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ABSTRACT
This paper describes the Multilevel Autonomy Robot
Telesupervision Architecture (MARTA), an architecture
for supervisory control of a heterogeneous fleet of net-
worked unmanned autonomous aquatic surface vessels
carrying a payload of environmental science sensors.
This architecture allows a land-based human scientist to
effectively supervise data gathering by multiple robotic
assets that implement a web of widely dispersed mobile
sensors for in situ study of physical, chemical or bio-
logical processes in water or in the water/atmosphere
interface.

Categories and Subject Descriptors
I.2.9 [Robotics]: autonomous vehicles, sensors; I.2.11
[Distributed Artificial Intelligence]: intelligent
agents, multiagent systems

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
telesupervision; autonomous surface vessels (ASV); sen-
sor web; inference grids; log-Gaussian process.

1. INTRODUCTION
Earth and ocean science research use data obtained

from space, the atmosphere, the land, surface water,
and the ocean to improve understanding of the Earth
and its natural processes. Developing better models of
ocean processes is crucial for assessing global warming
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and for meteorological and ecological studies, while sur-
face water quality data give us insight into the suit-
ability of the water for human use. Both are necessary
for assessing water’s ability to support aquatic life. At
least three in every four humans depend on “surface wa-
ter as their primary source of drinking water”1. Water
resources in a region are critical to economic growth as
well as to quality of life.

Freshwater sensing is typically done with fixed sensors
near tributaries and using periodic sampling. Ocean
sensing is typically done with satellites, buoys, and
crewed research vessels. Satellites are limited by cloud
cover, temporal and geographical coverage, and resolu-
tion. Manned research vessels are expensive to deploy,
and fixed sensors and anchored buoys cannot be eas-
ily moved to cover larger areas or to monitor regions of
increased interest.

Deploying mobile sensor platforms to augment fixed
sensors and sensor buoys will help us better understand
and model how contaminants/pollutants move and af-
fect our environment, from industrial chemical and oil
spills, to Harmful Algal Blooms (HABs). These plat-
forms will also enable in situ meteorological studies of
the atmosphere/ocean interface for hurricane prediction.

This paper describes a multi-robot science exploration
software architecture and system called Multilevel Au-
tonomy Robot Telesupervision Architecture (MARTA)
[11]. MARTA was initially developed for supervisory
control of multiple robot assets exploring the lunar sur-
face [4, 8, 12]. It has subsequently been expanded and
instantiated in a system called TAOSF (Telesupervised
Adaptive Ocean Sensor Fleet) for coordination and con-
trol of multiple robot boat exploration vehicles for oceanic
[5, 6, 13] and freshwater research [10]. For the ocean
boats, we have selected as an application the character-
ization of HABs [1], while for the freshwater vehicles, we
are concentrating on their use in water quality studies.

1National Research Council. Earth Science and Applications
from Space: National Imperatives for the Next Decade and
Beyond, 2007.
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Figure 1: OASIS Platform with atmospheric and
sea water sensors identified.

In the following sections, we will discuss the overall
MARTA architecture, describe the robot boats being
developed and used, and describe field tests conducted
under controlled conditions. We conclude with an out-
line of the next steps in the development of MARTA.

2. ROBOT BOAT PLATFORMS

2.1 The OASIS Ocean Platforms
The OASIS (Ocean-Atmosphere Sensor Integration

System) vessels are long-duration solar-powered autono-
mous surface vehicles (ASVs), designed for global open-
ocean operations (Figure 1). Their development is
funded by the National Oceanic and Atmospheric Ad-
ministration (NOAA). The NOAA-funded OASIS Plat-
form Build Team, which consists of EG&G, Zinger En-
terprises, and Emergent Space Technologies, provides
vehicle development, payload integration and testing,
operations, and maintenance of the OASIS fleet and
ground systems.

The OASIS platform is approximately 18 feet long and
weighs just over 3000 lbs. The vehicle has a payload
capacity of 500 lbs, and is designed to be self-righting
to ensure survivability in heavy seas. It supports a wide
range of communication links including spread spectrum
radio, a cellular phone link, and an Iridium satellite link.

Three platforms (named OASIS-1, OASIS-2, and
OASIS-3) are operated by NASA WFF and support op-
erations for the TAOSF project. OASIS shakedown op-
erations have been performed since early 2005 in the
waters of the DELMARVA region, including the Chin-
coteague Bay and Pocomoke Sound. The first open-

ocean deployment of the OASIS system was performed
in November 2006. During this operation, the OASIS-2
platform successfully navigated over 8 nautical miles on
a transect line established in the Atlantic Ocean off the
coast from WFF.

Sensors onboard the OASIS platforms enable the col-
lection of water salinity and conductivity data, sea sur-
face temperature, and chlorophyll measurements. A
rhodamine fluorometer was integrated to support map-
ping operations during TAOSF dye deployment tests.
Dye is deployed to simulate HABs to allow develop-
ment and testing of navigation and mapping algorithms.
The forward payload bay provides space for installation
of additional sensors. This bay includes a water flow-
through system with manifolds and a de-bubbling sys-
tem that simplifies installation of new sensors.

A mast-mounted meteorological station allows acqui-
sition of atmospheric measurements, including baromet-
ric pressure, air temperature, relative humidity, wind
speed, and wind direction. OASIS is also equipped with
a forward-looking digital imaging system providing re-
motely located scientists with images of atmospheric
and sea state conditions.

The off-board infrastructure developed by EST is
known as the OASIS Mission Operations Environment
(MOE). The MOE resides in the Wallops Coastal Ocean
Observation Laboratory (WaCOOL) control room and
provides applications and services that enable the WFF
engineering and science operations team to perform plat-
form commanding and telemetry monitoring, as well as
communications management. The MOE also provides
a middleware interface to enable other customers, such
as the MARTA/TAOSF project, to integrate new sys-
tems that further enhance OASIS science operations.

In the current deployment configuration, both engi-
neering telemetry (e.g., GPS position, roll, pitch, yaw,
battery voltage) and science sensor data are communi-
cated between each robotic platform and NASA’s God-
dard Space Flight Center via the Internet. It is from
this distribution point that NOAA weather researchers
will receive ocean and ocean/atmosphere interface sen-
sor data.

2.2 The Robotic Sensor Boats (RSBs)
For the mobile deployment of freshwater quality sen-

sors, a fleet of small and relatively inexpensive Robotic
Sensor Boats (RSBs) is being developed at CMU (Fig-
ure 2). The design is based on commercially available
components such as the hull, drive system, and commu-
nications system. Customization is kept to a minimum
with the primary focus being kept on the sensing and
navigation requirements.

The hull is a relatively inexpensive roto-molded recre-
ational kayak that is fitted with a ducted thruster on
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an integrated approach to multi-robot coordination and
multi-level robot-human autonomy. It allows multiple
robotic sensing assets (both mobile and fixed) to func-
tion in a cooperative fashion, and the operating mode
of different robot platforms to vary from full autonomy
to teleoperated control.

High-level planning and monitoring allows a human
telesupervisor to assign to a fleet of robotic assets high-
level goals, such as specifying an area of ocean to in-
vestigate. The steps to achieve the goals are planned,
and operational commands are sent to each robot by
the Fleet Planning and Navigation Monitoring. As the
robots execute these plans, their operation is monitored
both by the Fleet Planning and Navigation Monitor-
ing module and by the human telesupervisor. Adaptive
replanning of the robot assignments is based on sen-
sor inputs (dynamic sensing) and coordination between
multiple assets, thereby increasing data-gathering effec-
tiveness while reducing the human effort required for
tasking, control, and monitoring of the vehicles. The as-
sets depicted in Figure 4 include two OASIS platforms,
a drift buoy that reports its position as it moves with
the current, and a Robot Sensor Boat for surface water
operations.

Multi-level autonomy includes low-level autonomy on
each independently operating robot; autonomous mon-
itoring of the fleet; adaptive replanning; and when nec-
essary, intervention by the human telesupervisor either
with manual replanning, or by taking direct control of
a robot via teleoperation.

Algorithms for science analysis of the acquired data
can perform an initial assessment of the presence of spe-
cific science signatures of immediate interest. This can
be done both onboard each robot and at the telesupervi-
sor’s workstation. Web-based communications support
both control and communications of the robotic fleet
over long distances, and the sharing of newly sensed
and historical data with remote experts.



4. MAPPING HARMFUL ALGAL BLOOMS
(HABS)

Interest in Harmful Algal Bloom (HAB) detection has
grown in recent years for scientific, commercial public
health reasons. Depending on the type of algae present,
HABs have been shown to be dangerous to sea life and
to human health.

There is a significant interest in identifying environ-
mental factors that contribute to the occurrence of HABs,
so that these may be incorporated in bloom predic-
tion algorithms. These factors may include time of
year, salinity, and sea-surface temperature to predict the
abundance (low, medium, or high) and type of HABs.

MARTA will provide the following advantages over
existing systems for observing and analyzing HABs:
• Dynamic tasking and adaptation;
• Higher in situ resolution and greater insensitivity to

cloud cover in comparison to current satellite systems;
• Access to and greater agility in coastal waters than

what is available through buoys;
• Real-time multipoint science data observations and

generation of associated interpretations by remotely
located oceanographers.

Since HABs are sporadic ocean phenomena, we are us-
ing rhodamine WT (water-tracing) dye as a HAB sur-
rogate for initial experiments and tests.

For investigating an algal bloom, researchers at Carne-
gie Mellon University take control of the OASIS plat-
forms and provide high-level planning and monitoring.
The OASIS collection of weather-related data mentioned
earlier is not interrupted, but the additional sensing for
investigating the algal bloom is brought online to map
the extent of a bloom, chlorophyll concentrations, and
with additional sensors, eventually allow a shore-based
biologist the ability to assess whether the algal species
are harmful. If they are, local authorities can be notified
at aquaculture businesses, fisheries, and beaches.

5. FIELD TESTS

5.1 Field Test 1 - Aug. 2007
For controlled experiments such as mapping while com-

pensating for drift currents, geometric patches of rho-
damine water-tracing dye are laid (Figures 5 and 6).
An aerostat, tethered to a manned tender boat, carries
an instrument package aloft including GPS, altimeter,
compass, and video camera to provide validation images
of data gathered by OASIS platforms that are mapping
with fluorometers.

Methodology: Inference Grids. Observation of nat-
ural processes is limited by spatial and temporal sensor
footprint, coverage, resolution, sampling rate, and mea-

public health reasons. Depending on the type of algae 
present, HABs have been shown to be dangerous to sea 
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these may be incorporated in bloom prediction 
algorithms. These factors may include time of year, 
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rhodamine WT (water-tracing) dye as a HAB surrogate 
for initial experiments and tests.  
For investigating an algal bloom, researchers at Carnegie-
Mellon University take control of the OASIS platforms 
and provide the high-level planning and monitoring.  The 
OASIS collection of weather-related data mentioned 
earlier is not interrupted, but the additional sensing for 
investigating the algal bloom is brought online to map the 
extent of a bloom, chlorophyll concentrations, and with 
additional sensors, eventually allow a shore-based 
biologist the ability to determine the species of the algae 
to assess whether it is harmful. If it is, local authorities 
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5. INFERENCE GRIDS 
Observation of natural processes is limited by spatial 

and temporal sensor footprint, coverage, resolution, 
sampling rate, and measurement uncertainty. Markov 
Random Fields (MRFs) provide a natural formulation to 
represent spatially and temporally distributed 
observations. We use a discretized version of MRFs, 
called a spatio-temporal Markov Random Lattice (ST-
MRL), to encode the data obtained by the different 
sensors and agents. Each cell in the lattice corresponds to 
a spatial volume and a time slice, and stores a stochastic 
vector with the probabilistic state description of the 
various processes that have been measured at the given 
location and time interval. Efficient updating methods are 
used to improve the probabilistic descrption encoded in 

the lattice as new observations flow in from the various 
sensors and platforms being used [11].    

Associated with the ST-MRL we also maintain 
additional stochastic lattice-based layers for inference and 
decision, which are used to plan and control the activities 
of the robot platforms [10]. These layers include vehicle 
navigation cost and risk to reach an area of interest; 
hypotheses of scientific events to be explored further; 
information metrics such as entropy to determine how the 
knowledge of a natural process is evolving, and where 
critical information is missing; and others. The 
augmented informational structure that incorporates both 
the ST-MRL and the information-theoretic inference and 
decision layers is called an Inference Grid (IG) [10, 12].  
In the MARTA/TAOSF system, we use the Inference 
Grid (IG) model to represent multiple spatially- and 
temporally-varying properties, concerning both ocean 
processes and HABs. The rhodamine dye concentration 
measurements taken by the OASIS platforms during field 
tests are used as input to the Inference Grid mapping 
process. The fluorometer measurements are used to 
compute the presence or absence of dye for each cell in 
the area traversed by each OASIS boat. The probabilistic 
sensor model was derived from information on the 
sensitivity and performance of the sensors. The Inference 
Grid map of rhodamine dye for one of our mapping 
experiments (Fig. 5) is shown in Fig. 6.  
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platform is in the lower part of the image, close to the 
rhodamine dye tracks that serve as a surrogate for algal 
blooms during field testing. Fig. 7 shows the search 
pattern executed by the OASIS boat to find the surrogate 
algal bloom, and Fig. 8 displays an Inference Grid 
showing the areas with high probability of dye presence 
(in red), high probability of dye absence (in green), and 
high entropy or lack of information (in grey). Finally, in 
Fig. 9 an Inference Grid with inferred hypotheses of algal 
blooms (dye tracks) is presented. The areas of high 
entropy can be used to replan the search pattern of the 
boat.   
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The measured rhodamine concentrations are shown as a 
vertical “ribbon” along the route taken by the OASIS boat.  
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Figure 8. Inference Grid showing the areas with high 

probability of dye presence (in red), high probability of dye 
absence (in green), and high entropy or lack of information 

(in grey). 
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Figure 6: Aerial view from the aerostat obser-
vation platform. The chase boat (with aerostat
tether) is in the upper part of the image, the OA-
SIS boat in the lower part, and the rhodamine
dye tracks laid by the chase boat to serve as sur-
rogate HABs are towards the right part of the
image.

surement uncertainty. Markov Random Fields (MRFs)
provide a natural formulation to represent spatially and
temporally distributed observations. We use a discretiz-
ed version of MRFs, called a spatio-temporal Markov
Random Lattice (ST-MRL), to encode the data obtained
by the different sensors and agents. Each cell in the
lattice corresponds to a spatial volume and a time slice,
and stores a stochastic vector with the probabilistic state
description of the various processes that have been mea-
sured at the given location and time interval. Efficient
updating methods are used to improve the probabilistic
description encoded in the lattice as new observations
flow in from the various sensors and platforms being
used [2].

Associated with the ST-MRL we also maintain addi-
tional stochastic lattice-based layers for inference and
decision, which are used to plan and control the activ-
ities of the robot platforms [3]. These layers include
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Figure 7: A slanted view of the ocean area where
the test was conducted. A spiral search pattern
was executed by the boat. The measured rho-
damine concentrations are shown as a vertical
“ribbon” along the route taken by the OASIS
boat.
vehicle navigation cost and risk to reach an area of in-
terest; hypotheses of scientific events to be explored
further; information metrics such as entropy to deter-
mine how the knowledge of a natural process is evolving,
and where critical information is missing; and others.
The augmented informational structure that incorpo-
rates both the ST-MRL and the information-theoretic
inference and decision layers is called an Inference Grid
(IG) [3, 7].

In the MARTA/TAOSF system, we use the Inference
Grid (IG) model to represent multiple spatially- and
temporally-varying properties, concerning both ocean
processes and HABs. The rhodamine dye concentra-
tion measurements taken by the OASIS platforms dur-
ing field tests are used as input to the Inference Grid
mapping process. The fluorometer measurements are
used to compute the presence or absence of dye for each
cell in the area traversed by each OASIS boat. The
probabilistic sensor model was derived from informa-
tion on the sensitivity and performance of the sensors.
The Inference Grid map of rhodamine dye for one of our
mapping experiments (Figure 5) is shown in Figure 8.

Results and Analysis. Figure 6 shows an aerial view
from the aerostat of the test area in the Chesapeake
Bay; the OASIS robot boat platform is in the lower
part of the image, close to the rhodamine dye tracks
that serve as a surrogate for algal blooms during field
testing. Figure 7 shows the search pattern executed
by the OASIS boat to find the surrogate algal bloom,
and Figure 8 displays an Inference Grid showing the
areas with high probability of dye presence (in red), high
probability of dye absence (in green), and high entropy
or lack of information (in grey). Finally, in Figure 9, an
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Figure 9: Inference Grid with inferred hypothe-
ses of algal blooms (dye tracks).

Inference Grid with inferred hypotheses of algal blooms
(dye tracks) is presented. The areas of high entropy can
be used to replan the search pattern of the boat.

5.2 Field Test 2 - Jul. 2008
In this field test, the rhodamine WT dye is laid down

in two stripes. The OASIS-2 boat follows a raster scan,
which progresses along the dye stripes. The OASIS-2
boat’s trajectory in global (GPS) coordinates (i.e., with
added drift) is drift-corrected to produce a correspond-
ing trajectory in (water) surface coordinates (i.e., with-
out drift). From Figure 10, we can observe that the
latter drift-corrected trajectory stretches over a shorter
distance (i.e., 233m) as compared to that of the former
trajectory (i.e., 380.9m). With drift correction, the dye
stripes do not “run away” from the boat.

Our aim is to reconstruct the (drift-corrected) rho-
damine WT dye map (i.e., in surface coordinates) using
the sparse dye data collected along OASIS-2 boat’s tra-
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Figure 10: Comparison of OASIS-2 boat’s tra-
jectories with and without added drift (respec-
tively, green and black paths). The units for the
axes are in meters.
jectory over a 380.9m×87.5m sampling region (i.e., 780
fluorometer readings over a period of 13 minutes). In
particular, we want to investigate if the dye-stripe phe-
nomenon can be inferred from the reconstructed map.

Methodology: Log-Gaussian Process. The dye
data (see Figure 11) collected by OASIS-2 boat is char-
acterized by continuous, spatially correlated, positively
skewed (Figure 12) fluorometer measurements. Using
this sparse dye data, we will reconstruct the dye map
in surface coordinates, which spans 233m by 102.4m.
The properties of the fluorometer measurements sug-
gest the use of the non-parametric probabilistic infer-
ence model called the log-Gaussian process (`GP). The
advantage of this modeling technique is that it does not
require any assumptions on the distribution underlying
the sampling data. Furthermore, the prediction of flu-
orometer measurements at unobserved locations can be
performed at any desired map resolution. We will now
describe the log-Gaussian process briefly and refer the
interested reader to [9] for more details.

Let X be the domain of the dye map corresponding to
a finite, discretized set of locations. Each location x ∈ X
is associated with an observed fluorometer measurement
yx and its corresponding random counterpart Yx. Let
{Yx}x∈X denote a `GP defined on the domain X . That
is, if we let Zx = log Yx (i.e., Yx = exp{Zx}), then
{Zx}x∈X is a Gaussian process (GP). This means the
joint distribution over any finite subset of {Zx}x∈X is
Gaussian. The GP can be completely specified by its
(prior) mean and covariance functions

µZx

4
= E[Zx] ,

σZxZu

4
= cov[Zx, Zu]

for x, u ∈ X . Let the data d denote n pairs of sam-
pled locations and their corresponding observed mea-
surements. Let x and zx denote vectors comprising the
location and measurement components of the data d. If
the data d are available, the distribution of Zx remains
a Gaussian with the posterior mean and variance

µZx|d
4
= E[Zx | d] = µZx

+ ΣxxΣ−1
xx{z>x − µZx} (1)
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Figure 11: Continuous, spatially correlated flu-
orometer readings (measured in mg/m3) of the
drift-corrected trajectory (measured in meters).

σ2
Zx|d

4
= var[Zx | d] = σZxZx − ΣxxΣ−1

xxΣxx (2)

where, for the location components v, w in x, µZx is
a column vector with mean components µzv

, Σxx is a
covariance vector with components σzxzv

, Σxx is the
transpose of Σxx, and Σxx is a covariance matrix with
components σzvzw . Note that the posterior mean µZx|d
(1) is the best unbiased predictor for predicting the
log-measurement zx at the unobserved location x. An
important property of the Gaussian posterior variance
σ2

Zx|d (2) is its independence of zx.
The `GP has the (prior) mean and covariance function

µYx

4
= E[Yx] = exp{µZx + σZxZx/2} ,

σYxYu

4
= cov[Yx, Yu] = µYx

µYu
(exp{σZxZu

} − 1)

for x, u ∈ X . We know that the distribution of Zx

given the data d is Gaussian. Since the transformation
from zx to yx is invertible, the distribution of Yx given
the data d is log-Gaussian with the posterior mean and
variance

µYx|d
4
= E[Yx | d] = E[exp{Zx} | d] = exp{µZx|d+σ2

Zx|d/2}
(3)

σ2
Yx|d

4
= var[Yx | d] = µ2

Yx|d(exp{σ2
Zx|d} − 1) (4)

where µZx|d and σ2
Zx|d are the Gaussian posterior mean

(1) and variance (2) respectively. Note that the log-
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Figure 12: Positively-skewed fluorometer read-
ings (mg/m3): The positive skew results from a
small number of high measurements and a huge
pool of low measurements.

Gaussian posterior mean µYx|d (3) is the best unbi-
ased predictor for predicting the actual measurement
yx = exp{zx} at the unobserved location x. On the
other hand, exp{µZx|d} is a biased predictor of the ac-
tual measurement yx = exp{zx}. This can be observed
from (3) that µYx|d ≥ exp{µZx|d}.

Results and Analysis. The log-Gaussian process is
used to predict the fluorometer measurements at 233×
103 = 23999 unobserved locations that are evenly spaced
throughout the sampling region in surface coordinates
(Figure 13). Figure 13a shows the predicted map (3)
while Figure 13b shows the variance (4) associated with
the predicted locations. From Figure 13a, we can ob-
serve two roughly parallel dye stripes running from the
right with higher concentration to the left with lower
concentration. The left part of the dye stripes appears
to be more diffused, thus resulting in a smaller inter-
stripe gap. From the lengthscale hyperparameters of
the log-Gaussian process (obtained using maximum like-
lihood estimation), we also learn that there is a much
higher degree of spatial correlation between fluorome-
ter measurements along the horizontal axis than along
the vertical axis. This allows the two dye stripes to be
inferred relatively well.

Using the predicted dye map (Figure 13a), we further
perform binary classification (Figure 13c) via column-
wise thresholding to determine if each map location is
in a dye stripe or not. From Figure 13, we can see that
the top dye stripe is better identified than the bottom
one. Figure 14 shows the row-wise profile of the pre-
dicted dye map (Figure 13a); each circle denotes the
mean predicted fluorometer measurement for a partic-
ular row (≈ 0.9945m wide). If we set the threshold to
the mean fluorometer measurement of the predicted dye
map (i.e., ≈ 5.3188mg/m3), Figure 14 then shows that
the top and bottom dye stripes in Figure 13 are ap-
proximately 15.9m and 22.9m wide, respectively, with
an inter-stripe gap of roughly 9.9m.
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Figure 13: Map inference of rhodamine dye con-
centration: (a) Prediction, (b) variance, and (c)
binary classification via thresholding. The units
for the axes are in meters.
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Figure 14: Row-wise profile showing the plot
of mean predicted fluorometer measurement
(mg/m3) vs. row number. The red circles are
above the threshold, which is set to the mean
fluorometer measurement of the predicted dye
map. The blue circles are below the threshold.



6. CONCLUSIONS
The MARTA-based TAOSF multi-level autonomy con-

trol architecture provides many advantages over exist-
ing systems for observing and analyzing HABs includ-
ing: dynamic tasking and adaptation; higher in situ
resolution and greater insensitivity to cloud cover (as
compared with satellite systems); access to and greater
agility in coastal waters than that available through
buoys; real-time multipoint science data observations
and generation of associated interpretations by remotely
located oceanographers.

By using the TAOSF architecture, it increases data-
gathering effectiveness and science return while reducing
demands on scientists for robotic asset tasking, control,
and monitoring. The data are also made available to
other scientists via the world-wide-web both as they are
collected, and from an historical data archive server.
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