurements observed by the agent are
corrupted by an additive noise ε, i.e., zi,j , ysi,j +ε for
stage i = 0, . . . , t and j = 1, . . . κ where si,j is the j-th
input location of macro-action si at stage i, zi,j is the
corresponding output measurement and ε ∼ N (0, σ2

n)

7Note that A(st−1) depends on the agent’s current in-
put location which corresponds to the last component of
macro-action st−1 executed in the previous stage t− 1.

with the noise variance σ2
n. Supposing the agent has

gathered observations dt = 〈st, zt〉 from stages 0 to t
the GP model can exploit these observations dt to per-
form probabilistic regression by providing a Gaussian
posterior belief p(zt+1|st+1, dt) = N (µst+1|dt ,Σst+1|st)
of noisy output measurements for any κ input locations
st+1 ⊂ S with the following posterior mean vector and
covariance matrix, respectively:

µst+1|dt , Σst+1stΣ
−1
ststz

>
t ,

Σst+1|st , Σst+1st+1
− Σst+1stΣ

−1
ststΣstst+1

(1)

where Σst+1st is a matrix with covariance compo-
nents σss′ for every input location s of st+1 and s′

of st, Σstst+1
is the transpose of Σst+1st , and Σstst

(Σst+1st+1
) is a matrix with covariance components

σss′ +σ2
nδss′ for every pair of input locations s, s′ of st

(st+1) and δss′ is a Kronecker delta of value 1 if s = s′,
and 0 otherwise. A key property of the GP model is
that, different from µst+1|dt , Σst+1|st is independent of
the output measurements zt.

3 ε-Bayes-Optimal Macro-GPO

Problem Formulation. To cast nonmyopic adap-
tive macro-action GP optimization (Macro-GPO) as
a Bayesian sequential decision problem, we define a
nonmyopic adaptive macro-action policy π to sequen-
tially decide in each stage t the next macro-action
π(dt) ∈ A(st) to be executed for gathering κ new ob-
servations based on the current observations dt over
a finite planning horizon of H stages (i.e., a looka-
head of κH observations). The goal of the agent is to
plan/decide its macro-actions to visit input locations
sH , s1 ⊕ . . . ⊕ sH with the maximum total corre-
sponding output measurements 1>zH =

∑H
t=1 1>zt =∑H

t=1

∑κ
i=1 zt,i or, equivalently, minimum cumulative

regret where zH , z1⊕. . .⊕zH and zt , (zt,1, . . . , zt,κ).
However, since only the prior observations/data d0
are known, the Macro-GPO problem involves find-
ing a macro-action policy π to select input loca-
tions sH to be visited by the agent with the max-
imum expected total corresponding output measure-
ments EzH |d0,π[1>zH ] instead.

Supposing the size of the available budget in a real-
world task environment exceeds the lookahead of κH
observations, it can afford a stronger exploration be-
havior by including an additional weighted exploration
term β I[yS ; zH |d0, π]; its effect on BO performance is
empirically investigated in Section 4 (see Fig. 4c). The
conditional mutual information I[yS ; zH |d0, π] here
can be interpreted as the information gain on the phe-
nomenon over the entire domain S (i.e., equivalent to
yS) from gathering observations 〈sH , zH〉 selected ac-
cording to the macro-action policy π given the prior
data d0. Then, the acquisition function w.r.t. a non-
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Figure 1: Example of monitoring indoor environmen-
tal quality of an office environment (Choi et al., 2012):
(a) A mobile robot mounted with a weather board
is tasked to find a hotspot of peak temperature by
exploring different stretches of corridors that can be
naturally abstracted into macro-actions. (b) In stage
t = 1, the robot is at its initial starting input lo-
cation (green dot). It can decide to execute macro-
action s1 (translucent red arrow), which is a sequence
of κ = 3 primitive actions (opaque red arrows) mov-
ing it through a sequence of κ = 3 input locations
(black dots) to arrive at input location s1,3. So,

s1 , (s1,1, s1,2, s1,3). (c) To derive a myopic Macro-
GPO or ε-Macro-GPO policy with H = 1, the last
stages of Bellman equations in (5)-(8) require macro-
actions s1 and s′1 as inputs. To derive a nonmyopic
one with H = 2, they require macro-action sequences
s1 ⊕ s2 and s′1 ⊕ s′2 as inputs instead.

myopic adaptive macro-action policy π when starting
in d0 and following π thereafter can be defined as

V π0 (d0) , EzH |d0,π[1>zH ] + β I[yS ; zH |d0, π] . (2)

Applying the chain rule for mutual information and a
few other information-theoretic results to (2) yields the
followingH-stage Bellman equations (see (Kharkovskii
et al., 2020) for the proof):

V πt (dt) , Qπt (π(dt), dt) ,

Qπt (st+1, dt) , R(st+1, dt) +
Ezt+1|st+1,dt [V

π
t+1(〈st+1, zt⊕zt+1〉)]

(3)

for stages t = 0, . . . ,H − 1 where V πH(dH) , 0 and

R(st+1, dt) , 1>µst+1|dt + 0.5β log |I + σ−2n Σst+1|st | .
(4)

To solve the Macro-GPO problem, Bayes-optimality is
exploited to select input locations to be visited by the
agent that maximize the expected total correspond-
ing output measurements (and, if the budget can af-
ford, the additional weighted exploration term repre-
senting the information gain on the phenomenon) with
respect to all possible induced sequences of future GP

stochastic

……z1

s1

zN

mle

s1

µs1|d0new	combined

…

True False

…

|Q0(s1, d0) �Q0(s1, d0)|
 �H + ✓

|Q0(s1, d0)�Q0(s1, d0)|
 �H + ✓

s1

µs1|d0z1 zN

Figure 2: Visual illustrations of policies induced by
(a) stochastic sampling (6), (b) most likely observa-
tions (7), and (c) our ε-Macro-GPO policy πε (8). Cir-
cles denote nodes dt. Squares denote nodes 〈st+1, zt〉.

posterior beliefs p(zt+1|st+1, dt) for t = 0, . . . ,H − 1.
Formally, this involves choosing a nonmyopic adaptive
macro-action policy π to maximize V π0 (d0), which we
call the Bayes-optimal Macro-GPO policy π∗. That is,
V ∗0 (d0) , V π

∗

0 (d0) = maxπ V
π
0 (d0). Plugging π∗ into

V πt (dt) and Qπt (st+1, dt) (3) gives

V ∗t (dt) , maxst+1∈A(st)Q
∗
t (st+1, dt) ,

Q∗t (st+1, dt) , R(st+1, dt) +
Ezt+1|st+1,dt [V

∗
t+1(〈st+1, zt⊕zt+1〉)]

(5)

for stages t = 0, . . . ,H − 1 where V ∗H(dH) , 0.8 When
the lookahead of κH observations matches up to the
available budget, the Bayes-optimal Macro-GPO pol-
icy π∗ can naturally trade off between exploration vs.
exploitation without needing the additional weighted
exploration term in (2) or (4) (i.e., β = 0): Its selected
macro-action π∗(dt) = argmaxst+1∈A(st) Q

∗
t (st+1, dt)

in each stage t has to trade off between exploiting the
current GP posterior belief p(zt+1|π∗(dt), dt) to max-
imize the expected total corresponding output mea-
surements R(π∗(dt), dt) = 1>µπ∗(dt)|dt vs. improving
the GP posterior belief of the phenomenon (i.e., ex-
ploration) so as to maximize the expected total out-
put measurements Ezt+1|π∗(dt),dt [V

∗
t+1(〈st⊕π∗(dt), zt⊕

zt+1〉)] in the later stages.

When the available budget is larger than the looka-

8To understand the effect of H on how much macro-
action sequence information are required as inputs to the
Bellman equations in (5)-(8), refer to Fig. 1 and its caption
c for a visual illustration.
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head of κH observations, it can afford a stronger ex-
ploration behavior by setting a positive weight β >
0 on the exploration term 0.5 log |I + σ−2n Σπ∗(dt)|st |
in (4); its effect on BO performance is empirically
investigated in Section 4 (see Fig. 4c). This ex-
ploration term can be interpreted as the informa-
tion gain I[yS ; zt+1|dt, π∗(dt)] on the phenomenon (see
(Kharkovskii et al., 2020)) from executing the macro-
action π∗(dt) to gather κ new observations. As such,
π∗(dt) can gain more information on the phenomenon
(larger exploration term) by gathering observations
with higher uncertainty (larger individual posterior
variance) but lower correlation (smaller magnitude of
posterior covariance) between them.

ε-Bayes-Optimal Macro-GPO (ε-Macro-GPO).
In general, the Macro-GPO policy π∗ cannot be de-
rived exactly because the expectation term in (5) (and
hence Q∗t and V ∗t ) often cannot be evaluated in closed
form due to an uncountable set of candidate out-
put measurements. To overcome this difficulty, we
will derive a nonmyopic adaptive ε-Macro-GPO pol-
icy πε whose expected performance loss is theoret-
ically guaranteed to be within an arbitrarily user-
specified loss bound ε. Preliminary to its design is
the approximation of the expectation term in (5) for
each candidate macro-action st+1 in every stage us-
ing stochastic sampling of N i.i.d. multivariate Gaus-
sian vectors z1, . . . , zN from the GP posterior belief
p(zt+1|st+1, dt) (1), as illustrated in Fig. 2a:

Vt(dt) , maxst+1∈A(st)Qt(st+1, dt) ,

Qt(st+1, dt) , R(st+1, dt)+
1

N

N∑
`=1

Vt+1(〈st+1, zt⊕z`〉)

(6)
for stages t = 0, . . . ,H − 1 where VH(dH) , 0.8 We
prove in (Kharkovskii et al., 2020) thatQt(st+1, dt) (6)
can approximate Q∗t (st+1, dt) (5) arbitrarily closely
(i.e., |Qt(st+1, dt) − Q∗t (st+1, dt)| ≤ λH given a user-
specified λ > 0) for all st+1 with a high probability of
at least 1−δ requiring only a polynomial number N of
samples in the macro-action length κ (9) per planning
stage. Such a result, however, only entails probabilis-
tic bounds on how far Vt(dt) (6) is from V ∗t (dt) (5) (see
(Kharkovskii et al., 2020)) and on the resulting policy
loss. We will prove a stronger non-trivial result: In
the unlikely event (with an arbitrarily small probabil-
ity of at most δ) that Qt(st+1, dt) (6) is unboundedly
far from Q∗t (st+1, dt) (5) for some st+1, we instead rely
on the κ most likely observations

Vt(dt) , maxst+1∈A(st)Qt(st+1, dt) ,

Qt(st+1, dt) , R(st+1, dt)+Vt+1(〈st+1, zt⊕µst+1|dt〉)
(7)

for stages t = 0, . . . ,H − 1 where VH(dH) , 0.8

Unlike Qt(st+1, dt) (6), the approximation quality

of Qt(st+1, dt) (7) can be deterministically bounded
but cannot be user-specified to be arbitrarily good
(see (Kharkovskii et al., 2020)): |Qt(st+1, dt) −
Q∗t (st+1, dt)| ≤ θ for all st+1 where θ , O(κH+1/2).
To ease understanding, we visually illustrate in Fig. 2
how the policies induced by stochastic sampling (6)
vs. most likely observations (7) differ and are used
to design our ε-Macro-GPO policy πε (8). Essen-
tially, we design πε to strictly follow the policy induced
by stochastic sampling (6) only if Qt(st+1, dt) (6) is
boundedly close to Qt(st+1, dt) (7) for all st+1:

πε(dt) , argmaxst+1∈A(st)Q
ε
t(st+1, dt) ,

Qεt(st+1, dt) ,

Qt(st+1, dt)
if |Qt(st+1, dt) −
Qt(st+1, dt)| ≤ λH + θ,

Qt(st+1, dt) otherwise;

(8)
for stages t = 0, . . . ,H−1.8 Like the Macro-GPO pol-
icy π∗, πε can also naturally trade off between explo-
ration vs. exploitation, by the same reasoning as ear-
lier. Unlike the deterministic policy π∗, πε is stochastic
due to its use of stochastic sampling in Qt (6).

To understand the rationale/implications of our choice
of if condition in (8), refer to Fig. 3. These implications
are central to establishing our main result determin-
istically bounding the expected performance loss of πε

relative to that of π∗, i.e., πε is ε-Bayes-optimal (see
proof in (Kharkovskii et al., 2020)):

Theorem 1. Suppose that the observations d0, H ∈
Z+, a budget of κH input locations, and a user-
specified loss bound ε > 0 are given. Then, V ∗0 (d0) −
Eπε [V π

ε

0 (d0)] ≤ ε by setting θ , O(κH+1/2) (see
(Kharkovskii et al., 2020)), δ = ε/(8θH), and λ =
ε/(4H2) to yield

N = O((κ2H/ε2) log(κA/ε)) (9)

where A denotes the largest number of candidate
macro-actions available at any input location in S.

Remark 1. It can be observed from Theorem 1 that the
number N of stochastic samples increases9 with (a) a
tighter user-specified loss bound ε, (b) a larger number
A of candidate macro-actions at any input location in
S, and (c) a greater macro-action length κ.

Anytime ε-Macro-GPO. Unlike the Bayes-optimal
policy π∗, our policy πε can be derived exactly since its
incurred time does not depend on the size of the un-
countable set of candidate output measurements. But,
deriving πε (8) requires expanding an entire search tree
of O(NH) nodes to solve the H-stage Bellman equa-
tions of Vt (6), which is not always needed to achieve

9In fact, N also increases when a larger H is available
and the spatial phenomenon varies with more intensity and
less noise, i.e., larger σ2

y/σ
2
n (see (Kharkovskii et al., 2020)).

These constants are omitted from (9) to ease clutter.
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Sketch	for	condition	I

Qt(st+1, dt) Q⇤
t (st+1, dt) Qt(st+1, dt)

Sketch	for	condition	II

Qt(st+1, dt) Q⇤
t (st+1, dt)Qt(st+1, dt)

Figure 3: (a) When |Qt(st+1, dt) − Q∗t (st+1, dt)| ≤ λH, |Qt(st+1, dt) − Qt(st+1, dt)| (green) is at most λH + θ
(red) and hence Qεt(st+1, dt) = Qt(st+1, dt). (b) When |Qt(st+1, dt) − Q∗t (st+1, dt)| > λH and |Qt(st+1, dt) −
Qt(st+1, dt)| ≤ λH + θ, Qεt(st+1, dt) = Qt(st+1, dt) due to (8) and |Qεt(st+1, dt)−Q∗t (st+1, dt)| (green) is at most
λH + 2θ (red). A rigorous analysis of the if condition in (8) is covered in (Kharkovskii et al., 2020).

ε-Bayes optimality in practice. To ease this compu-
tational burden (e.g., for real-time planning), we pro-
pose an asymptotically optimal anytime variant of our
ε-Macro-GPO policy that can attain good BO perfor-
mance quickly and improve its approximation quality
over time, as briefly discussed here and detailed along
with the pseudocode in (Kharkovskii et al., 2020).

The intuition behind our anytime ε-Macro-GPO algo-
rithm is to incrementally expand a search tree by iter-
atively simulating greedy exploration paths down the
partially constructed tree and expanding the sub-trees
rooted at nodes with the largest uncertainty of their
corresponding values V ∗t (dt) so as to improve their ap-
proximation quality. Such an uncertainty at each en-
countered node dt is quantified by the gap between its
maintained upper and lower heuristic bounds V

∗
t (dt)

and V ∗t (dt) that are (a) tightened via backpropaga-
tion from the leaves up through node dt to the root d0
and (b) subsequently used to refine that at its siblings
by exploiting the Lipschitz continuity of V ∗t . Conse-
quently, each iteration of our anytime ε-Macro-GPO
algorithm only incurs linear time in N . The formula-
tion of our anytime variant resembles that of ε-Macro-
GPO policy πε (8) except that it utilizes the lower
heuristic bound instead of Qt (6) and a modified if
condition to bound its expected performance loss like-
wise, as detailed in (Kharkovskii et al., 2020).

4 Experiments and Discussion

This section empirically evaluates the performance of
our nonmyopic adaptive ε-Macro-GPO policy and its
anytime variant for a given finite budget with three
datasets featuring simulated plankton density phe-
nomena, a real-world traffic phenomenon, and a real-
world temperature phenomenon over an office envi-
ronment (Kharkovskii et al., 2020) whose results are
consistent with that here. The performances of our
ε-Macro-GPO policy and its anytime variant are com-
pared with that of state-of-the-art (a) nonmyopic GP-
UCB (Marchant et al., 2014) generalized to handle
macro-actions that coincides with our deterministic
policy (7) exploiting the most likely observations dur-
ing planning, (b) distributed batch GP-UCB (DB-GP-
UCB) (Daxberger and Low, 2017) that casts a macro-
action as a batch to be optimized and is thus equiv-
alent to ε-Macro-GPO with H = 1, (c) q-EI (Cheva-

lier and Ginsbourger, 2013) that does likewise, and (d)
greedy batch BO algorithms10 such as GP-BUCB (De-
sautels et al., 2014), GP-UCB-PE (Contal et al., 2013),
and BBO-LP (González et al., 2016a) whose imple-
mentations are detailed in (Kharkovskii et al., 2020).
Four performance metrics are used: (a) average nor-
malized11 output measurements observed by the agent
(larger average output measurements imply less aver-
age/cumulative regret (Section 3)), (b) simple regret
(i.e., difference between global maximum and currently
found maximum), (c) no. of explored nodes in all con-
structed search trees (more nodes incur more time),
and (d) average time per stage.

Simulated plankton density phenomena. An au-
tonomous underwater vehicle (AUV) is deployed on
board of a research vessel (RV) in search for a hotspot
of peak phytoplankton abundance (i.e., algal bloom)
in coastal ocean. The AUV and RV are initially posi-
tioned near the center of the plankton density (mg/m3)
phenomenon spatially distributed over a 5 km by 5 km
region that is discretized into a 50×50 grid of input lo-
cations. The phenomenon is modeled as a realization
of a GP and simulated using the GP hyperparameters
µs = 0, `1 = `2 = 0.5 km, σ2

y = 1, and σ2
n = 10−5. The

AUV is tasked to execute the selected macro-action of
a straight dive (due to limited maneuverability) along
one of the 4 cardinal directions from the RV to gather
“Gulper” water samples/observations over κ = 4 in-
put locations for precise on-deck testing (Pennington
et al., 2016); given a budget of 20 observations, this
is repeated for 5 times from the input location that it
has previously surfaced.

Figs. 4a and 4b show results of the performances of
ε-Macro-GPO with H = 2, 3, 4 (lookahead of, respec-
tively, 8, 12, 16 observations), β = 0, and N = 100,12

and the other tested BO algorithms averaged over

10Unlike DB-GP-UCB and q-EI, a greedy batch BO al-
gorithm cannot exploit the full informativeness of any can-
didate macro-action for its macro-action selection: Since
it selects the inputs of a batch one at a time myopically2,
its first few selected input locations immediately decide its
chosen macro-action and consequently the remaining se-
quence of input locations found within.

11To ease interpretation of results, the prior mean is sub-
tracted from each output measurement to normalize it.

12Specifying the value of N (instead of ε) may yield a
loose ε based on Theorem 1. Nevertheless, the resulting
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Figure 4: Graphs of (a) average normalized11 output measurements observed by AUV, (b) simple regrets achieved
by tested BO algorithms, average normalized output measurements achieved by ε-Macro-GPO (ε-M-GPO in the
graphs) with (c) H = 2 and (d) H = 3 and varying exploration weights β vs. no. of observations for simulated
plankton density phenomena and (e) average normalized11 output measurements observed by the AV vs. no. of
observations for real-world traffic phenomenon. Standard errors are given in (Kharkovskii et al., 2020).

250 independent realizations of the simulated phenom-
ena. It can be observed that as the number of ob-
servations increases, the nonmyopic adaptive BO al-
gorithms generally outperform the myopic ones. In
particular, the performance of ε-Macro-GPO improves
considerably by increasing H: ε-Macro-GPO with the
furthest lookahead (i.e., H = 4) achieves the largest
average normalized output measurements observed by
the AUV and smallest simple regret after 20 obser-
vations at the cost of a larger number of explored
nodes (see (Kharkovskii et al., 2020)). For example,
the nonmyopic ε-Macro-GPO with H = 4 achieves
0.093σy (0.059σy) more average output measurements
and 0.211σy (0.148σy) less simple regret than my-
opic DB-GP-UCB (nonmyopic GP-UCB with the same
horizon H = 4 but assuming most likely observations
during planning), which are expected.

Figs. 4c and 4d show the effect of varying exploration
weights β on the performance of ε-Macro-GPO with
H = 2 and H = 3, respectively. It can be observed
from Fig. 4c that when H = 2, ε-Macro-GPO with
β = 0.1 achieves 0.064σy more average normalized out-
put measurements than that with β = 0 after 20 obser-
vations, which indicates the need of a slightly stronger
exploration behavior. Fig. 4d shows that by increas-
ing to a lookahead of 12 observations (i.e., H = 3),
ε-Macro-GPO no longer needs the additional weighted
exploration term in (4) (i.e., β = 0) since it can nat-
urally trade off between exploration vs. exploitation,
as explained previously (Section 3). From Figs. 4c
and 4d, β = 10 greatly hurts its performance due to
an overly aggressive exploration.

We also investigate the effect of varying the number
N of stochastic samples on the behavior of ε-Macro-

ε-Macro-GPO with H = 3,4 empirically outperforms other
tested BO algorithms.

GPO. To this end, ε-Macro-GPO with a fixed horizon
H offers an advantage of being able to trade off its
performance for time efficiency by decreasing N . This
observation is theoretically validated in Theorem 1 and
empirically illustrated in Fig. 5.

Figs. 5a and 5b show results of the performances of
ε-Macro-GPO with H = 4 (lookahead of 16 observa-
tions), β = 0, and N = 5, 25, 50, and the other tested
BO algorithms averaged over 35 independent realiza-
tions of the simulated plankton density phenomena. It
can be observed that the performance of ε-Macro-GPO
improves considerably by increasing N : ε-Macro-GPO
with the largest number of samples (i.e., N = 50)
achieves the largest average normalized output mea-
surements and smallest simple regret after 20 observa-
tions at the cost of larger average time per iteration.
For example, ε-Macro-GPO with N = 50 achieves
0.26σy more average output measurements and 0.21σy
less simple regret than myopic GP-BUCB, but needs
2085.37 more seconds per iteration.

Real-world traffic phenomenon. To service the
mobility demands within the central business district
of an urban city, an autonomous vehicle (AV) in
a mobility-on-demand system cruises along different
road trajectories to find a hotspot of highest mobility
demand to pick up a user. The 29.4 km by 11.9 km
service area is gridded into 100 × 50 input regions, of
which only 2506 input regions are accessible to the AV
via the road network. The AV can cruise from in-
put region s to an adjacent input region s′ using one
primitive action iff at least one road segment in the
road network starts in s and ends in s′; the maximum
outdegree from any input region is 8. In any input re-
gion, a surrogate demand measurement is obtained by
counting the number of pickups from all historic taxi
trajectories generated by a major taxi company during
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Figure 5: Graphs of (a) average normalized11 output
measurements observed by AUV and (b) simple regrets
achieved by tested BO algorithms vs. average time per
stage for simulated plankton density phenomena.

9:30-10 p.m. on August 2, 2010 (Chen et al., 2015b);
the resulting mobility demand pattern is visualized in
Appendix A.5. The original demand measurements
are log-transformed to remove skewness and extrem-
ity for stabilizing the GP covariance structure and the
GP hyperparameters µs = 1.5673, `1 = 0.1689 km,
`2 = 0.1275 km, σ2

y = 0.7486, and σ2
n = 0.0111

are then learned using maximum likelihood estima-
tion (Rasmussen and Williams, 2006); note that the
length-scales and signal-to-noise ratio are relatively
smaller than that of the simulated plankton density
phenomena. The AV is tasked to execute the selected
macro-action of a cruising trajectory along κ = 5 adja-
cent input regions to observe their corresponding de-
mand measurements; given a budget of 20 observa-
tions, this will be repeated for 4 times from the input
region that it has previously cruised to. Since every
input region s has a large number of available macro-
actions (i.e., with an average of 178 and maximum of
1193), 20 of them are randomly selected to form its
representative set of candidate macro-actions.

Fig. 4e shows results of the performances of anytime
ε-Macro-GPO with H = 2, 3, 4 (lookahead of, respec-
tively, 10, 15, 20 observations), β = 0, and N = 300 af-
ter running for 1500 iterations12, and the other tested
BO algorithms averaged over 35 random starting in-
put regions of the AV. Similar to the results for sim-
ulated plankton density phenomena, the performance
of anytime ε-Macro-GPO improves considerably by in-
creasing H: Anytime ε-Macro-GPO with the furthest
lookahead (i.e., H = 4) achieves the largest average
normalized output measurements observed by the AV
and among the least simple regret (see (Kharkovskii
et al., 2020)) after 20 observations at the cost of a
larger number of explored nodes ((Kharkovskii et al.,
2020)). For example, the nonmyopic anytime ε-Macro-
GPO with H = 4 achieves 0.069σy (0.05σy) more aver-
age output measurements and 0.188σy (0.219σy) less
simple regret than myopic DB-GP-UCB (nonmyopic
GP-UCB with H = 4), which are expected. The effect
of varying exploration weights β on the performance
of anytime ε-Macro-GPO is similar to that for the

simulated plankton density phenomena and reported
in (Kharkovskii et al., 2020).

Lastly, we investigate the effect of downsampling the
number of available macro-actions per input region
to 20 on the performance of anytime ε-Macro-GPO.
The results are reported in (Kharkovskii et al., 2020)
and show that anytime ε-Macro-GPO with H = 4 and
20 randomly selected macro-actions outperforms that
with H = 2 and all available macro-actions at the cost
of a larger number of explored nodes.

5 Conclusion and Future Work

This paper describes ε-Macro-GPO and its anytime
variant for nonmyopic adaptive BO that have been
empirically shown to scale up to a lookahead of 20
observations by exploiting macro-actions and conse-
quently achieve superior BO performance. Different
from the asymptotic no-regret performance1 typical
of GP-UCB and its variants, we theoretically guar-
antee the expected performance loss of ε-Macro-GPO
and its anytime variant that can be specified to be ar-
bitrarily small given a limited budget. Though this
requires a polynomial number of stochastic samples
in the macro-action length κ in each planning stage
(Theorem 1), our experiments reveal that a relatively
small sample size (N=100-300) is needed for ε-Macro-
GPO and its anytime variant to outperform state-of-
the-art BO algorithms. Though a sufficiently large
exploration weight β is usually needed to guarantee
asymptotic no-regret performance1 for GP-UCB and
its variants, we have observed in our experiments that
their performances are highly sensitive to the chosen
value of β given a finite/limited budget and can be
greatly hurt by an often unknowingly “large” value of
β due to excessive exploration. To sidestep this, ε-
Macro-GPO can eliminate the need of β (i.e., β = 0)
by utilizing a further lookahead, that is, if computa-
tional resources permit or are more affordable than the
cost of function evaluations. For future work, we plan
to generalize ε-Macro-GPO and its anytime variant
to nonmyopic batch active learning (Cao et al., 2013;
Hoang et al., 2014a,b; Low et al., 2008, 2009, 2011,
2012, 2014a; Ouyang et al., 2014; Zhang et al., 2016),
high-dimensional BO (Hoang et al., 2018), and multi-
fidelity BO (Zhang et al., 2017, 2019) settings. For ap-
plications with a huge budget of function evaluations,
we like to couple ε-Macro-GPO and its anytime variant
with the use of distributed/decentralized (Chen et al.,
2012, 2013a,b, 2015a; Hoang et al., 2016, 2019b,a;
Low et al., 2015; Ouyang and Low, 2018) or on-
line/stochastic (Hoang et al., 2015, 2017; Low et al.,
2014b; Xu et al., 2014; Teng et al., 2020; Yu et al.,
2019a,b) sparse GP models to represent the belief of
the unknown objective function efficiently.
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González, J., Dai, Z., Hennig, P., and Lawrence, N. D.
(2016a). Batch Bayesian optimization via local pe-
nalization. In Proc. AISTATS , pages 648–657.
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