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Abstract. Central to the problem of active multi-camera surveil-
lance is the fundamental issue of fairness in the observation of
crowds of targets such that no target is “starved” of observation
by the cameras for a long time. This paper presents a principled
decision-theoretic multi-camera coordination and control (MC2) al-
gorithm called fair-MC2 that can coordinate and control the active
cameras to achieve max-min fairness in the observation of crowds
of targets moving stochastically. Our fair-MC2 algorithm is novel in
demonstrating how (a) the uncertainty in the locations, directions,
speeds, and observation times of the targets arising from the stochas-
ticity of their motion can be modeled probabilistically, (b) the notion
of fairness in observing targets can be formally realized in the do-
main of multi-camera surveillance for the first time by exploiting the
max-min fairness metric to formalize our surveillance objective, that
is, to maximize the expected minimum observation time over all tar-
gets while guaranteeing a predefined image resolution of observing
them, and (c) a structural assumption in the state transition dynamics
of a surveillance environment can be exploited to improve its scal-
ability to linear time in the number of targets to be observed dur-
ing surveillance. Empirical evaluation through extensive simulations
in realistic surveillance environments shows that fair-MC2 outper-
forms the state-of-the-art and baseline MC2 algorithms. We have also
demonstrated the feasibility of deploying our fair-MC2 algorithm on
real AXIS 214 PTZ cameras.

1 INTRODUCTION

The problem of surveillance has emerged as a critical concern in
many urban cities worldwide following a recent series of security
threats like the Boston bomb blasts and Mumbai terrorist attacks.
Central to the problem of surveillance is that of tracking and observ-
ing crowds of mobile targets spatiotemporally distributed over a large
environment (e.g., airport terminal, railway and subway stations, bus
depot, shopping mall, marketplace, school campus). It is often neces-
sary to acquire and maintain high-resolution videos/images of these
targets for supporting real-world surveillance applications like activ-
ity/intention tracking and recognition, biometric analysis like target
identification and face recognition, surveillance video mining, foren-
sic video analysis/retrieval, among others. To address this surveil-
lance problem, some recent works have proposed automated mecha-
nisms to coordinate and control a network of static/fixed and active
pan-tilt-zoom (PTZ) cameras to either (a) maximize the coverage of
multiple mobile targets with a guaranteed pre-defined image resolu-
tion of observing them [2, 7, 8, 9] or (b) focus on one or few tar-
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gets to be observed at high resolution [4, 10, 11, 12, 13]. However,
all these multi-camera coordination and control (MC2) algorithms
share a common pitfall: In order to achieve either surveillance objec-
tive described above, they may “starve” some targets of observation
by the active cameras for a prolonged period of time (e.g., see Fig. 1),
especially those isolated ones with low likelihood of observing them;
in the worst case, they may not be observed at all.
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Figure 1. Existing MC2 algorithms may starve some targets of observation
by any active camera.

Surprisingly, this issue of starvation has not been tackled by the
multi-camera surveillance community. It motivates the need to de-
sign and develop a MC2 algorithm that can coordinate the PTZ ac-
tions of the active cameras to observe all targets fairly. Intuitively,
this implies prioritizing the coverage of targets with the least obser-
vation time such that a fair observation of all the targets is achieved
if and only if increasing the observation of any target necessarily re-
sults in a decrease in observation of some other target with equal or
lower observation time. In practice, this is particularly desirable for
surveillance environments where it is not possible to identify poten-
tial high-importance/priority targets (e.g., suspicious targets or ad-
versaries) in real time prior to the occurrence of a security threat
(e.g., bomb blast); a fair observation of all targets consequently pro-
vides the forensic investigation in the aftermath at least some footage
of each of them. Such a notion of fairness is often known as the max-
min fairness in resource allocation problems (e.g., bandwidth alloca-
tion in networking).

Our active multi-camera surveillance problem can be distin-
guished from the conventional fairness-driven resource allocation
problems by the following practical, non-trivial issues surrounding
it: (a) It is subject to real-world physical constraints such as the spa-
tial localities of the active cameras (i.e., resources) and mobile tar-
gets (i.e., users), which restrict their interactions. For example, some
cameras may not be able to observe any target at times because all
the targets are beyond their possible fields of view (FoV’s). On the
other hand, some targets may occasionally move into regions that are
occluded from observations by the active cameras; (b) the stochastic
motion of the targets entail uncertain (hence, less predictable) tra-
jectories, which complicate how the active cameras are to be coordi-
nated to keep possibly multiple targets of the least observation time
within their FoV’s at a guaranteed predefined image resolution; and



(c) a MC2 algorithm, if poorly designed, incurs exponential time in
the number of targets to be observed during surveillance, thus de-
grading its real-time performance.

This paper is the first to present a principled decision-theoretic
MC2 algorithm called fair-MC2 that can coordinate and control the
active cameras to achieve max-min fairness in the observation of
crowds of targets moving stochastically (Sections 2 and 3). The con-
tributions of our work here are novel in demonstrating how (a) the
uncertainty in the locations, directions, speeds, and observation times
of the targets arising from the stochasticity of their motion can be
modeled probabilistically (Section 2.3), (b) the notion of fairness in
observing targets can be formally realized in the domain of multi-
camera surveillance for the first time by exploiting the max-min fair-
ness metric (Section 2.4) to formalize our surveillance objective, that
is, to maximize the expected minimum observation time over all tar-
gets while guaranteeing a predefined image resolution of observing
them (Section 3), and (c) a structural assumption in the state tran-
sition dynamics of a surveillance environment can be exploited to
improve the scalability of our fair-MC2 algorithm to linear time in
the number of targets to be observed during surveillance (Section 3).
Our fair-MC2 algorithm is empirically evaluated in various realistic
surveillance environmental setups through extensive simulations and
its deployment on real AXIS 214 PTZ cameras (Section 4).

2 MODELING A SURVEILLANCE
ENVIRONMENT

A surveillance environment comprises crowds of targets with
stochastic motion and a network of static/fixed and active PTZ cam-
eras calibrated to common ground plane coordinates. The wide-view
static cameras can observe all the mobile targets at low resolution
and estimate the targets’ locations, directions, and speeds. These lo-
cation, direction, and speed information of the targets are used by our
fair-MC2 algorithm to coordinate and control the actions of the active
PTZ cameras to observe them fairly at a guaranteed predefined high
image resolution. We will next describe how the surveillance envi-
ronment is modeled by defining the states and state transition model
of the m targets, the actions of the n active PTZ cameras, and the
surveillance objective function.

2.1 States of Targets
LetM , {1, 2, . . . ,m} denote a set of indices of the m targets and
xi , (xli , xdi , xsi , xoi) ∈ Xl × Xd × Xs × Xo denote a state of
each target i for i = 1, . . . ,m where xli ∈ Xl, xdi ∈ Xd, xsi ∈
Xs, and xoi ∈ Xo represent target i’s location, direction, speed, and
observation time, respectively. Let X , Xl ×Xd ×Xs ×Xo denote
a set of all possible states of a target andXM , (x1, x2, . . . , xm) ∈
Xm denote a joint state of the m targets.

2.2 Actions of PTZ Cameras
Let aj denote an action (specifically, a PTZ configuration) of each
PTZ camera j for j = 1, . . . , n and A , (a1, a2, . . . , an) ∈ A
denote a joint action of the n PTZ cameras where A represents a set
of all possible joint actions (i.e., PTZ configurations) of the n PTZ
cameras. Let FoV (aj) ⊂ Xl denote a subset of all possible locations
of a target lying within the depth-limited FoV of camera j that is in
the PTZ configuration associated with its action aj (e.g., see Fig. 2);
by adjusting its zoom to focus its FoV and limiting the depth of its
FoV, images of the targets observed within its depth-limited FoV can

satisfy a guaranteed predefined resolution. Supposing the n cameras
are in the PTZ configurations associated with their joint action A,
their joint FoV’s is denoted by FoV (A) ,

⋃n
j=1 FoV (aj).

2.3 State Transition Model of Targets

To model the uncertainty in the states (i.e., locations, directions,
speeds, and observation times) of the m targets arising from the
stochasticity of their motion, their joint state transition is represented
by a probabilityP (X ′M|XM, A) of changing from their current joint
state XM to their next joint state X ′M given the joint action A of the
n cameras. By exploiting the structural assumption that the next state
x′i of each target i is conditionally independent of the otherm−1 tar-
gets’ states given its current state xi and cameras’ joint action A for
i = 1, . . . ,m, the joint state transition probability P (X ′M|XM, A)
of the m targets can be factored into state transition probabilities
P (x′i|xi, A) of individual targets i = 1, . . . ,m:

P (X ′M|XM, A) =
m∏
i=1

P (x′i|xi, A) . (1)

Such a conditional independence assumption (1) is central to improv-
ing the scalability of our fair-MC2 algorithm from exponential to lin-
ear time in the number m of targets, as shown later in Section 3.

The state transition of target i from xi to x′i includes stochastic
transitions of its location from xli to x′li , its direction from xdi to
x′di , its speed from xsi to x′si , and its observation time from xoi to
x′oi . So, the state transition probability of target i can be factored into
transition probabilities of its location, direction, speed, and observa-
tion time:

P (x′i|xi, A) = P (x′li |xli , x
′
di
, x′si)P (x′di |xdi)P (x′si |xsi)

P (x′oi |x
′
li
, xoi , A) .

The transition probability P (x′di |xdi) (P (x′si |xsi)) of target i’s
direction (speed) is modeled as a normal distribution N (µd, σ

2
d)

(N (µs, σ
2
s)) where the mean parameter µd (µs) is the current di-

rection (speed) of target i estimated from the tracking module in the
static cameras and the variance parameter σ2

d (σ2
s ) is learned from a

dataset of targets’ trajectories in the surveillance environment. The
transition probability P (x′li |xli , x

′
di
, x′si) of target i’s location is

constructed using a general direction-speed motion model similar to
that in [14]. To define the transition probability P (x′oi |x

′
li
, xoi , A),

the observation time xoi of target i is increased to x′oi = xoi +1 if it
is observed in the FoV of any active camera, and its observation time
remains the same otherwise, that is, x′oi = xoi :

P (x′oi = xoi + 1|x′li , xoi , A),
{

1 if x′li ∈ FoV (A),
0 otherwise.

P (x′oi = xoi |x′li , xoi , A),
{

1 if x′li /∈ FoV (A),
0 otherwise.

2.4 Surveillance Objective Function

Supposing the state transition models of all targets are deterministic
(i.e., the states of all targets in the next time step are known), the
surveillance objective can be defined directly in terms of the max-
min fairness metric, that is, to maximize the minimum observation
time over all targets while guaranteeing a predefined image resolu-
tion of observing them. Such a surveillance objective can be achieved



by defining an objective function U that measures the minimum ob-
servation time over all targets:

U(XM, A) , min
i∈M

xoi . (2)

It is noteworthy to point out the usefulness of other pop-
ular fairness metrics to the domain of multi-camera surveil-
lance such as the Jain’s fairness index [3]. Jain’s fairness index
(
∑

i∈M xoi)
2/(|M|

∑
i∈M x2oi), which is revised to reflect our no-

tations, measures whether the users receive their fair share of the re-
sources. The value of Jain’s fairness index lies between 0 and 1. The
observation of all targets is perfectly fair if the index is 1. It is unfair
if the index is 0. Jain’s fairness index is not suitable for measuring
fairness in the observation of crowds of targets in active multi-camera
surveillance: For example, when 999 targets are always observed by
any active camera and only 1 target is not being observed at all, Jain’s
fairness index yields 0.999, which is close to perfect. However, the
single target is not observed at all and may potentially be a suspicious
target that is critical to be observed by surveillance.

3 FAIR-MC2 ALGORITHM
In practice, the states (i.e., locations, directions, speeds, and observa-
tion times) of the targets in the next time step are uncertain due to the
stochasticity of their motion. Therefore, our fair-MC2 algorithm has
to instead maximize the expected minimum observation time over all
targets in the next time step:

A∗ , argmax
A∈A

Q(XM, A) (3)

Q(XM, A) ,
∑

X′M∈X
m

U(X ′M, A)P (X ′M|XM, A) (4)

whereX ′M is a joint state of them targets in the next time step andA
is a joint action of the n cameras. Computing an optimal joint action
A∗ (3) incurs O(|A||X |m) time that is exponential in the number
m of targets. This exponential time complexity can be significantly
reduced by exploiting the conditional independence assumption in
the targets’ state transition model (1) (Section 2.3). As a result, the
value function Q (4) can be simplified to

Q(XM, A) = tmin +
∏
i∈Y

∑
x′i∈XA

P (x′i|xi, A) (5)

where Y ⊆ M denotes a set of indices of all targets with mini-
mum observation time in the current time step (i.e., Y , {i ∈ M |
xoi = mink∈M xok}), XA denotes a subset of all possible states
of a target whose corresponding locations lie within the joint FoV’s
of the n cameras that are in the PTZ configurations associated with
their joint action A (i.e., XA , {x′i ∈ X | x′li ∈ FoV (A)}), and
tmin , mink∈M xok denotes a constant representing the minimum
observation time over all targets in the current time step. The deriva-
tion of (5) is given in Appendix A.

By plugging (5) into (4), (3) reduces to

A∗ = argmax
A∈A

∏
i∈Y

∑
x′i∈XA

P (x′i|xi, A) . (6)

To interpret (6), our current fair-MC2 algorithm simply chooses a
joint action A ∈ A that maximizes the product of likelihoods of ob-
serving, in the next time step, all targets with minimum observation
time in the current time step by the active cameras.

The following result indicates that an optimal joint action A∗ (6)
can be derived using linear time in the number m of targets to be
observed during surveillance:

Theorem 1 If (1) holds, then computing the optimal joint action A∗

(6) incurs O(|A||X |m) time.

In (6), computing the likelihood of observing a target with min-
imum observation time (i.e., sum of probabilities) incurs O(|X |)
time. Computing the product of |Y| likelihoods then incursO(|X |m)
time since the size of Y can be m in the worst case and Theorem 1
follows.

As mentioned above, computing an optimal joint action A∗ (6)
only needs to consider all targets with minimum observation time.
These targets may be beyond the FoV’s of some active cameras due
to their spatial localities, which is an issue stated in Section 1. Conse-
quently, multiple possible optimal joint actions are possible because
any action of such a camera is optimal. In the worst case, all targets
with minimum observation time are beyond the FoV’s of all active
cameras (i.e., Q(XM, A

∗) = tmin), thus causing all the cameras to
be in “limbo”.

To remedy this, the key idea is to repeatedly refine the set of op-
timal joint actions by preserving fairness in the observation of the
remaining targets using (6) after ignoring those with minimum ob-
servation time. To elaborate, the first step is to compute the set A∗
of optimal joint actions of the active cameras satisfying (6). Then,
ignore the targets with minimum observation time by removing Y
fromM, that is,M←M\ Y . Finally, consider A∗ to be the new
joint action space in (6), that is, A ← A∗. These steps are repeated
until there is a unique optimal joint action A∗ or the number |M|
of remaining targets after ignoring those with minimum observation
time is 0 (see Algorithm 1).

while |A| > 1 ∨ |M| > 0 do
Compute A∗ = {A∗} by (6)
M←M\Y
A ← A∗

end

Algorithm 1: Fair-MC2(XM,A).

4 EXPERIMENTS AND DISCUSSION
This section empirically evaluates our proposed fair-MC2 algorithm
in different realistic surveillance environmental setups through ex-
tensive simulations (Section 4.1) and its deployment on real AXIS
214 PTZ cameras (Section 4.2). Our video demo 2. visually explains
the environmental setup and interesting observations from our real
camera surveillance experiments. The surveillance performance of
our fair-MC2 algorithm is compared to that of the following state-of-
the-art MC2 algorithms as well as some baseline methods:

• Fair-MC2 algorithm without prediction (WoP): This algorithm is
based on optimizing the objective function (2) without accounting
for uncertainty in the targets’ locations, directions, speeds, and
observation times arising from the stochasticity of their motion;

• Equality in observation of targets (equal-MC2): This MC2 algo-
rithm aims to achieve equal observation times of all targets by
coordinating and controlling the cameras such that the expected
difference between the maximum and minimum observation times
of the targets is minimized;

2 http://www.comp.nus.edu.sg/∼lowkh/camera.html



• Maximizing coverage of targets (COV): The MC2 algorithm of [8]
coordinates and controls the active cameras such that the expected
number of targets observed in their joint FoV’s is maximized;

• Round robin method (RRB): For this baseline method, 50% of the
targets in the surveillance environment are given high priorities at
every time step in a round robin fashion. The active cameras are
controlled to observe the targets based on their priorities;

• Auto-panning of PTZ cameras (AP): This is another baseline
method in which the active cameras are panned to each of their
PTZ configurations in a round robin fashion. Surprisingly, this
method seems to be the current practice of controlling the PTZ
cameras in the multi-camera surveillance industry; for example,
see the list of cameras in [1] that are controlled to do auto-panning.

The following performance metrics are used to evaluate the tested
MC2 algorithms and baseline methods:

Fairness , min
i∈M

xToi

Coverage ,
1

T

T∑
k=1

mk
obs

where T (i.e., set to 100) is the total number of time steps taken in
our experiments, xToi is the observation time of target i at time step
T , andmk

obs is the total number of targets observed in the joint FoV’s
of the active cameras at time step k. That is, the Fairness metric mea-
sures the minimum observation time over all m = |M| targets in
the surveillance environment at time step T and the Coverage metric
measures the number of targets observed in the joint FoV’s of the
active cameras averaged over the T time steps.

4.1 Simulated Surveillance Environments
Our Fair-MC2 algorithm is evaluated in two realistic simulated
surveillance environments using the Player/Stage simulator: Hallway
and intersection setups (Fig. 2). In both setups, a network of n = 5
PTZ cameras is deployed and each camera can perform 3 possible ac-
tions (i.e., PTZ configurations), as shown in Fig. 2. Each PTZ camera
is configured such that images of targets observed within its depth-
limited FoV satisfy a guaranteed predefined resolution. Both setups
contain up to m = 50 mobile targets whose trajectories are gener-
ated using a general direction-speed motion model similar to that in
[14] and speeds are s = 1 cell per time step. The simulator itself
acts as a static camera that is used to observe/estimate the locations,
directions, and speeds of the mobile targets at every time step. The
duration of a time step is set to 5 seconds. The state transition prob-
abilities of every target are pre-computed offline in both setups.

Figs. 3 and 4 show results of the Fairness and Coverage perfor-
mance of the tested MC2 algorithms and baseline methods in, re-
spectively, the hallway and intersection setups deploying n = 5 PTZ
cameras and containing m = 5, 10, 15, . . . , 50 targets. Our observa-
tions from the simulated experiments are as follows:

Fairness and Coverage performance. Figs. 3a and 4a show that our
fair-MC2 algorithm outperforms equal-MC2, COV, RRB, and AP in
the Fairness metric in both setups. This is expected because fair-MC2

directly optimizes the Fairness metric by prioritizing the coverage of
targets with minimum observation time, hence resolving the issue of
starvation. From Figs. 3b and 4b, it is expected that fair-MC2 does
not achieve a better Coverage performance than COV since COV
directly optimizes the Coverage metric. However, fair-MC2 can pro-
duce a Coverage performance that is generally better than that of
equal-MC2 and AP in both setups. It can also be observed from

(a) Hallway (b) Intersection
Figure 2. Setups of simulated surveillance environments: (a) Hallway

(|Xl| = 30× 20 cells) and (b) intersection (|Xl| = 40× 30 cells).

Figs. 3a-b and 4a-b that the Fairness and Coverage performance of
our fair-MC2 algorithm degrade gracefully with an increasing num-
ber m of targets.

The equal-MC2 algorithm performs less well than fair-MC2 in
both Fairness and Coverage metrics because it sometimes causes the
cameras not to observe any target in order to minimize the expected
difference between the maximum and minimum observation times
of the targets. As a result, the targets (i.e., including those with min-
imum observation time) are starved of observation by the cameras.
Interestingly, this observation reveals that obtaining equal observa-
tion times of all targets is not equivalent to achieving fairness in ob-
serving them.

The COV algorithm performs very poorly in the Fairness metric
because, in order to maximize the expected number of observed tar-
gets, some targets are starved of observation by the cameras for a
long time, as explained previously in Section 1.

The RRB method also performs very poorly in the Fairness metric
because when 50% of the targets are prioritized at every time step in
a round robin fashion, the remaining unprioritized targets are starved
of observation by the cameras until their turns are reached. The pri-
oritized targets may also sometimes move beyond the FoVs of the
cameras.

The AP method suffers from poor Fairness and Coverage perfor-
mance because they do not exploit the targets’ state information.

Modeling uncertainty in targets’ states. To better demonstrate the
importance of modeling the uncertainty in the targets’ states in or-
der to predict their stochastic motion well, we increase the targets’
speeds to s = 2 cells per time step. Figs. 3c and 4c show that
our fair-MC2 algorithm outperforms WoP in the Fairness metric in
both setups because fair-MC2 coordinates and controls the cameras
based on the predicted locations and observation times of the targets
whereas WoP coordinates and controls the cameras based on the cur-
rent locations and observation times of the targets since it does not
account for the uncertainty in the targets’ states. As a result, when the
targets are at the edge of the FoV’s of the active cameras, fair-MC2

tries to keep the targets in the center of the FoV based on the pre-
dicted locations of the targets. In contrast, WoP loses the targets in
the next time step, which causes the loss of observation of the targets
with minimum observation time. This also explains the slightly bet-
ter Coverage performance of fair-MC2 over WoP (Figs. 3d and 4d).

4.2 Real Camera Surveillance Environment

The feasibility of deploying our fair-MC2 algorithm on a network of
n = 3 real AXIS 214 PTZ cameras is investigated using the exper-
imental setup/testbed in our indoor lab surveillance environment, as
shown in Fig. 5. Each PTZ camera can perform 3 possible actions.
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Figure 3. Graphs of (a,c) Fairness and (b,d) Coverage performance vs. number m of targets in a simulated hallway setup.
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Figure 4. Graphs of (a,c) Fairness and (b,d) Coverage performance vs. number m of targets in a simulated intersection setup.
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Figure 5. Setup of real camera surveillance environment (|Xl| = 14× 13
cells): The occluded region (i.e., red cells) is deliberately introduced to cause
the observation times of the targets to be more varied when they move into it.

The FoV’s of the PTZ cameras are configured manually based on
the resolution of the observed targets. The wide-view static camera,
which is placed opposite to PTZ camera 3, can observe the entire
surveillance environment at a low resolution. The static camera and
3 PTZ cameras are calibrated to common ground plane coordinates.
The targets are the Lego robots that are programmed to move in a
random manner. The robots are tracked in the static camera based on
color properties using OpenCV libraries. Using the location, direc-
tion, and speed information of the targets observed/estimated by the
static camera, the 3 PTZ cameras are coordinated and controlled by
our fair-MC2 algorithm to observe the targets fairly.

Our fair-MC2 algorithm is evaluated using up to m = 5 targets in
different interesting real camera surveillance experiments. For exam-
ple, in the case of m = 2 targets, one of the targets is programmed
to move into the occluded region and wait there for a few time steps.
When that target re-enters the observable region, the PTZ cameras
try to focus and observe it because the observation time of that tar-
get is less than the other target. In the case of m = 5 targets, three

targets are made to move from the occluded region to the observ-
able region so that their observation times remain zero for a few time
steps. The snapshots of the observation times of these 5 targets are
shown in Fig. 6. As mentioned before, at time step 2, targets 1, 2, and
3 are inside the occluded region and their observation times are thus
zero. When these targets move forward into the observable region,
the cameras try to observe them and their observation times hence
increase at time step 7. At time step 9, the observation times of all tar-
gets become equal and our fair-MC2 algorithm alternates the active
cameras’ observation over all the targets in order to maintain a fair
observation time of them. Table 1 shows the Fairness performance
of our fair-MC2 algorithm taken at time step T = 50 with varying
number m = 2, 3, 4, 5 of targets in these real camera surveillance
experiments.

m 2 3 4 5
Fairness 36 32 28 27

Table 1. Fairness performance of our fair-MC2 algorithm with varying
number m of targets in a real camera experimental setup.

5 CONCLUSION
This paper describes a novel decision-theoretic fair-MC2 algorithm
that can coordinate and control the active cameras to maximize the
expected minimum observation time over all targets with a guar-
anteed predefined image resolution of observing them. As a result,
the issue of starvation that plagues the existing MC2 algorithms
[2, 4, 7, 8, 9, 10, 11, 12, 13] can be resolved. Our fair-MC2 algo-
rithm accounts for the uncertainty in the locations, directions, speeds,
and observation times of the targets arising from the stochasticity of
their motion by modeling them probabilistically. Through our work
in this paper, the notion of fairness in observing targets is formally
realized in the domain of multi-camera surveillance for the first time.
We have exploited the conditional independence assumption in the
targets’ state transition model to significantly reduce the exponen-
tial time complexity of fair-MC2 to that of linear time in the number
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Figure 6. Snapshots of the observation times of m = 5 targets in a real camera surveillance experiment.

of targets. Empirical evaluation through simulations reveals that fair-
MC2 outperforms the state-of-the-art and baseline MC2 algorithms.
We have also implemented our fair-MC2 algorithm on real AXIS 214
PTZ cameras to demonstrate its practical feasibility in a real surveil-
lance system. In our future work, we like to extend our fair-MC2 al-
gorithm to operate in a partially observable surveillance environment
where wide-view static cameras are no longer required and observa-
tions are made only through the PTZ cameras [9]. Also we would like
to extend our fair-MC2 algorithm into robotic surveillance [5, 6].
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A Derivation of (5)
Q(XM, A)

=
∑

X′M∈X
m

U(X ′M, A)P (X ′M|XM, A)

=
∑

X′M∈X
m

min
i∈M

x′oiP (X ′M|XM, A)

=
∑

X′Y∈X
y

min
i∈Y

x′oiP (X ′Y |XY , A)
∑

X′
Y
∈Xm−y

P (X ′Y |XY , A)

=
∑

X′Y∈X
y

min
i∈Y

x′oiP (X ′Y |XY , A)

=
∑

X′Y∈X
y\Xy

A

min
i∈Y

x′oiP (X ′Y |XY , A) +
∑

X′Y∈X
y
A

min
i∈Y

x′oiP (X ′Y |XY , A)

=
∑

X′Y∈X
y\Xy

A

tminP (X ′Y |XY , A) +
∑

X′Y∈X
y
A

(tmin + 1)P (X ′Y |XY , A)

=
∑

X′Y∈X
y\Xy

A

tminP (X ′Y |XY , A) +
∑

X′Y∈X
y
A

tminP (X ′Y |XY , A)

+
∑

X′Y∈X
y
A

P (X ′Y |XY , A)

=
∑

X′Y∈X
y

tminP (X ′Y |XY , A) +
∑

X′Y∈X
y
A

P (X ′Y |XY , A)

= tmin

∑
X′Y∈X

y

P (X ′Y |XY , A) +
∑

X′Y∈X
y
A

P (X ′Y |XY , A)

= tmin +
∑

X′Y∈X
y
A

P (X ′Y |XY , A)

= tmin +
∏
i∈Y

∑
x′i∈XA

P (x′i|xi, A) .

The first and second equalities are due to (4) and (2), respec-
tively. The third equality follows by partitioning XM into XY ,
(xi)i∈Y and XY , (xi)i∈Y where M = Y ∪ Y and y =
|Y|. The fourth equality follows from the law of total probability:∑

X′
Y
∈Xm−y P (X ′Y |XY , A) = 1. The fifth equality is due to X y =

(X y\X y
A)∪X

y
A whereX y

A denotes a subset of all possible joint states
of the y targets in Y whose corresponding locations all lie within
FoV (A), i.e., X y

A , {X ′Y ∈ X y | ∀x′i ∈ X ′Y x′li ∈ FoV (A)}. To
obtain the sixth equality, for a given X ′Y = (x′i)i∈Y ,

min
i∈Y

x′oi =

{
tmin if X ′Y ∈ X y\X y

A,
tmin + 1 if X ′Y ∈ X y

A;

where tmin is a constant with respect to the expectations. The
second last equality follows from the law of total probability:∑

X′Y∈X
y P (X ′Y |XY , A) = 1. The last equality is due to the con-

ditional independence assumption in the y targets’ state transition
model (1).


