
HONOURS YEAR PROJECT REPORT

Mobile Robots
That Learn to Navigate

Low Kian Hsiang

School of Computing

National University of Singapore
2000/01

Project No. H40020

Supervisor A/P Leow Wee Kheng, A/P Marcelo H. Ang Jr.

Deliverables Report: 1 Volume

Abstract

A sensorimotor controller has been implemented to enable a mobile robot to learn
its motion control autonomously and perform simple target-reaching movements.
This controller is able to perform fine motion by reducing its self-positioning error
and also, reach a designated target location with minimum delay. The control
architecture is in the form of a neural network known as the Self-Organizing Map.
Besides implementing the motor control and the online learning algorithms, the
essentiality of a pre-learning phase is also evaluated. Then, we explore the
possibility of incorporating a novel concept known as Local Linear Smoothing into
our batch training algorithm; this notion allows the elimination of the boundary bias
phenomenon. Lastly, we suggest a simple approach to learning in an obstacle-
ridden environment.

Subject Descriptors

I.2.6 Learning
 I.2.9 Robotics
 I.5.1 Models

Keywords

 Self-Organizing Map, Batch Training, Local Linear Smoothing,

Online Unsupervised Learning, Sensorimotor Coordination,
Obstacle Avoidance, Command Fusion Mechanism.

Implementation Software and Hardware

 Linux Mandrake 7.2, Webots 2.0, Khepera Robot.

Acknowledgements

First and foremost, I would like to thank my supervisor, A/P Leow Wee Kheng, for
his motivation and support to my project. His knowledge and enthusiasm have
moulded my genre towards research, in particular neural network.

I would also like to show my sincere gratitude towards A/P Marcelo H. Ang Jr. and
the Laboratory of Control and Mechatronics in the Mechanical Engineering
Department for the loan of the Khepera robot.

I would like to thank Dr. Olivier Michel at Cyberbotics for his kind assistance in the
usage of Webots.

A big thanks to my family and Ms. Cocoa Yeo Hwee Kiang for their immense
support and encouragement.

Last but not the least, I would want to show my appreciation to Mr. Ho Ngai Lam
for his knowledge in spatial data structures.

TABLE OF CONTENTS

Title i
Abstract ii
Acknowledgement iii

1 INTRODUCTION 1

 1.1 Project Motivation 1

 1.2 Research Scope and Objectives 2

 1.3 Thesis Overview 3

2 BACKGROUND AND RELATED WORK 5

 2.1 Background 5

 2.1.1 Motor Control in Mobile Robots 5

 2.1.2 Learning Paradigms 8

 2.1.3 Self-Organizing Map 10

 2.2 Related Work 13

 2.2.1 Zalama, Gaudiano and Coronado
 (NETMORC) 13

 2.2.2 Versino and Gambardella
 (Invertible Kohonen Map) 13

 2.2.3 Our Proposed Method
 (‘Extended’ Self-Organizing Map) 14

3 CHARACTERISTICS OF MOBILE ROBOT 17

 3.1 Khepera : A Miniature Mobile Robot 17

 3.1.1 Technical Specifications 17

 3.1.2 Features and Advantages 18

 3.1.3 Development Methodology and Environments 19

 3.2 Webots : A Mobile Robot Simulator 21

 3.3 Hardware and Software Limitations 22

4 NETWORK ARCHITECTURE OF

SENSORIMOTOR CONTROLLER 24

 4.1 Framework Overview 24

 4.2 Sensorimotor Control Algorithm 26

 4.3 Online Unsupervised Learning Algorithm 31

 4.4 Motor Babbling 34

 4.5 Local Linear Smoothing 37

 4.6 Batch Training Algorithm 41

5 SIMULATION RESULTS AND ANALYSIS 44

 5.1 Simulation Overview 44

 5.1.1 Performance Metrics 44

 5.1.2 Experimental Setup 45

 5.2 Online Learning : Single Neuron Update 45

 5.3 Online Learning : Neighborhood Update 47

 5.4 Pre-learning : Single Neuron Update 54

 5.5 Pre-learning : Neighborhood Update 55

 5.6 Batch Learning : Neighborhood Update 57

 5.7 Model Performance on Khepera Robot 64

6 LEARNING IN AN OBSTACLE-RIDDEN ENVIRONMENT 67

 6.1 A Biological Approach : Escape Tactics of a Fly 67

 6.2 Obstacle Avoidance Behavior 68

 6.3 A Behavior Coordination Mechanism : Command Fusion 69

 6.4 Simulation Results 70

7 DISCUSSION, FUTURE WORK AND CONCLUSION 74

 7.1 Comparison with other Approaches 74

 7.2 Future Work 75

 7.3 Conclusion 77

 REFERENCES 79

Mobile Robots That Learn to Navigate 1
Chapter 1 Introduction

Chapter 1

INTRODUCTION

This chapter identifies the problem domain and the specific objectives to be achieved. The

structure of this thesis report is also presented.

1.1 Project Motivation

In recent years, an increasing amount of mobile robotics research has focused on the

fundamental problem of autonomous goal-directed navigation in unstructured

environments; this is essential for mobile robots operating in hostile conditions, like space,

sea and contaminated habitats, as well as in the emerging field of service robotics, that

include waste management [39], cleaning [55], luggage transfer, mail delivery,

reconnaissance and handicap assistance. Nevertheless, a trivial solution cannot be derived

due to the following impediments.

• Unstructured and dynamically changing navigation domain.

• Mobility constraints of the mobile robot such as non-linear motor control and

degrees of freedom.

• Presence of systematic and non-systematic noise in the environment and the

robot sensors and actuators [32].

It would therefore be a challenging task to evolve a robust and flexible navigation

technique, which circumvents these constraints. To do so, it is our belief that tremendous

insights can be drawn from biological agents, which have already achieved this task; the

Mobile Robots That Learn to Navigate 2
Chapter 1 Introduction

ability to successfully move through a novel environment is imperative to the survival of

humans and animals. If the navigation capabilities of a mobile robot hinge on this analogy,

it must be endowed with the ability of autonomous or unsupervised learning. This should

be the primary inspiration for any of its navigational tasks.

Goal-directed navigation is a problem that is too complex to be tackled en bloc. Logically,

we should employ a divide-and-conquer strategy to solve this problem; we can

hierarchically and modularly decompose it into high-level, complex modules such as self-

localization, map building, path planning and feature extraction and low-level, primitive

motor control modules. This project focuses on the implementation of a low-level motor

control module that enables a mobile robot to learn its motion control autonomously and

perform simple target-reaching movements such as beacon aiming [40] or homing [6]. This

will establish the most fundamental, yet crucial, foundation for subsequent higher-level

modules to be mounted.

1.2 Research Scope and Objectives

Based on the reasoning of our motivation, the mobile robot can acquire its motor control

skill through unsupervised learning. The implementation of the motor controller should

achieve the following criteria.

• Learning Method :- The motor controller must be able to learn the association

between the sensory input and the motor output without an external teacher. A

fast rate of convergence in learning is also desired.

• Motor Control Performance :- The robot must be able to perform fine motion

to reduce its self-positioning error and it must also be able to reach a designated

Mobile Robots That Learn to Navigate 3
Chapter 1 Introduction

target location with minimum delay. These two requirements are in fact our

performance metrics for the evaluation of our motor controller.

• Noise Tolerance :- The motor controller must be robust against systematic and

non-systematic noise and still achieve the two above-mentioned objectives. To

do this, it must be adaptable to environmental noise and changes and resistant

to noise in the robot sensors and actuators.

The objectives stated above are intended for general mobile robotics applications and by

no means exhaustive. Specific applications may require additional constraints.

1.3 Thesis Overview

Chapter 1 Introduction identifies the problem domain and the specific objectives to be

achieved.

Chapter 2 Background and Related Work describes the research direction and some

critical design considerations to evolve the unsupervised learning and motor control

mechanisms. Following that, our proposed method is differentiated from other related

work.

Chapter 3 Characteristics of Mobile Robot gives an overview of the robotic tools, the

development environments and the resource constraints in the implementation of the

sensorimotor controller. The approaches to circumvent these constraints are also discussed.

Chapter 4 Network Architecture of Sensorimotor Controller presents an overview of

the network architecture as well as the details of our sensorimotor control and online

unsupervised learning mechanisms. The need of the random activity generator to bootstrap

Mobile Robots That Learn to Navigate 4
Chapter 1 Introduction

the learning process is also evaluated. Lastly, we introduce a novel concept of local linear

smoothing into our pre-learning phase and our batch training algorithm.

Chapter 5 Simulation Results and Analysis compares the performance of our online

unsupervised learning algorithm, the inclusion of the pre-learning phase and our batch

training algorithm using local linear smoothing. The real Khepera robot is also tested,

based on one time step.

Chapter 6 Learning in an Obstacle-Ridden Environment suggests a mechanism to fuse

our sensorimotor controller and the Braitenberg’s vehicle type 3-C obstacle avoidance

behavior.

Chapter 7 Discussion, Future Work and Conclusion does an analytical comparison with

two pieces of related work. Future research directions have been proposed and the

conclusion sums up my contributions to this project.

Mobile Robots That Learn to Navigate 5
Chapter 2 Background and Related Work

Chapter 2

BACKGROUND AND RELATED WORK

The background section describes the research direction and some critical design

considerations to evolve the unsupervised learning and motor control mechanisms.

Following that, we differentiate our proposed method with other related work.

2.1 Background

2.1.1 Motor Control in Mobile Robots

Recent work in behavioral robotics has shown much success in low-level navigational

tasks [41, 42, 43, 44, 45, 46, 47]. Our low-level motor control task can similarly be

translated into a simple, low-level navigational behavior, known as homing1, which is

predominant in most animals [1]. However, it is a mandatory skill towards the acquisition

of more complex navigational behaviors [27, 28]; the general problem of learning to

navigate between a given number of arbitrary locations or landmarks can be decomposed

into simpler navigational components between one-one, many-one and one-many locations

as shown in Fig. 1.

 Destination Locations
 One Many

One

Simple
Interlocation
Navigation

Example: Foraging
Source

Locations
Many

Example: Homing General-Purpose

Navigation

Fig. 1 A hierarchical decomposition of the general navigation problem.

__
1It can be defined as the ability of an autonomous agent to navigate to a particular “home” location from arbitrary
locations within a specific environment.

Mobile Robots That Learn to Navigate 6
Chapter 2 Background and Related Work

To acquire this low-level homing behavior, the mobile robot must gain knowledge of its

motion control, otherwise known as kinematics, in a given environment. This relates to

sensorimotor coordination2. How then can the mobile robot be acquainted with its own

kinematics?

Our research rooted off by examining the control architectures of robot arms [5, 8, 9, 14,

15, 36, 37] to identify the underlying concepts behind automatic end effector positioning;

these concepts may be applicable to our cause. In doing so, we have to observe that the

direct translation of learning and sensorimotor control techniques from robot arms to

mobile robots is not possible due to several critical constraints. Let me illustrate a few

examples to substantiate my claim.

Firstly, the arbitrary target location of a mobile robot is specified in a 2D environment,

instead of a 3D environment for the robot arm. Secondly, the workspace of the mobile

robot is not limited by the robot’s structure, unlike that of a robot manipulator; the mobile

robot must make movements to targets at arbitrary distances and angles. In my opinion, it

is not feasible to train the mobile robot to sample all possible movements in an arbitrarily

large workspace (global map space) due to scalability of network size and training time.

Thus, we have adopted an incremental movement approach (local perceptual space) such

that each resulting movement is held over a short space-time interval. When the target is

beyond the maximum distance and/or angle in the local perceptual space, our motor

controller generates wheel speeds that will move the robot to the largest distance and/or

angle in this space. As a result, the robot will incrementally turn and move towards the

target at the maximum rate. Once the target falls within this space, the motor wheel speeds

will be reduced until the robot comes to a stop over the target.
__
2This term refers to the association of signals coming from various sensory modalities, such as audition [59], vision [7],
sonar [29], infrared [30] and even smell [31], to motor commands in view of a given task, such as homing [7] or obstacle
avoidance [30].

Mobile Robots That Learn to Navigate 7
Chapter 2 Background and Related Work

Thirdly, the mobile robot does not possess redundant degrees of freedom; we do not need

to deal with issues of redundancy such as smoothness of robot movements, rate of reaction

and fatigue [10]. Lastly, the mobile robot cannot generate arbitrary movements; it cannot

be displaced laterally with a single movement.

We have also realized that the classical approach to motor control is to assume an “a

priori” model of correlation between the sensors and motor commands; it is a

mathematical model built on the foundation of physical laws of kinematics. The forward

kinematics (motor commands to sensors) is utilized in a popular localization or self-

positioning technique known as dead reckoning3. Based on proprioceptive sensor data such

as displacement encoders, the momentary position of the mobile robot, relative to a known

start position, can be computed using simple geometric equations (a forward kinematics

model) shown in [32]. This method cannot be employed for long distances as it suffers

from various drawbacks; the kinematics model always has some inaccuracies, encoders

have limited precision and external sources affecting the robot’s motion, such as wheel

slippage, are not observable by the sensors. Thus, the self-positioning error accumulates

over time. The inverse kinematics (sensors to motor commands) can be represented by

mathematical equations [5] and it also suffers the same drawbacks. The “a priori” model

denotes the ideal kinematics behavior, observed only in simulated environments, which is

extremely noise sensitive. In reality, the real robot deviates significantly from this model.

How can we produce a replica closer to the true model of the real robot? The solution lies

in the next section.

__
3Dead reckoning refers to the process of updating an estimate of one’s current position based on self-knowledge of time,
speed and direction of self-motion.

Mobile Robots That Learn to Navigate 8
Chapter 2 Background and Related Work

2.1.2 Learning Paradigms

An alternative approach to the “a priori” model has to be considered; the “a posteriori”

model is built on observed data of the correlation between exteroceptive sensor

perceptions, such as sonar or vision, and motor actions collected during the robot’s

navigation. Therefore, the model does not require knowledge of the robot’s kinematics.

These pairs of real-time perception-action data are used to estimate the parameters of the

model, thus accounting for the noisy components. The final product of this model can even

move a “semi-handicapped” robot correctly to its destination. This whole approximation

problem is in fact a learning process. It is our intention to investigate and implement this

process.

Should this learning process be supervised or unsupervised? Supervised learning methods

are straightforward and relatively easy to implement but there are serious shortcomings.

Firstly, the external teacher’s knowledge used in the supervised training is usually varied,

in the case of multiple external supervisors, and biased in terms of distribution, sequence

and selection of the training samples in the learning set. Secondly, it is not adaptable to

novel environments. The whole learning process has to be repeated with the involvement

of the external teacher. On the contrary, unsupervised learning techniques have overcome

such problems due to its robustness and flexibility. No external supervisor is required, thus

eliminating the bias in the training samples. As mentioned before in Section 1.1,

unsupervised learning allows the mobile robot to adapt easily to a novel environment.

Thus, unsupervised learning will be used to train our motor controller.

Many unsupervised learning algorithms have been dedicated to the application of

sensorimotor coordination on robot manipulators and mobile robots. They include

Mobile Robots That Learn to Navigate 9
Chapter 2 Background and Related Work

evolutionary optimization or genetic algorithms [33], rule-based algorithms [34], fuzzy

logic [35], artificial neural networks [5, 6, 7, 8, 9, 14, 15, 30, 36, 37, 48, 49, 50, 60] and

reinforcement learning [38]. The choice of the learning algorithm must take into

consideration all the objectives stated in Section 1.2. In particular, artificial neural network

fits our purpose extremely well; it replicates the cerebellum of a mammalian brain, which

performs sensorimotor coordination. We shall now discuss how and why this is so.

Our approach stems from the process of circular reaction in Fig. 2, presented by M.

Kuperstein et al. [3]. The current use of circular reaction is an extension of one of J.

Piaget's development stages [4]. This unsupervised learning-by-doing cycle operates in two

phases. The initial training phase involves the learning of the sensorimotor relations via

correlations between input and output signals while the performance phase uses the learned

correlations to evoke the correct motor signals to move to the target location. The

sequences within these two phases are briefly mentioned in Fig. 2.

g

f

e
d

c

b

a

Visual
Signals

Feedback

Motor
Signals

RANDOM
ACTIVITY

GENERATOR

TARGET TARGET
MAP

INPUT
MAP

WEIGHT
MAP

Fig. 2 The circular reaction. Self-produced motor signals are
 correlated with sensory signals. The sequence for training is a,
 b, c, d, (e+f), g. Correlated learning is done in step g. After this
 correlation is achieved, sensory input signals can evoke
 associated motor output signals to accurately move to the
 target location. The sequence for performance is c, d, e, b.

From the same diagram, we can observe two issues of interest. Firstly, how do we integrate

the input map, weight map and target map modules so that the training process that

Mobile Robots That Learn to Navigate 10
Chapter 2 Background and Related Work

interlinks these modules can be successful and efficient in producing an accurate weight

map? In other words, how should we implement the sensorimotor control and learning

mechanisms? Secondly, how effective is the random activity generator in bootstrapping the

learning process? Can we eliminate this random activity generator, restructure the usual

procedures in the two phases, such that both phases run concurrently in a “split brain”

fashion, and still achieve a reasonable quality in learning? We shall now investigate the

first problem and postpone the discussion of the second problem to Chapter 4.

2.1.3 Self-Organizing Map

To solve the first problem, various neural network architectures for mobile robots have

been proposed [5, 6, 7, 60]. They have a common goal, which is to autonomously learn the

inverse kinematics of a mobile robot. An accurate weight map, previously shown in Fig. 2,

must be obtained to verify the correctness of their solutions. Their approaches rely on a

crucial concept known as “linearization”. It suggests that the non-linear sensorimotor

transformation can be decomposed into local linear mappings recorded by the weight map.

Thus, “linearization” is a viable adoption for our purpose. Our problem can now be

narrowed down to the representation and interaction of the input map, weight map and

target map modules in Fig. 2 to facilitate the learning process. This calls for the need to

establish a map representation, which can assimilate learning and sensorimotor control.

Our biologically motivated framework is in the form of a self-organizing neural network,

which performs “linearization”. It takes inspiration from a robot arm experiment on end

effector positioning realized by K.J. Schulten et al. [8, 9, 36, 37], which utilizes an

extension of T. Kohonen’s Self-Organizing Map Algorithm [2]. T. Kohonen’s Self-

Mobile Robots That Learn to Navigate 11
Chapter 2 Background and Related Work

Organizing Map (SOM) is an unsupervised learning neural network method that produces

a similarity graph of input data. It consists of a finite set of models, each approximating a

local disjoint region in the open, unlimited set of input data. These models are associated

with nodes or neurons that are arranged as a regular, usually two-dimensional grid. They

are adapted by a learning process that automatically orders them on the two-dimensional

grid along with their mutual similarity. The algorithm operates recursively in two simple

steps. Upon each presentation of input data vector, it performs a search for the neuron with

the closest4 model vector. This “winning” neuron and its neighboring neurons are adapted

by learning rules. Details of this algorithm will be presented in Chapter 4.

Two immediate advantages of SOM can be observed. Firstly, it performs dimensionality

reduction of the input data. Secondly, SOM can first be computed using any representative

subset of old input data and new input items can be mapped straight into the most similar

models without re-computation of the whole mapping. SOM has been widely utilized in

several fields such as machine vision and image analysis, robotics, data processing,

linguistic and AI problems, neurophysiological research and etc. Examples of these

applications can be found in [53] and [54], which are bibliographies used for our search of

SOM-related materials. [51, 52] are the other SOM resources used for the implementation

of our motor controller.

Apart from the SOM weight map, the representation of sensory input map and the motor

target map must also be determined. Should the sensory input map be the global map space

of the environment or the local perceptual space of the mobile robot? The global map

space is typically employed by the traditional planner-based or deliberative strategies.

They rely on this centralized world model to verify sensory information and

__
4The distance measure may be, for instance, Manhattan or Euclidean distance.

Mobile Robots That Learn to Navigate 12
Chapter 2 Background and Related Work

generate actions in the world [48, 49, 50]. The information in the world model is used by

the planner to produce the most appropriate sequence of actions for the robot. Thus, it is

not a direct result of sensory data but rather an outcome of a series of sense-model-plan-act

stages. Uncertainties in sensing and action and environmental changes can require frequent

re-planning, which amounts to high computational cost. Planner-based approaches have

been criticized for scaling poorly with the complexity of real-world problems, and making

real-time reaction to sudden world changes impossible.

Conversely, the local perceptual space is utilized by reactive approaches, which can

achieve real-time performance in autonomous travel [5, 7, 60]. They maintain no internal

models. Typically, they apply a simple functional mapping between sensory stimuli and

appropriate motor responses, usually in the form of a lookup. They have the same theme of

constant-time run-time direct encodings of the appropriate action for each input state.

These mappings rely on a direct coupling between sensing and action and fast feedback

from the environment. Thus, these strategies for low-level sensorimotor control tasks have

proven effective in reacting to dynamic changes in the environment.

How should the motor target map be represented? Should it be discretized into specific,

state-based events such as ‘move forward’, ‘move backwards’, ‘turn left’, ‘turn right’,

‘rotate on the spot’ and so on [30]? Recall that one of our objectives in Section 1.2 requires

fine motion in the mobile robot to reduce its self-positioning error. Clearly, the previous

representation does not permit this. Therefore, a continuous motor output space is

adopted.

Mobile Robots That Learn to Navigate 13
Chapter 2 Background and Related Work

2.2 Related Work

2.2.1 Zalama, Gaudiano and Coronado (NETMORC)

A Neural NETwork MObile Robot Controller (NETMORC) is introduced by E. Zalama et

al. [5, 60] to autonomously learn the motion control of the mobile robot. The network

architecture essentially comprises of two arrays of 1-D neurons encoding distance and

angle of the robot displacement and a 2-D grid of neurons encoding the motor wheel

velocities. Each neuron in the two arrays has connection weights to every neuron in the 2-

D grid. During the learning phase, random motor wheel velocities are generated to move

the robot and the corresponding displacements are observed. Each velocity-displacement

pair is pattern-matched against the velocity information encoded in the 2-D grid neurons

and the distance and angle information encoded in the two respective sets of 1-D array

neurons. The connection weights of the “fired” neurons in the 1-D arrays are trained

accordingly using Grossberg’s outstar learning rule. In the performance phase, the trained

network is used to produce corresponding motor wheel velocities from the input of

distance and angle to target. If the target lies beyond the local perceptual space of the robot

established in the learning phase, it would need a few incremental moves to reach the

target. At the end of each move, the sensory system updates the robot with its new position

with respect to the target so that the next move can be determined. This goes on until the

robot stops over the target location. This robot controller has been tested in simulations and

implemented on the Robuter robot.

2.2.2 Versino and Gambardella (Invertible Kohonen Map)

C. Versino and L.M. Gambardella [7] demonstrated the utilization of a two-dimensional

Mobile Robots That Learn to Navigate 14
Chapter 2 Background and Related Work

Self-Organizing Map (SOM) to autonomously learn the motion control of the mobile

robot. Each neuron in the SOM encodes a motor weight and a displacement weight. During

the learning phase, a set of training samples is collected by randomly generating motor

wheel speeds to move the robot and observing the corresponding displacements. The motor

component in each training sample is used to determine the “winning” neuron by its

closeness to the neuron’s motor weight. The weights of this node and of its neighbors are

adapted to the training sample through the learning rules of SOM. We can observe that the

SOM is trained in the forward mode on a transformation from the space of motor

commands to the space of sensory perceptions. In the performance phase, the SOM is used

in backward mode. To move to a designated target location, the distance and the angle of

the target with respect to the robot serve as the sensory input to the SOM. The network

returns a motor output to move the robot towards the target. If the target lies beyond its

local perceptual space, the same approach, as discussed previously, is adopted. The

network performance has been tested both in a computer simulation and on the Khepera

robot.

2.2.3 Our Proposed Method (‘Extended’ Self-Organizing Map)

These two pieces of related work have been selected for comparison because their design

considerations are similar to ours: unsupervised learning, reactive motion control, local

perceptual sensory space, and continuous motor output space. However, our work can be

significantly distinguished from theirs by the following key features.

• Concurrency of Learning and Performance Phases :- The two pieces of

related work segregate the learning phase and the performance phase such that

Mobile Robots That Learn to Navigate 15
Chapter 2 Background and Related Work

the former phase precedes the latter. We argue that the two phases can be

integrated to operate simultaneously. The simulation results in Chapter 5 prove

its feasibility.

• Segmentation of Input Space :- “Linearization” results in the discretization

of the sensory input space into small disjoint regions, each governed by a

neuron. How should the space be segmented? In NETMORC, the input space is

manually segmented into a fixed, regular topology. This implies that the

network has no self-organizing power. Thus, a low self-positioning error can

only be achieved by adding enough neurons. Our proposed method takes on an

irregular, self-organizing topology, which is automatically shaped by the robot’s

motion in its environment. This has an effect of dense partitioning in the

sensory area used for fine positioning and sparse partitioning in the sensory area

that is rarely traversed. This self-organizing ability thus improves the

performance and scalability of the network.

• Immediate Output of Network :- NETMORC and the Invertible Kohonen

Map maps the sensory input space directly to the motor output space. Our

method assumes a different perspective; the direct output of our SOM

characterizes the transformation component that is responsible for the mapping

from the sensory input space to the motor output space. We argue that this can

overcome certain limitations of the existing approaches, which shall be

discussed in Chapter 7.

Mobile Robots That Learn to Navigate 16
Chapter 2 Background and Related Work

• Online vs. Batch Training :- Our method is the first to introduce the notion of

online learning and batch training to the motion control of a mobile robot. Our

work implements and compares the two forms of learning.

A more detailed analytical comparison of our proposed method with these two pieces of

related work will be made in Chapter 7.

Mobile Robots That Learn to Navigate 17
Chapter 3 Characteristics of Mobile Robot

Chapter 3

CHARACTERISTICS OF MOBILE ROBOT

This chapter gives an overview of the robotic tools, the development environments and the

resource constraints in the implementation of the sensorimotor controller. The approaches

to circumvent these constraints are also discussed.

3.1 Khepera : A Miniature Mobile Robot

3.1.1 Technical Specifications

This mini-mobile robot is developed at MicroComputing and Interface Lab (LAMI) –

Swiss Federal Institute of Technology, Lausanne (EPFL) by Edoardo Franzi, Paolo Ienne

and Francesco Mondada [26]. It is a commercial product distributed by K-team S.A.

(http://www.k-team.com). Fig. 3 describes its basic configuration.

COMPONENT DESCRIPTION
Processor Motorola 68331 microcontroller.
RAM 256 Kbytes.
ROM 128 or 256 Kbytes.
Motion 2 DC motors with incremental encoder of about 12 pulses/mm resolution.
Sensors 8 IR proximity and light sensors with range of 4-5 cm and 15-16 cm respectively.
Power Rechargeable NiCd batteries, allowing 30 min. of maximal activity, or external power supply.
Extension Bus Additional turrets for vision, manipulator and inter-robot communications can be mounted (Fig. 4 and Fig. 5 on the next

page).
Size Diameter: 55 mm.

Height: 30 mm.
Weight About 70 g.

Fig. 3 Technical Specifications of Khepera robot.

http://www.k-team.com/

Mobile Robots That Learn to Navigate 18
Chapter 3 Characteristics of Mobile Robot

Fig. 4 Khepera robot with
 stereoscopic vision and
 gripper turrets.

Fig. 5 Khepera robot with a twin
 panoramic vision turret.

3.1.2 Features and Advantages

• Easy to Use and Control :- Robotic tool for research, experiments and prototyping. It

allows quick entry into collaborative, evolutionary and neurobiological robotics

research and also, real world testing of algorithms developed in simulation for

trajectory planning, obstacle avoidance, wall following, target searching, collective

behavior and hypotheses on behavior processing, among others. The Khepera robot can

be manipulated easily.

• Easy to Install :- It functions like a plug and play device. The serial connection

between the PC and the robot can be made with an aerial cable without problems.

• Low Cost :- The environment is also easy and cheap to build.

• Robust :- There is no need of an electronic engineer to be consulted every week.

• Compact :- The user can perform experiments on a small area (i.e. a table top) with

everything at hand (PC, robot, environment). With similar functionality to larger robots

used in research and education, the miniature robot is relatively much more robust than

a big one. Imagine the Khepera robot, 55 mm in diameter, running against a wall at a

speed of 50 mm/s. Now compare it with a big robot, 1 m in diameter, going against a

Mobile Robots That Learn to Navigate 19
Chapter 3 Characteristics of Mobile Robot

wall at a speed of 1m/s. Will the wall or the robot survive? Thus, its compactness

makes it practical to use, as it does not pose any danger.

• Easy Transportability :- To ship or to take the robot to a conference won't be a

problem anymore.

• Modularity :- At software level, an efficient library of on-board applications for

controlling the robot, monitoring experiments, and downloading new software has

already been implemented. Refer to Section 3.1.3 for more details. At hardware level, a

large number of extension modules (Fig. 4 and Fig. 5) makes it adaptable to a wide

range of experimentation.

• High Computational Power

• Easy to Program :- A number of standard or graphical software environments has

already been developed. Refer to Section 3.1.3 for more details.

3.1.3 Development Methodology and Environments

There are three possible configurations of the development environments.

1. Cross Compiler Method

The oldest and most well known development
methodology consists of building the binary code
for the robot on the PC, transferring it to the
robot and running it on the robot. A library of
procedures is available to control the robot
hardware; wheel speed and position control,
sensor reading, multitasking management and
many other features are included in the BIOS of
the robot and can be used from a C program.

Mobile Robots That Learn to Navigate 20
Chapter 3 Characteristics of Mobile Robot

This configuration has the advantage of allowing the robot to run independently from the
computer, but the disadvantage is that the user has no access to the running code. This is
very problematic for debugging the program and for understanding the tested control
program. One way to resolve this is to test and debug the control program on Webots: a
mobile robot simulator (Section 3.2) first before running it on the real robot. This
simulator automatically builds the binary code from the control program and directly
downloads the binary code to the real robot.

2. Remote Control Method

Most of the actual users of these robots work by
running the control program on a PC in their own
programming environment (C, C++, SysQuake,
LabVIEW, MATLAB, Webots) by controlling
the robot through a standard RS232 serial link.
Khepera has a running mode called "SerCom",
where all primitive functionalities of the robot,
like wheel speed and sensor reading, can be
controlled with simple ASCII commands sent on
the RS232 serial line.

This configuration splits the control of the robot between the local processor placed on the
robot and the host PC. The robot processor manages all strict real-time tasks (motor
control) and the PC manages the higher-level, more computationally demanding tasks.
Having this part of the control program on the PC allows an easier development (known
environment and good debug tools) and a much better understanding of the system due to
the possibility of a much better interaction (graphical representation, mouse and keyboard
which are not present on the robot).
Refer to [58] and [61] for examples of this configuration.

3. ‘Combination of Both’ Method

When users start to understand their algorithms
and want another form of distribution of the
tasks between robot and host computer such
that the robot assumes a higher-level role now,
they use a combination of the two previous
methodologies. Both the robot and the host PC
have their own set of running code, which
communicates via the serial link. This
configuration is very powerful, but needs a
good knowledge of the system.

For example, our unsupervised sensorimotor controller may be hosted entirely on the
robot while the PC conducts the high-level navigational tasks such as localization, map
building, path planning and feature extraction. The PC instructs the robot via the serial
link on the path to head while the robot sometimes feedbacks the sensory inputs to the PC
to be stored as signatures for place recognition.

Mobile Robots That Learn to Navigate 21
Chapter 3 Characteristics of Mobile Robot

3.2 Webots : A Mobile Robot Simulator

Webots 2.0 is a realistic 3D mobile robots simulator from Cyberbotics

(http://www.cyberbotics.com) [25] intended for use in the fields of autonomous agents,

neurobiological modeling, intelligent robotics, evolutionary robotics, computer vision, and

artificial intelligence research. It is a highly realistic modeling of Khepera, in terms of

noise in sensors and actuators, with extension turrets for vision and manipulator. The user

can test, debug and understand their control algorithms through the virtual robots using a

C/C++ library before downloading onto the real robots via this simulator. A 3D

environment editor allows the customization of various robotics scenarios shown in Fig. 6

and Fig. 7.

 Fig. 6 Webots: the virtual Khepera robot in town.

Mobile Robots That Learn to Navigate 22
Chapter 3 Characteristics of Mobile Robot

 Fig. 7 Webots: the virtual Khepera robots in RoboSoccer.

The flexibility of this simulator allows the setup of all three configurations mentioned in

Section 3.1.3.

3.3 Hardware and Software Limitations

Currently, the only available implementation tools are the real Khepera robot in its basic

configuration (Fig. 3) and the Webots 2.0 simulator. There is no on-board or external

vision system available for use. The eight on-board IR sensors are close range sensors,

effective only for real-time reactive obstacle avoidance. Mid or long range sensors (vision,

sonar) are very much necessary for the successful learning of homing behavior. Our local

perceptual space approach only allows the performance assessment of the controller on the

real robot based on one time step. Before this can happen, the controller must be

Mobile Robots That Learn to Navigate 23
Chapter 3 Characteristics of Mobile Robot

sufficiently trained in Webots 2.0 simulator. Even so, this trained controller does not depict

the true kinematics model of the real robot; the learning mechanism is not executed on it.

We should therefore expect a tradeoff in performance. Nevertheless, it is still worth testing.

Vision turrets are available in Webots 2.0 simulator, which can be mounted on the virtual

Khepera robots. But the vision algorithms are missing. Since the vision problem is out of

our scope of research, a good representation of the sensor input must be assumed such that

it can be generalized to all forms of sensors. A viable sensory input would be the

egocentric or robot-centered distance and direction to the target. The motor output is the

internal motor speed of the robot’s wheels. In the classical control theory, the association

between the motor output and the sensory input is denoted by the transformation

component known as the control parameters (This was first mentioned in Section 2.2.3).

Our sensorimotor controller operates on this theory by accepting a sensory input of the

above form and generating the corresponding control parameters as output. An appropriate

motor output can then be derived from the two to move the robot towards the target. The

next chapter describes the learning and the execution of this process thoroughly.

Mobile Robots That Learn to Navigate 24
Chapter 4 Network Architecture of Sensorimotor Controller

Chapter 4

NETWORK ARCHITECTURE
OF SENSORIMOTOR CONTROLLER

This chapter presents an overview of the network architecture as well as the details of our

sensorimotor control and online unsupervised learning mechanisms. The second problem

mentioned in Section 2.1.2, that is the need of the random activity generator to bootstrap

the learning process, is also evaluated. Lastly, we introduce a novel concept of local linear

smoothing into our pre-learning phase and our batch training algorithm to eliminate the

boundary bias in our sensory input space and possibly, speed up the rate of convergence in

learning.

4.1 Framework Overview

The sensorimotor control or inverse kinematics problem of a mobile robot can be

expressed in a simple mathematical form. Given the sensory input of the target location

u∈U and a corresponding motor output c∈C , the mapping is defined as

F : U → C ⇒ c = F(u) (1)

Motor Control : Linear Case

If this problem is linear, for a one-dimensional motor output c,

umuF T=== ∑
∀

i
i

i umc)((2)

where m is the control parameters vector. For a multi-dimensional motor output c,

c = M u (3)

Mobile Robots That Learn to Navigate 25
Chapter 4 Network Architecture of Sensorimotor Controller

where M∈M denotes the control parameters matrix.

Motor Control : General or Non-Linear Case

The actual problem is, in fact, non-linear. We apply the concept of “linearization” here.

The principle idea is to partition the sensory input space U into a set of disjoint regions,

each governed by a neuron. Within each region, a local linear mapping of a form similar to

equation (3) can be defined. Every neuron r stores two weights: a weight sensory vector

wr, coding the region center and a control parameters matrix Mr. Thus, the local linear

mapping can be defined as

c = Ms u (4)

where u is in the region of neuron s. This neuron s can be determined using a simple

nearest neighbor search defined by

uwuw r
r

s −=−
∀

min (5)

This is illustrated in Fig. 8.

M

2-d Lattice of Neurons

Fig. 8 Schematic representation of ‘Extended’ Self-Organizing Map
 Algorithm. The winning neuron is labeled “s” while the
 neighboring neurons are marked by different gray levels.

Input Space U
Output Space

Mobile Robots That Learn to Navigate 26
Chapter 4 Network Architecture of Sensorimotor Controller

We can observe that the neurons are arranged into a 2-d grid lattice. Whenever a new

target position vector u in the defined workspace or environment is presented, equations

(4) and (5) will be used to locate the “winning” neuron s. In SOM, we can generalize by

using the weights of this neuron and its neighboring neurons to determine the motor output

vector c to move the mobile robot (This will be explained in the next section). At the same

time, these weights are gradually refined through adaptive learning rules described in

Section 4.3. The simulation results in Chapter 5 reveal that the influence of this form of

collective neighborhood learning is two-fold; it increases the rate of convergence of

learning and improves the self-positioning accuracy. This whole learning-by-doing process

will be elucidated in the next two sections; Section 4.2 describes the sensorimotor control

mechanism while Section 4.3 explains the online unsupervised learning mechanism. If we

refer back to Fig. 2, the control and learning mechanisms correspond to the performance

and training phases respectively. But in our instance, both mechanisms can run

concurrently in a “split brain” fashion, compared to the sequential ordering of the two

phases.

4.2 Sensorimotor Control Algorithm

Before explaining the steps in this algorithm, a few assumptions and notations must be

explained. The robot is assumed to have a sensory system that can calculate an egocentric

(robot-centered) representation of the distance d in meters and angle α in radians to

arbitrary target locations. This is shown in Fig. 9. Therefore,

u = [d, α]T (6)

where d∈R+ and α∈(-π, π].

Mobile Robots That Learn to Navigate 27
Chapter 4 Network Architecture of Sensorimotor Controller

wr = [dr, αr]T (7)

where dr∈[0, dmax] and αr∈(-π, π].

d

α

Fig. 9 Egocentric (robot-centered)
 representation of distance
 d and orientation α to a
 pole target.

Assuming that the mobile robot is differential drive with two wheels,

c = [cL, cR]T (8)

where L denotes the left wheel and R denotes the right wheel and cL, cR∈[cmin, cmax]. Lastly,

we assume an instantaneous change in the internal motor wheel speeds.

Sensorimotor Control Algorithm

1. Present a target point in the workspace to the robot.

2. Let the sensory system observe the target position vector u of the target point.

Mobile Robots That Learn to Navigate 28
Chapter 4 Network Architecture of Sensorimotor Controller

3. Selection of “Winning” Neuron

Our nearest neighbor search in equation (5) cannot use Euclidean distance to determine

the “winning” neuron s because d and α are different in type and domain range.

Consider that, while α varies in a limited range of values (-π, π], the target distance d

can be an arbitrarily large value. This means the target is extremely far but still within

sensory range. If both d and α are scaled equally (which is the case for Euclidean

distance), d would have had more importance in determination of the “winning”

neuron. This can lead to undesirable effects such as always selecting the “winning”

neuron, which corresponds to the highest motor speed on both wheels because this

“winning” neuron matches the longest incremental distance traveled in one time step of

τ sec.

Our solution to this is derived from the following observation: it seems natural to give

priority to α, so that the robot's first goal is to turn to face the target while on the move.

d becomes really relevant when the robot is close to the target point so as to gradually

reduce the motor wheel speed. The motor wheel speed will be reduced to zero when the

robot reaches the target point. With this in mind, we can now state a set of feasible

procedures.

a. Select a subset K of the N neurons in the 2-d grid lattice with the smallest ║αs -

α║.

αααα −=−
∀

r
r

s min (9)

b. Find the “winning” neuron s in K with the smallest weighted difference Qs where

i
i

s QQ
κ∈

= min (10)

Mobile Robots That Learn to Navigate 29
Chapter 4 Network Architecture of Sensorimotor Controller

Qi = (β(di - d)2 + γ(αr - α)2)1/2 (11)

where β>>γ.

Since 3a. has already competed using α, we can decrease the importance of α by

making γ a relatively small value. Nevertheless, its presence in equation (11) eliminates

neurons in K with αr that do not match α well. It also relaxes the requirement of

choosing an optimal size for K .

4. Weighted Averaging of Motor Output Vector

a. Simple Form

We can use equation (4) to generate c. If cL, cR>cmax or cL, cR<cmin, replace c by

c = Ms ws (12)

b. General Form

∑
∑

∀

∀=

r

r

r

sr

uMsr
c

),h(

)h(,
 (13)

where h(r, s) defines the Gaussian kernel weight of ║r - s║.

 −
−= 2

2

2
exp),h(

σ
sr

sr (14)

where ║r - s║ defines the lattice distance and σ denotes the kernel bandwidth that

decreases exponentially with time t. When t>=tmax, σ(t)=σ(tmax).

maxmax

)0(
)()0()(t

t
tt

=

σ
σσσ (15)

Mobile Robots That Learn to Navigate 30
Chapter 4 Network Architecture of Sensorimotor Controller

This general form is known as the weighted/population averaging scheme whereby the

neighborhood of the “winning” neuron is also considered for determining c. By

employing this scheme, considerable generalization to novel situations is achieved due

to the inherent interpolation evident in such a step. The above averaging method is a

form of interpolation using radial basis functions [11] and is inspired by recent

neurophysiological evidence [12] that the superior colliculus, a multilayered neuronal

structure in the brain stem that is known to play a crucial role in the generation of

saccadic eye movements, in fact employs a weighted averaging scheme to compute

saccadic motor vectors. This scheme also allows the application of local linear

smoothing, which will be the topic of discussion in Section 4.5.

If cL, cR>cmax or cL, cR<cmin, replace c by

∑

∑

∀

∀=

r

r
sr

sr

wMsr

),h(

),h(

c (16)

Equations (12) and (16) are mandatory because in equations (4) and (13), if d→∞, cL

and cR→∞ or -∞. cL and cR will be delimited by cmin and cmax, making the robot move in

the forward direction at cmax on both wheels or the backward direction at cmin on both

wheels. This effect is undesirable, as α will be totally disregarded; the value of α is

negligible, compared to d, in the computation of cL and cR in equations (4) and (13).

This situation is remedied by substituting equations (4) and (13) with (12) and (16)

respectively.

c. (Optional) If the robot’s internal motor speeds are in Z, pass c through the sigmoid

functions below.

Mobile Robots That Learn to Navigate 31
Chapter 4 Network Architecture of Sensorimotor Controller

cL ← (17)

cmin if cL <= cmin,
cmax if cL >= cmax,
ceil(cL) if cL - floor(cL) >= 0.5,
floor(cL) otherwise.

cR ← (18)

cmin if cR <= cmin,
cmax if cR >= cmax,
ceil(cR) if cR - floor(cR) >= 0.5,
floor(cR) otherwise.

d. Execute c in 1 time step size of τ sec.

e. Let the sensory system observe the corresponding robot displacement vector v. A

training sample (v, c) is thus collected for the online learning algorithm in Section 4.3

or the batch training algorithm in Section 4.6. This step 4e. allows sensorimotor control

to be performed concurrently with learning. It can be omitted when the learning

mechanism stops.

5. If the robot has not reached or stopped over the target location, continue with step 2.

4.3 Online Unsupervised Learning Algorithm

1. Weights Initialization

a. Initialize the 2-d Y(number of rows) by X(number of columns) lattice to N neurons

where N =X × Y.

b. Initialize the synaptic weights of the N neurons in the 2-d lattice.

i. Initialize the control parameters matrix Mr of each neuron to small random values.

Code for the random numbers generator is obtained from [63].

ii. Initialize the weight sensory vector wr of each neuron in an “ordered” or topology-

conserving manner to achieve a faster rate of convergence as pointed out in [2].

Choose a small subspace, totally enclosed by the sensory input space U, which

Mobile Robots That Learn to Navigate 32
Chapter 4 Network Architecture of Sensorimotor Controller

represent distances between 0 and Dmax and angles between αmin and αmax. Initialize

wr of the four corner neurons in the 2-d lattice to w1,1=[0, αmin]T, w1,Y=[0, αmax]T,

wX,1=[Dmax, αmin]T, wX,Y=[Dmax, αmax]T as shown in Fig. 10.

w1,1 . . . wX,1

.

.

.

.
.
.

.
.
.

w1,Y . . . wX,Y

Fig. 10 Assignment of w1,1 ,wX,1 ,w1,Y ,wX,Y

iii. Initialize wr of the remaining neurons through interpolation of the wr of the four

corner neurons using the following equations:

 1-2,...,for
1-

-
1-
1- Yj

Y
jY

Y
j

=+= 1,1Y1,j1, www (19)

 1-2,...,for
1-

-
1-
1- Yj

Y
jY

Y
j

=+= X,1YX,jX, www (20)

 1-2,...,for
1-

-
1-

1- Xi
X

iX
X
i

=+= 1,1X,1i,1 www (21)

 1-2,...,for
1-

-
1-

1- X i
X

iX
X
i

=+= Y1,YX,Yi, www (22)

1-2,...,for & 1-2,...,for
1-

-
1-
1- YjX i

Y
jY

Y
j

==+= i,1Yi,ji, www (23)

c. Initialize the time step parameter t = 0, time step size = τ sec and maximum time step

tmax to Z+.

2. Adaptation Rules

a. When a training sample (v, c) can be obtained from step 4e. of the sensorimotor control

algorithm in the previous section, use step 3 of that algorithm to determine the

Mobile Robots That Learn to Navigate 33
Chapter 4 Network Architecture of Sensorimotor Controller

“winning” neuron s with robot displacement vector v.

b. Determine the improved values of wr of the “winning” neuron s and its neighboring

neurons.

∆wr = η h(r, s) (v - wr) (24)

where η defines the learning rate that decreases exponentially with t. When t>= tmax,

η(t)= η(tmax).

maxmax

)0(
)()0()(

t
t

tt

=

η
ηηη (25)

h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in equation

(14). If collective neighborhood learning is not desired,

h(r, s) = (26)

c. Determine the improved values of Mr of

neurons.

∆Mr =

where η’ defines the learning rate of

exponentially with t. When t>= tmax, η’(t)

weight of ║r - s║ and it is of the form

learning is not desired, use equation (26

stochastic gradient descent learning rule f

E = ½

and is given by an error correction rule of

 1 if r = s,
0 otherwise.
 the “winning” neuron s and its neighboring

 η’ h’(r, s) ∆Mr’ (27)

 the form in equation (25) that decreases

= η’(tmax). h’(r, s) defines the Gaussian kernel

 in equation (14). If collective neighborhood

). ∆Mr’ is defined such that it undergoes a

or the quadratic cost function

║ c - Mr v ║2 (28)

 Widrow-Hoff type [13]

Mobile Robots That Learn to Navigate 34
Chapter 4 Network Architecture of Sensorimotor Controller

∆Mr’ = ρ (c - Mr v) v (29)

where ρ∈[0,1] is the learning rate.

3. If t<=tmax, increase the time parameter t:

t = t + 1 (30)

Continue with step 2.

Notice that the random activity generator used in Fig. 2 is totally left out of our online

unsupervised learning algorithm. Realistically, can we omit this form of pre-learning

phase? This issue is discussed in the next section.

4.4 Motor Babbling

The pre-learning phase, using the random activity generator, is termed the motor babbling

phase; random motor output vectors are generated to perform movements for training the

network. In this phase, homing movements cannot be performed and it incurs training

time. Nevertheless, several mobile robot experiments [5, 7] and robot manipulator

experiments [8, 9, 14, 15] emphasize on the importance of this phase in their simulations.

In [14, 15], P. van der Smagt et al. reasoned that if the network starts with random weights,

it is likely that it will always generate very similar motor output commands, which are

subsequently reinforced since they constitute new learning samples. In other words, if only

a few (similar) learning samples are taught to the network, the network is likely to generate

a similar motor output independent of the applied sensory input. If this move is

subsequently learned by the network, by reinforcement, all next generated displacements

will be in the same direction. This implies that the input space may not be explored at all.

By motor babbling, random movements are performed to train the network with the

Mobile Robots That Learn to Navigate 35
Chapter 4 Network Architecture of Sensorimotor Controller

corresponding learning samples. Now, it will be able to generate movements in different

directions and the input space can be explored.

The above analysis claims that our robot, equipped with the online learning algorithm in

Section 4.3, faces the danger of not learning at all! This calls for the need to implement the

motor babbling phase to complement and head start our learning algorithm; the motor

babbling phase will be executed for a sufficient period of time enough to mitigate any risks

of impedance to learning. Subsequently, our online learning algorithm takes over so that

homing movements can be performed straight away. This implementation will also allow

us to explore its benefits and compare its performance with our standalone online learning

algorithm. Then, we can conclude whether this motor babbling phase is redundant or not.

We shall now briefly describe the motor babbling process.

Motor Babbling

1. Generate a random motor output vector c = [cL, cR]T where cL, cR∈[cmin, cmax].

2. Execute c in 1 time step size of τ sec.

3. Let the sensory system observe the corresponding robot displacement vector v. A

training sample (v, c) is thus collected and stored.

4. Repeat steps 1 to 3 to gather a large enough training samples set T.

The training rules in the motor babbling phase can either be online or batch. Online

learning only requires the first three steps of motor babbling. Following that, our online

unsupervised learning algorithm described in the previous section is used to train the

network. On the other hand, batch training requires all the four steps of motor babbling so

that learning can be conducted at each batch interval. Then a batch training algorithm is

required.

Mobile Robots That Learn to Navigate 36
Chapter 4 Network Architecture of Sensorimotor Controller

Online learning reduces the utilization of huge memory storage and allows the possibility

of real-time performance. Though these benefits turn into disadvantages for batch training,

batch training has its own value. Often in online learning, we face the problem of

heuristically determining an optimal or even feasible standard deviation for the random

initialization of weight values. A wrong choice of standard deviation can deter the learning

process. This difficulty is not encountered in batch training, as it does not rely on the initial

weight values. However, training time can be drastically reduced if the initial weight

sensory vectors for the neurons in the SOM are initialized in an ‘ordered’ manner rather

than a random manner [2]. An effective ‘ordered’ map initialization scheme, proposed by

M.C. Su [22, 23], is hence introduced.

Map Initialization for Batch Training

1. Initialization of wr of the neurons on the four corners (Fig. 10)

We first select a pair of training samples whose weighted Euclidean distance (equation

11) of their v coordinates is the largest one among the training set. The v coordinates of

the two selected samples are used to initialize wX,1 and w1,Y. From the remaining

training samples, the v coordinates of the sample which is “farthest” to the v

coordinates of the two selected training samples is then used to initialize w1,1. wX,Y is

set to be the v coordinates of the training sample which is farthest to the v coordinates

of the previously selected three samples.

2. Initialization of the neurons on the four edges

Initialize the wr of the neurons according to equations (19), (20), (21) and (22).

Mobile Robots That Learn to Navigate 37
Chapter 4 Network Architecture of Sensorimotor Controller

3. Initialization of the remaining neurons

Initialize the wr of the remaining neurons from left to right followed by top to bottom

using equation (23).

Can’t we directly partition the input space into X × Y grids and use the coordinates of

the grid centers to initialize the weights of the network? As we can observe in Fig.

11(a), this direct method tends to under-sample high probability regions and over-

sample low probability ones. As a result, more iterations may be required to refine the

map. Our proposed method, shown in Fig. 11(b), overcomes this effect.

(b)(a)

 Fig. 11 Differences between direct partitioning method (a)
 and our initialization scheme (b). Each X represents a
 training sample.

In the next section, we propose a new concept called local linear smoothing in the

implementation of our batch training algorithm.

4.5 Local Linear Smoothing

We can easily implement our batch training algorithm using T. Kohonen’s Batch Map

Algorithm [16, 17] to adapt the weight sensory vectors wr and Batch Gradient Descent

Algorithm [18] to adapt the control parameters matrices Mr. Intuitively, the Batch Map

algorithm works this way. Recall that each neuron governs a region in the input sensory

space U. Whenever a batch of T training samples is ready, these samples are dispersed into

Mobile Robots That Learn to Navigate 38
Chapter 4 Network Architecture of Sensorimotor Controller

their respective regions. Then, each neuron uses the robot displacement vectors v of the

samples in its region to calculate the mean. Finally, each neuron finds its new weight

sensory vector wr (local constant fit) by taking a Gaussian weight over the means of every

neuron in its neighborhood. This is assuming that each region has equal number of

samples. Otherwise, the Gaussian value used on each neuron is further weighted by the

sample frequency in that neuron’s region. Batch Gradient Descent can be performed in a

similar manner, except that the sum of the change in the control parameters matrix, instead

of the mean, is calculated over the samples.

These methods have a common flaw; the corner and edge neurons in the SOM will incur a

border effect [62]. The cause of this boundary bias is that the Gaussian function cannot

differentiate regions outside the local perceptual space with no samples but within its

coverage and regions out of its coverage. It simply assumes that the function goes to zero

everywhere outside its domain. Consequently, if the border lies within the bandwidth of

the Gaussian spread, it will face a boundary bias. Fig. 12 illustrates a univariate example of

this problem. Multivariate models like our SOM would naturally face a more severe bias.

What harm does this boundary bias do? Fan J. [20] explains that the rate of convergence at

the boundary is slower. This means that if we look at the weight sensory vectors of the

neurons, they will initially expand out to fill the local perceptual space and collapse

towards the center due to the boundary bias, as shown in the simulation results in the next

chapter. This goes on during the training time until the SOM receives enough training with

a large sample set at the boundary. Thus, more time is incurred to reach final stability or

convergence. The same goes true for the control parameters matrices. To note, our online

unsupervised learning algorithm is also under the mercy of this phenomenon as it faces the

Mobile Robots That Learn to Navigate 39
Chapter 4 Network Architecture of Sensorimotor Controller

same problem. We have to search for means to eliminate this boundary bias5 so that a

faster rate of network convergence can be achieved.

Sample
Data

Estimated f(0.0)
using Local
Constant Fit

True f(0.0) Gaussian
Spread

Fig. 12 Nadaraya-Watson estimate, boundary effects. x=0.0 is the boundary of the
 sample points distribution. Using T. Kohonen’s Batch Map algorithm, the
 estimated sample mean will deviate substantially from the true mean at the
 boundary, similar to the instance shown in the diagram. This is termed the
 boundary bias.

T. Kohonen [16] has proposed a heuristic weighting rule for the boundary neurons but it is

not intuitive, general or reliable. Moreover, it requires manual fine-tuning of the weighting

factor. V. Cherkassky et al. [19] has interpreted our batch training modes as kernel

estimation methods; these methods operate in a similar manner except that kernel

weighting in a SOM is done in neighborhoods in the grid space rather than in the input

space. Our batch training modes are commonly known as Nadaraya-Watson

__
5Note that eliminating the boundary bias does not mean eliminating all bias in the boundary regions. Rather, it means that
the boundary regions are no more biased than the interior (non-boundary) regions.

Mobile Robots That Learn to Navigate 40
Chapter 4 Network Architecture of Sensorimotor Controller

kernel estimator. This estimator generally segments the entire sample data space into small

local regions. In each region, an estimated local constant is derived to fit the local data.

This estimator method faces a boundary bias, as explained previously.

A more superior kernel estimator, known as Local Linear Smoothing, has been derived to

cure this effect [20, 21, 24]. How does it work? Instead of finding a local constant fit, we

simply use a local line to fit the local data. I shall now explain how this can be achieved. In

a small local neighborhood of the lattice grid point s in our 2-D SOM, if grid point r is in

this same neighborhood, the weight sensory vector at r can be linearly defined as

)(sr'www ssr −+≈ (31)

This equation is the line that we try to fit into the local data. The solution to our problem at

hand can be found by estimating ws. To do this, we try to find ws and ws
’ to minimize the

weighted least squares equation.

),h())((srsr'www
r

2
ssr∑

∀

−−− (32)

where h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in

equation (14). By solving equation (32), we can obtain an estimate of ws, which is given by

equation (34) in the next section. We can do the same for the control parameters matrices.

Fig. 13 shows how this local linear fit eliminate the boundary bias for a univariate model.

We can see from Fig. 13 that equation (32) causes a deformation in the Gaussian kernel

near the boundary to the extent of assigning negative weight to those sample data farther

away from the boundary, which drastically reduces the bias. The simulation results in

Chapter 5 will show the disappearance of the boundary bias phenomenon and a faster rate

of convergence in learning. I wish to point out that local linear smoothing only works if the

Mobile Robots That Learn to Navigate 41
Chapter 4 Network Architecture of Sensorimotor Controller

Gaussian spread covers more than one neuron. Without the existence of a neighborhood,

i.e. if only one neuron is affected, boundary bias can never be experienced, even for

Nadaraya-Watson estimator. The old Batch Map and Batch Gradient Descent algorithms

can be used for this instance. To conclude, local linear smoothing is automatic, has a

simple intuitive interpretation and adapts well to our cause. In the next section, we show

how this concept can be incorporated into our batch training algorithm.

Estimated f(0.0)
using Local
Linear Fit Sample

Data

Gaussian
SpreadTrue f(0.0)

Fig. 13 Local linear smoothing, boundary region. x=0.0 is the boundary of the
 sample points distribution. We can observe that the bias has been
 considerably reduced, compared to that of Naradaya-Watson estimator.

4.6 Batch Training Algorithm

Batch Map with Local Linear Smoothing

1. For each neuron r in the 2-d lattice, collect a list Vr of all those training samples (v, c)

Mobile Robots That Learn to Navigate 42
Chapter 4 Network Architecture of Sensorimotor Controller

from the training set T whose v is “closest” to wr, using the distance measure in Step 3

of the sensorimotor control algorithm described in Section 4.2.

2. For each neuron r in the 2-d lattice, find the number of samples nr and the mean mr

over the respective list.

rn

∑
∈∀= rv

r

v
m ν (33)

3. For each neuron s in the 2-d lattice, determine its ws by

∑
∑

∀

∀=

r

r

r
s

sr

msr
w

),(k

),(k
 (34)

k(r, s) = h(r, s) nr (s2(r, s) - ║r - s║ s1(r, s)) (35)

∑
∀

−=
r

srsrsr i
 i),h(),(s rn (36)

where h(r, s) defines the Gaussian kernel weight of ║r - s║ and it is of the form in

equation (14). k(r, s) is in fact the deformed Gaussian, which is used to eliminate the

boundary bias. If collective neighborhood learning is not desired, local linear

smoothing cannot be performed. Since ║r - s║ = 0, the denominator of equation (34)

turns zero, making it unsolvable. Then ws is simply

ws = mr (37)

This algorithm turns into K-means or Linde-Buzo-Gray (LBG) algorithm [64].

4. Iterate all the steps until further change in ws is considered minimal.

Batch Gradient Descent with Local Linear Smoothing

1. For each neuron r in the 2-d lattice, initialize ∆Mr’ = 0.

2. Do Step 2 of the Batch Map with Local Linear Smoothing.

Mobile Robots That Learn to Navigate 43
Chapter 4 Network Architecture of Sensorimotor Controller

3. For each neuron r in the 2-d lattice, use each training sample (v, c) in the respective list

to do

∆Mr’ ← ∆Mr’ + ρ (c - Mr v) v (38)

where ρ∈[0,1] is the learning rate.

4. For each neuron r in the 2-d lattice, find the number of training samples nr collected

over the respective list.

5. For each neuron s in the 2-d lattice, determine its ∆Ms
’ by

∑
∑

∀

∀=

r

r

r
s

sr

'∆Msr
'∆M

),(k'

),(k'
 (39)

where k’(r, s) is of the form in equation (35). If collective neighborhood learning is not

desired, local linear smoothing cannot be performed (Since ║r - s║ = 0, the

denominator of equation (39) turns zero, making it unsolvable). Then equation (39) is

simply omitted and this algorithm becomes a normal Batch Gradient Descent [18].

6. For the same neuron s, determine the improved value of Ms.

∆Ms = ϕ ∆Ms
’ (40)

where ϕ defines the learning rate of the form in equation (25) that decreases

exponentially with t.

7. Iterate all the steps until further change in Ms is considered minimal.

Mobile Robots That Learn to Navigate 44
Chapter 5 Simulation Results and Analysis

Chapter 5

SIMULATION RESULTS AND ANALYSIS

The simulation results in this chapter compare the performance of our online unsupervised

learning algorithm, the inclusion of the pre-learning phase and our batch training algorithm

using local linear smoothing. We also test the real Khepera robot based on one time step.

5.1 Simulation Overview

5.1.1 Performance Metrics

Mean Positioning Error (MPE)

This measures the mean accuracy of the robot self-positioning to designated target

locations. The robot must come to a stop, that is c = [0, 0]T, to be considered to have

reached the designated target location. It is mathematically defined as

n

d
MPE

n

i

i∑
∀= (41)

where di defines the self-positioning error at one designated target location and n defines

the number of designated target locations to be reached.

Mean Steps per unit Distance (MSD)

Measures the mean rate (number of time steps per meter) at which the robot moves to

reach all designated target locations. Recall that each time step is defined to be τ seconds.

Mobile Robots That Learn to Navigate 45
Chapter 5 Simulation Results and Analysis

5.1.2 Experimental Setup

1. Webots 2.0 Simulator, as described in Section 3.2, is used as an implementation tool

for our algorithms.

2. This simulator already models 10% white noise in the motor actuators and light/IR

sensors.

3. 6 different test cases have been conducted under the same conditions listed in this

section. Their results are displayed from sections 5.2 to 5.6 respectively.

4. Each test case is run 5 times. In each run, the number of time steps tmax is 100000. The

time τ for each step is 1024 ms. During these 100000 time steps, the robot will be

presented with randomly generated target locations for learning. In fact, target reaching

movements can be observed during this learning stage.

5. During each interval of 10000 time steps, the robot will be tested with 50 target

locations for its performance. These target locations are initially randomly generated to

lie in a 5 by 5 meter square plane. These positions are then fixed for the performance

testing in all the 10 intervals. Whenever the robot is tested with these 50 target

locations, it will be manually placed at the center of this square plane first.

6. The whole environment is obstacle-free.

5.2 Online Learning : Single Neuron Update

This test case does not incorporate collective neighborhood learning; each neuron adapts

its own weights.

Parameters Initialization

Parameters in Sensorimotor Control Algorithm (Section 4.2)
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20.

Mobile Robots That Learn to Navigate 46
Chapter 5 Simulation Results and Analysis

Parameters in Unsupervised Online Learning Algorithm (Section 4.3)
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, η(0) = 1.0,
η(tmax) = 0.2, η’(0) = 1.0, η’(tmax) = 0.2, ρ = 0.08.

Algorithm Performance

Mobile Robots That Learn to Navigate 47
Chapter 5 Simulation Results and Analysis

Observations and Analysis

We can observe from Fig. 14 that the network stabilizes after 80000 time steps at about

0.006 meters for MPE and 35 time steps per meter for MSD. Let us now compare these

results with online learning: neighborhood update in the next section.

5.3 Online Learning : Neighborhood Update

This test case incorporates collective learning.

Parameters Initialization

Parameters in Sensorimotor Control Algorithm (Section 4.2)
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20.

Parameters in Unsupervised Online Learning Algorithm (Section 4.3)
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, η(0) = 1.0,
η(tmax) = 0.2, σ(0) = 1.2, σ(tmax) = 0.1345, η’(0) = 1.0, η’(tmax) = 0.2,
σ’(0) = 0.6, σ’(tmax) = 0.38, ρ = 0.08.

Mobile Robots That Learn to Navigate 48
Chapter 5 Simulation Results and Analysis

Algorithm Performance

Mobile Robots That Learn to Navigate 49
Chapter 5 Simulation Results and Analysis

Observations and Analysis

We can see from Fig. 16 that there is a tremendous improvement in the MPE and the rate

of convergence over online learning: single neuron update in the previous section. The

network stabilizes after 40000 time steps at about 0.004 meters for MPE and 35 time steps

per meter for MSD.

Presence of Boundary Bias Phenomenon

As mentioned in Section 4.5, our online unsupervised learning algorithm will experience a

boundary bias problem. The phenomenon caused can be easily discerned by observing the

movements of the weight sensory vectors wr of the neurons in the local perceptual space.

Fig. 18 to Fig. 24 attempt to show the wr of these neurons in the x, y plane expressed in

meters.

Mobile Robots That Learn to Navigate 50
Chapter 5 Simulation Results and Analysis

Mobile Robots That Learn to Navigate 51
Chapter 5 Simulation Results and Analysis

Mobile Robots That Learn to Navigate 52
Chapter 5 Simulation Results and Analysis

The weight sensory vectors of the neurons initially expand out to fill the local perceptual

space at 6000 time steps and then collapse towards the center at 14000 time steps. By

Mobile Robots That Learn to Navigate 53
Chapter 5 Simulation Results and Analysis

26000 time steps, they expanded out again and at 34000 time steps, there is only a slight

collapse. By this time, a major collapse is prevented due to a large enough sample set at the

boundary and the reduction of the Gaussian bandwidth and learning rate. Finally, the

network stabilizes its local perceptual space at about 50000 time steps. Fig. 25 shows the

stabilized state of the local perceptual space at 100000 time steps in d, α plane. We can

observe from Fig. 24 and Fig. 25 that there is a major concentration of weight sensory

vectors at the origin where d is approximately 0. This is necessary for fine positioning to

reduce the MPE to a minimum. Majority of the neurons are clustered in the region where α

lies between –1 radian and 1 radian. This is required for a low MSD because the robot can

move in a more or less straight path to the target, which implies shortest distance and delay

to target.

Fig. 25 Local Perceptual Space (d, α plane) at 100000 time steps

d /meters

α /radians

Mobile Robots That Learn to Navigate 54
Chapter 5 Simulation Results and Analysis

5.4 Pre-learning : Single Neuron Update

This test case is similar to the test case in Section 5.2 with an initial pre-learning or motor

babbling phase. Since it is single neuron update, local linear smoothing is not employed.

K-means [64] and normal Batch Gradient Descent [18] are used for batch processing

during the motor babbling phase. Refer to Section 4.6 for more details.

Parameters Initialization

Parameters in Motor Babbling (Section 4.4)
T = 1681

Parameters in Sensorimotor Control Algorithm (Section 4.2)
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20.

Parameters in Unsupervised Online Learning Algorithm (Section 4.3)
N = 225, X = 15, Y = 15, η(0) = 1.0, η(tmax) = 0.2, η’(0) = 1.0, η’(tmax) = 0.2,
ρ = 0.08.

Parameters in K-Means Algorithm (Section 4.6)
Iterations = 50.

Parameters in Batch Gradient Descent Algorithm (Section 4.6)
Iterations = 250, ρ = 0.08, ϕ = 0.08.

Algorithm Performance

Mobile Robots That Learn to Navigate 55
Chapter 5 Simulation Results and Analysis

Observations and Analysis

From Fig. 26 and Fig. 27, the motor babbling phase at time step 0 creates a MPE of about

0.015 meters and 100 time steps per meter for MSD. The network stabilizes after 30000

time steps at about 0.0055 meters for MPE and 35 time steps per meter for MSD, which is

better than online learning: single neuron update in terms of convergence rate. Thus, we

can conclude that motor babbling can improve the convergence rate tremendously but is

not necessary for successful online learning through single neuron update.

5.5 Pre-learning : Neighborhood Update

This test case is similar to the test case in Section 5.3 with an initial pre-learning or motor

babbling phase. Local Linear Smoothing is employed in Batch Map and Batch Gradient

Descent during the motor babbling phase.

Parameters Initialization

Parameters in Motor Babbling (Section 4.4)
T = 1681
Parameters in Sensorimotor Control Algorithm (Section 4.2)
K = 15, β = 1.0, γ = 0.1, cmin = -20, cmax = 20.

Mobile Robots That Learn to Navigate 56
Chapter 5 Simulation Results and Analysis

Parameters in Unsupervised Online Learning Algorithm (Section 4.3)
N = 225, X = 15, Y = 15, η(0) = 1.0, η(tmax) = 0.2, σ(0) = 1.2, σ(tmax) = 0.1345,
η’(0) = 1.0, η’(tmax) = 0.2, σ’(0) = 0.6, σ’(tmax) = 0.38, ρ = 0.08.

Parameters in Batch Map Algorithm for Pre-Learning
with Local Linear Smoothing (Section 4.6)
Iterations = 50, σ(0) = 0.8, σ(50) = 0.1345.

Parameters in Batch Gradient Descent Algorithm for Pre-Learning
with Local Linear Smoothing (Section 4.6)
Iterations = 250, ρ = 0.08, ϕ = 0.07, σ’(0) = 0.6, σ’(250) = 0.38.

Algorithm Performance

Mobile Robots That Learn to Navigate 57
Chapter 5 Simulation Results and Analysis

Observations and Analysis

We can see from Fig. 28 and 29 that the network stabilizes after 40000 time steps at about

0.004 meters for MPE and 35 time steps per meter for MSD. There is no improvement

over online learning: neighborhood update. Thus, motor babbling is considered redundant

if neighborhood update is in play.

5.6 Batch Learning : Neighborhood Update

This test case uses Batch Map and Batch Gradient Descent with Local Linear Smoothing.

500 training samples are collected for each batch training process.

Parameters Initialization

Parameters in Batch Map Algorithm
with Local Linear Smoothing (Section 4.6)
N = 225, X = 15, Y = 15, Dmax = 0.02, αmin = -3.0, αmax = 3.0, K = 15, β = 1.0,
γ = 0.1, cmin = -20, cmax = 20, T = 500, Iterations = 200, σ(0) = 0.7,
σ(tmax) = 0.1345.

Parameters in Batch Gradient Descent Algorithm
with Local Linear Smoothing (Section 4.6)
T = 500, Iterations = 200, ρ = 0.08, ϕ = 0.001, σ’(0) = 0.6, σ’(tmax) = 0.38.

Mobile Robots That Learn to Navigate 58
Chapter 5 Simulation Results and Analysis

Algorithm Performance

Mobile Robots That Learn to Navigate 59
Chapter 5 Simulation Results and Analysis

Observations and Analysis

We can see from Fig. 30 and Fig. 31 that the network stabilizes extremely fast at 10000

time steps with MPE of 0.005 meters and 160 time steps per meter for MSD.

Absence of Boundary Bias Phenomenon

As mentioned in Section 4.5, Local Linear Smoothing can eliminate the boundary bias.

Thus, the phenomenon does not exist, as proven in Fig. 32 to Fig. 37. At time step 0, the

neurons’ weight sensory vectors are initialized to that in Fig. 18.

Mobile Robots That Learn to Navigate 60
Chapter 5 Simulation Results and Analysis

Mobile Robots That Learn to Navigate 61
Chapter 5 Simulation Results and Analysis

Mobile Robots That Learn to Navigate 62
Chapter 5 Simulation Results and Analysis

By 6000 time steps, the weight sensory vectors have already expanded out by quite a fair

amount. Hence, we can observe a faster rate of convergence for local linear smoothing.

Fig. 38 shows the stabilized state of the local perceptual space at 100000 time steps in d, α

plane. We can observe from Fig. 37 and Fig. 38 that there is a major concentration of

weight sensory vectors at the origin where d is approximately 0. This is necessary for fine

positioning to reduce the MPE to a minimum.

Mobile Robots That Learn to Navigate 63
Chapter 5 Simulation Results and Analysis

Fig. 38 Local Perceptual Space (d, α plane) at 100000 time steps

d /meters

 α /radians

The rest of the neurons are well spread in the local perceptual space, instead of clustering

in the front region α∈(-1, 1), which is the case for online learning: neighborhood update.

This accounts for a higher MSD since no emphasis is placed on learning to move in a

straight path. Why is this so? The robot has its first batch training session after 500 time

steps. These initial 500 training samples emphasize on stabilizing at the randomly

generated target location, which implies fine motion. By subsequent reinforcements, the

robot continues with this emphasis. There are also evidences, during the learning process

in our simulation runs, showing that the robot reaches much less random target locations,

as compared to that of online learning: neighborhood update. We want to test our claim.

Therefore, we increase the batch number T to 2000 and run some simulations. The MSD

results for T = 2000 are presented in Fig. 39.

Mobile Robots That Learn to Navigate 64
Chapter 5 Simulation Results and Analysis

Fig. 39 shows an average MSD of 280 time steps per meter, which is 120 time steps more

than that of T = 500. This means that more time is used to stabilize at a target location.

Thus, our claim is substantiated.

5.7 Model Performance on Khepera Robot

As mentioned in Section 3.3, without a vision system, we can only test the real Khepera

robot on the basis of 1 time step of 1024 ms. To do so, we employ the remote control setup

described in Section 3.1.3. The khep_core package [61] is used to interface with the robot;

it is a package of C++ classes that allows one to communicate simply and effectively with

a Khepera robot via the serial port of a PC. The weights of the trained SOM in Section 5.3

Online Learning: Neighborhood Update and in Section 5.6 Batch Learning: Neighborhood

Mobile Robots That Learn to Navigate 65
Chapter 5 Simulation Results and Analysis

Update are used for testing. Fig. 40 tabulates the results of the positioning errors at various

possible locations in 1 time step.

 ONLINE LEARNING
(Section 5.3)

BATCH LEARNING
(Section 5.6)

d / meters α / radians Self-Positioning Error Self-Positioning Error

0.100 0.000 0.0102 0.0045
0.127 0.197 0.0122 0.0210
0.127 -0.197 0.0054 0.0177
0.100 3.142 0.0143 0.0231

MPE (d >= 0.1) 0.0105 0.0166

0.050 0.000 0.0000 0.0000
0.071 0.785 0.0248 0.0112
0.071 0.785 0.0175 0.0161
0.050 1.571 0.0120 0.0367
0.050 -1.571 0.0135 0.0120
0.050 3.142 0.0211 0.0000
0.071 2.356 0.0305 0.0269
0.071 -2.356 0.0242 0.0134

MPE (d <= 0.71) 0.0180 0.0145

Fig. 40 Positioning errors of Khepera Robot at various locations in 1 time step.

The mean positioning errors for d >= 0.1 and d <= 0.71 for the online and batch learning

are as expected. From Section 5.3 Fig. 24, we can observe a dense clustering for long

distances (d >= 0.1) on the robot trained by online learning. Hence, we would expect a

better accuracy. From Section 5.6 Fig. 37, we witness a sparse clustering for long distances

(d >= 0.1) on the robot trained by batch training. This results in a greater error. But for

shorter distances (d <= 0.71), this same robot is more accurate because it emphasizes on

fine motion during training as explained in Section 5.6. The robot with online learning has

Mobile Robots That Learn to Navigate 66
Chapter 5 Simulation Results and Analysis

a slightly higher error due to less emphasis in fine motion. Note that if these values can be

further refined if iterative sensory feedback is available.

For the simulations described in this chapter, no obstacles are assumed, not even walls.

Thus, an infinite workspace may be required to train the robot. This is not practical. If we

want the robot to start learning in an enclosed, obstacle-ridden environment, can it be

done? The next chapter addresses this issue.

Mobile Robots That Learn to Navigate 67
Chapter 6 Learning in an Obstacle-Ridden Environment

Chapter 6

LEARNING IN AN
OBSTACLE-RIDDEN ENVIRONMENT

6.1 A Biological Approach : Escape Tactics of a Fly

Have you ever tried to chase a fly with your bare hands? You may have wondered how

such a small insect can develop such efficient escape tactics. Where can it process the

visual information that is coming to it from its eyes, if it barely has a brain? The answer

lies in the visual system itself. Animals of all sizes and types show a remarkable capability

to obtain very complicated behaviors with simple systems. What is their secret? Can it give

us some insight on developing some autonomous complex behaviors for mobile robots?

The secret lies in sensor adaptation and short sensorimotor loops. By sensor adaptation we

understand that the animal sensors are perfectly adapted for a given task. For instance, the

fly uses the light detectors in its panoramic eyes to detect motion in the scene. It becomes

blind if there is no motion. Thus, it needs to move constantly to perceive its environment.

Short sensorimotor loops are necessary to have a real-time response, something critical in a

dynamic environment. To achieve this, animals have very short connections between

sensors and actuators, which implies that most of the visual information is not processed at

the highest levels of the nervous system, which is the brain. The biological solution is to

process the information on the retinas themselves, therefore sending to the next layer only

the relevant information.

Mobile Robots That Learn to Navigate
Chapter 6 Learning in an Obstacle-Ridden Environment

68

Now suppose that a newborn fly has an innate ability to avoid obstacles using its visual

sensors and it is desperate to learn homing through its smell sensors so that it can home in

on potential food sources and steer clear of moving bodies such as our hands. This

situation is analogous to a mobile robot, with obstacle avoidance capabilities, trying to

autonomously learn its homing behavior in an obstacle-ridden environment. Using the

above-mentioned concepts of sensor adaptation and short sensorimotor loops, we develop

a behavior coordination mechanism, which fuses homing and obstacle avoidance, to enable

this.

6.2 Obstacle Avoidance Behavior

Before we introduce the behavior coordination mechanism, we need a simple, pre-defined

obstacle avoidance behavior, which exhibits high real-time reactivity. Braitenberg type-3C

vehicle [56] matches our description. Fig. 41 illustrates how it works.

Obstacle
1 Left Motor

2

8 3

4
7

5

Moving PathRight Motor 6

Excitatory Connection :- Increases motor speed

Inhibitory Connection :- Decreases motor speed

 Fig. 41 Braitenberg type-3C vehicle. The front IR/light sensors have uncrossed excitatory
connections and crossed inhibitory connections to the two motors while the back sensors
have excitatory connections to both motors. The proximity of any sensors to an obstacle is
reflected in its signal strength. For example, sensors 2 and 3 have extremely high signal
strengths due to a nearby obstacle. The change in motor speed of each wheel is dependent
on the signal strength of each sensor and its corresponding connection type and weight. For
example, excitatory connections of sensors 2 and 3 drive the left wheel forward by
increasing the left motor speed and their inhibitory connections drive the right wheel
backward by decreasing the right motor speed. The robot therefore turns to the right.

Mobile Robots That Learn to Navigate 69
Chapter 6 Learning in an Obstacle-Ridden Environment

We can observe from Fig. 41 that the eight IR proximity/light sensors surrounding the

Khepera robot serve as the artificial compound eye of the fly to avoid both static and

dynamic obstacles in its path.

6.3 A Behavior Coordination Mechanism : Command Fusion

To enable learning in an obstacle-ridden environment, a mechanism known as command

fusion is implemented to coordinate the homing and obstacle avoidance behaviors.

Command fusion is concerned with “how to combine results from different behaviors into

one command to be sent to the robot’s actuators” [47]. This technique proceeds in three

steps [57]:

1. Action Recommendations :- A module is implemented to generate recommended

actions according to some behavioral criteria such as homing and obstacle avoidance.

2. Behavior Aggregation :- The actions recommended by behaviors are combined

according to some rule such as summation.

3. Action Selection :- An appropriate action is selected based on the combined

recommendations such as the output of summation in step 2.

Fig. 42 shows the command fusion of the homing and obstacle avoidance behaviors in a

mobile robot to imitate a fly.

Smell

Sensors

IR/Light
Sensors

Motor
Output

Motor
Output

Σ

Homing
Module

Obstacle
Avoidance

Module

Motor
Actuators

Fig. 42 Command fusion of homing and obstacle avoidance behaviors.

Mobile Robots That Learn to Navigate 70
Chapter 6 Learning in an Obstacle-Ridden Environment

The smell and IR/light sensor readings are always collected simultaneously at a fixed time

interval to produce a resultant motor output to move the robot wheels. Recall from Section

6.1 that a short sensorimotor loop is desired in order to have quick real-time response to

the environment. Thus, the time step size τ in the homing module (otherwise known as

sensorimotor controller in Chapter 4) is reduced to a rate where the incremental movement

space of the robot in one time step coincides with that of the IR/light sensory space. In fact,

this change is critical to the success of the autonomous learning mechanism in Section 4.3.

Every training sample fed into the learning mechanism comprises of a motor output vector

and a corresponding observed motion vector of the robot in time τ. In Fig. 42, the resultant

motor output to the actuators from the summation is the one that produces the observed

motion instead of the motor output from the homing module. If the incremental movement

space in one time step exceeds that of the IR/light sensory space, the non-overlapped space

may contain an obstacle to obstruct the actual motion path generated by motor output

vector. This causes a foreshortening in the observed motion and creates an erroneous

training sample. Fig. 43 gives a pictorial illustration of this problem. This command fusion

mechanism is implemented and tested in the simulator to validate its performance.

6.4 Simulation Results and Analysis

The experimental setup is the same as that in Section 5.1.2. New constraints are added; 4

walls, 7 static obstacles (pillars and spheres) and 2 moving obstacles (Khepera robots) are

placed in the enclosed environment together with our Khepera. These are shown in Fig. 44.

Mobile Robots That Learn to Navigate 71
Chapter 6 Learning in an Obstacle-Ridden Environment

(a)

Fig. 43 (a) The incremental movement space exceeds that of IR/light sensory space. Since the obstacle lies
 outside the IR/light range, it is undetected. When the robot executes the actual motion path generated
 by the motor output vector, its motion is obstructed and shortened to the observed motion due to lack
 of obstacle avoidance. The observed motion is a wrong correspondence to the motor output vector, thus
 creating an erroneous training sample.
 (b) The incremental movement space lies within that of IR/light sensory space. Since the obstacle lies
 inside the IR/light range, it is detected. Thus, the motor output vector accounts for the obstacle
 avoidance behavior by steering to the left. The observed motion is the actual motion path generated by
 the same motor output vector. The training sample is therefore valid.

Shortening in
Observed Motion

Target

Local
Perceptual

Space in
1 Time Step

IR/Light
Sensory
Space

Obstacle

Actual Motion Path
generated by

Motor Output Vector

(b)

Fig. 44 Our Khepera robot
 is the one with a
 black pole. The
 two other Kheperas
 in the background
 act as moving
 obstacles. They will
 move forward all
 the time. Upon
 encountering
 obstacles,
 Braitenberg vehicle
 type 3-C obstacle
 avoidance behavior
 will be activated in
 them. We can also
 see static obstacles
 like pillars, spheres
 and pink walls that
 enclose this
 environment.

Mobile Robots That Learn to Navigate 72
Chapter 6 Learning in an Obstacle-Ridden Environment

Parameters Initialization

Parameters in Sensorimotor Control Algorithm (Section 4.2)
K = 30, β = 1.0, γ = 0.001, cmin = -20, cmax = 20.

Parameters in Unsupervised Online Learning Algorithm (Section 4.3)
τ = 256ms, N = 225, X = 15, Y = 15, Dmax = 0.005, αmin = -3.0, αmax = 3.0,
η(0) = 1.0, η(tmax) = 0.2, σ(0) = 0.8, σ(tmax) = 0.1345, η’(0) = 1.0, η’(tmax) = 0.2,
σ’(0) = 0.55, σ’(tmax) = 0.38, ρ = 0.08.

Algorithm Performance

Observations and Analysis

We can see from Fig. 45 and Fig. 46 that the network stabilizes at about 40000 time steps

with MPE of 0.001 meters and 130 time steps per meter for MSD. The MPE is extremely

small because we use the same number of neurons N = 225 to cover a smaller local

perceptual space. Higher accuracy would therefore be expected. Our aim is thus achieved.

Mobile Robots That Learn to Navigate 73
Chapter 6 Learning in an Obstacle-Ridden Environment

Limitations

1. The Khepera robot has 6 IR sensors in the front and only 2 IR sensors at the back.

Therefore, there is a possibility that the Khepera robot may move diagonally backwards

and bump into an obstacle without sensing it. If we look at Fig. 41, we can see that

those directions do not have IR sensors. If the robot has IR sensors all around its body,

this situation would never be encountered.

2. The reactive obstacle avoidance behavior employed in our command fusion mechanism

cannot be used against complex concave obstacles. The range of the IR sensors is just

too short; it would already be too late when they sense these obstacles. Other behaviors

like wall following or backtracking must be incorporated into our architecture to

overcome this barrier.

Mobile Robots That Learn to Navigate 74
Chapter 7 Discussion, Future Work and Conclusion

Chapter 7

DISCUSSION, FUTURE WORK
AND CONCLUSION

7.1 Comparison with other Approaches

Concurrency of Learning and Performance Phases

As shown in the simulation results from Chapter 5, we achieve the concurrency of online

learning and target reaching. This notion has never been mentioned by C. Versino and

L.M. Gambardella [7] or E. Zalama et al. [5, 60].

Segmentation of Input Space

With an irregular, self-organizing topology, our method is able to reduce the self-

positioning error through fine motion and also perform target reaching with minimum

delay. In Section 5.3, our online learning algorithm has proven so, with the help of

neighborhood update. This makes our method much more superior than E. Zalama et al. [5,

60] since it can automatically re-shuffle the neurons’ weights to maximize the coverage in

the input and output space to achieve a good neuron to space ratio and fine performance as

well.

Immediate Output of Network

The robot control architecture proposed by Versino and L.M. Gambardella [7] and E.

Zalama et al. [5, 60] maps the sensory input space directly to the motor output space. But

we choose the control parameters to represent our output space. What do we take on this

perspective? Are there any advantages to this notion?

Mobile Robots That Learn to Navigate 75
Chapter 7 Discussion, Future Work and Conclusion

Let us now try to visualize the internal works of Versino’s SOM and our SOM. Version’s

SOM maps each local region in the input sensory space through a neuron to a discrete

motor output. But our SOM maps each local region through a neuron to a region of motor

output space. This is achieved by the control parameters matrix in each neuron. In this

manner, we can get different motor outputs, which correspond to different sensory inputs

lying in the same local region. In fact, our method attempts to find a local linear fit in that

region while Versino’s method finds a local constant. As mentioned in Section 4.5, local

linear fit makes a better approximation [24].

Hence for each neuron s,

c(u) = c(ws) + Ms(u - ws) (42)

where c is the motor output vector, u is the input sensory vector, ws is the weight sensory

vector and Ms is the control parameters matrix for neuron s. To find c(u), three weights ws,

c(ws) and Ms have to be estimated. Maintaining these three weights would require a lot of

computational time, learning time and storage space. The scalability of the network would

also be dampened. We can cut down to two weights ws and Ms by doing an approximation.

sss wMwc)(≈ (43)

This means that with accurate weights of ws and Ms, c(ws) would be redundant. Equation

(42) will be reduced to

uMuc s)(≈ (44)

7.2 Future Work

Generic Nature of Sensorimotor Controller

Our proposed method can be tested on other forms of robots to validate its generic nature.

Mobile Robots That Learn to Navigate 76
Chapter 7 Discussion, Future Work and Conclusion

Real robots are expensive. Alternatively, we can use a mobile robot simulator, which is

capable of modeling any forms of robots. Webots 3.0 is one such simulator but it is still in

its making. Fig. 47 and Fig. 48 show the types of robots available in this simulator.

Fig. 47 Webots 3.0: Virtual Koala Robot. Fig. 48 Webots 3.0: Virtual Magellan Robot.

Localization

As mentioned in Section 2.1.1, dead reckoning causes the self-positioning error to

accumulate over time. Our method has already eliminated the translational error. The

rotational error can be accounted for if we let the robot learn a new component known as

the robot heading in our SOM. When a reference landmark (one that does not change its

relative position due to robot motion) is available, the robot can use this landmark to learn

its own heading. If this reference landmark goes missing, the robot can use this learned

heading to perform localization. This localization behavior has been detected in certain

species of bees; during rainy or cloudy days, they can still navigate reasonably well.

Mobile Robots That Learn to Navigate 77
Chapter 7 Discussion, Future Work and Conclusion

Cognitive Map

A map-building module can be mounted on top of our current sensorimotor controller.

This higher-level module defines the exploration strategies, graph structure and place or

landmark recognition. Several critical problems can be encountered here. For example,

how does the robot know whether it has traversed to or near a previously explored place or

landmark? Particularly, if the robot is “kidnapped” and transported to another location in

the map, can it find out by autonomous means its current location? Another problem would

be that of perceptual aliasing; how does a robot differentiate two nodes with similar

sensory signatures?

7.3 Conclusion

I will conclude by listing my contributions.

Learning Method

Our SOM network has autonomously learned the association between the sensory input

and the motor output through the robot’s motion. This whole self-organizing process is

automatic and gains from several advantages mentioned in Section 7.1.

Motor Control Performance

The mobile robot, equipped with our trained SOM, is able to reduce its self-positioning

error by performing fine motion and through iterative sensory feedback. The introduction

of neighborhood update further reduces the error. The robot is also able to reach a

designated target location with minimum delay.

Mobile Robots That Learn to Navigate 78
Chapter 7 Discussion, Future Work and Conclusion

Noise Tolerance

Our simulations performed on Webots 2.0 are subject to 10% white noise modeled in the

motor output and the IR sensors. Thus, our SOM network has proven to be robust against

noise and still achieve the two above-mentioned objectives. This also means that our SOM

network can adapt to different environments.

Batch Training with Local Linear Smoothing

We have introduced the notion of batch training with local linear smoothing into the field

of mobile robotics. I’ve yet to come across an article that does so.

Mobile Robots That Learn to Navigate 79
References

REFERENCES

[1] Albus J.S., A Theory of Cerebellar Functions, Math. Biosci., 10:25-61, 1971.
[2] Kohonen T., Self-Organizing Maps, Springer, Berlin, Heidelberg, 1995. (2nd Extended Ed., 1997).
[3] Kuperstein M. and Rubinstein J., Implementation of an Adaptive Neural Controller for Sensory-Motor Coordination. IEEE

Control Systems Magazine, 9(3): 25-30, 1989.
[4] Piaget J., The Origins of Intelligence in Children, New York: International University Press, translated by M. Cook, 1952.
[5] Zalama E., Gaudiano P. and López Coronado J., A Real-time, Unsupervised Neural Network for the Low-level Control of a

Mobile Robot in a Non-stationary Environment, Neural Networks, 8(1):103-123, 1995.
[6] Rao R.P.N. and Fuentes O., Perceptual Homing by an Autonomous Mobile Robot using Sparse Self-Organizing Sensory-Motor

Maps, In Proceedings of World Congress on Neural Networks (WCNN), II:380-383, 1995.
[7] Versino C. and Gambardella L.M., Learning the Visuo-Motor Coordination of a Mobile Robot by using the Invertible Kohonen

Map, In Proceedings of International Workshop on Neural Networks (IWANN95), Malaga, Spain, June 1995.
[8] Ritter H., Martinetz T. and Schulten K., Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley,

Reading, MA, 1992.
[9] Walter J.A. and Schulten K.J., Implementation of Self-Organizing Neural Networks for Visuo-Motor Control of an Industrial

Robot. IEEE Transactions on Neural Networks, 4(1):86-95, 1993.
[10] Massone L., Sensorimotor learning, in The Handbook of Brain Theory and Neural Networks, M.A. Arbib, Ed., Cambridge, M.A.

MIT Press, to appear.
[11] Poggio T. and Girosi F., Networks for Approximation and Learning, Proc. IEEE, 78:1481-1497, 1990.
[12] McIlwain J.T., Distributed spatial coding in the superior colliculus: A review, Visual Neuroscience, 6:3-13, 1991.
[13] Widrow B. and Hoff M.E., Adaptive Switching Circuits, WESCON Conv Record, 4:96-104, 1960.
[14] van der Smagt P., Groen F.C.A. and F. van het Groenewoud F., The Locally Linear Nested Network for Robot Manipulation. In

Proceedings of the IEEE International Conference on Neural Networks, 2787-2792, 1994.
[15] Jansen A., van der Smagt P. and Groen F.C.A., Nested Networks for Robot Control, In A. F. Murray, editor, Applications of

Neural Networks, 221-239, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995.
[16] Kohonen T., Things you haven't heard about the Self-Organizing Map. In Proc. ICNN'93, Int. Conf. on Neural Networks, pages

1147-1156, Piscataway, NJ, IEEE Service Center, 1993.
[17] Kohonen T., Kaski S., Lagus K., Salojarvi J., Honkela J., Paatero V., Saarela A., Self Organization of a Massive Document

Collection (Draft), IEEE Transactions on Neural Networks, 11(3), 2000.
[18] Mitchell T.M., Machine Learning, McGraw-Hill, 1997.
[19] Mulier F. and Cherkassky V., Self-Organization as an Iterative Kernel Smoothing Process, Neural Computation, 7:1165-1177,

1995.
[20] Fan J., Design-adaptive Nonparametric Regression, Journal of the American Statistical Association, 87(420):998-1004, 1992.
[21] Wand M.P., and Jones M.C., Kernel Smoothing, London: Chapman & Hall, 1995.
[22] Su M.C., Liu T.K. and Chang H.T., An Efficient Initialization Scheme for the Self-Organizing Feature Map Algorithm, In

IJCNN’99, International Joint Conference on Neural Networks, Proceedings, 3:1906-1910, Piscataway, N.J. IEEE Service
Center, 1999.

[23] Su M.C. and Chang H.T., Fast Self-Organizing Feature Map Algorithm, IEEE Transactions on Neural Networks, 11(3):721-733,
2000.

[24] T. Hastie and C. Loader, Local Regression: Automatic Kernel Carpentry, Statist. Science, 8:120-143, 1993.
[25] Michel O., Webots: a Powerful Realistic Mobile Robots Simulator, Proceedings of the Second International Workshop on

RoboCup, LNAI, SpringerVerlag, http://www.cyberbotics.com/, 1998.
[26] Mondada F., Franzi E. and Ienne P., Mobile Robot Miniaturization: A Tool for Investigation in Control Algorithms, Proceedings

of 3rd International Symposium on Experimental Robotics, Kyoto, Japan, 1993, Springer Verlag, London, 501-513, 1994.
[27] Trullier O., Wiener S.I., Berthoz A. and Meyer J.A., Biologically Based Artifical Navigation Systems: Review and Prospects,

Progress in Neurobiology, 51:483-544, 1997.
[28] Franz M.O. and Mallot H.A., Biomimetic Robot Navigation, Robotics and Autonomous Systems, 30: 133-153, 2000.
[29] Lagoudakis M.G. and Maida A.S., Neural Maps for Mobile Robot Navigation, Proceedings of the 1999 International Joint

Conference on Neural Networks, Washington, D.C., July 1999.
[30] Salomon R., Self-Organizing Neural Network Controllers for Mobile Robots, In C.H. Dagli, M. Akay, O. Ersoy, B.R. Fernandez,

and A. Smith (Eds.), Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE'97), 581-586, ASME
Press, New York, 1997.

[31] Leow W.K., Computational Studies of Exploration by Smell, Adaptive Behavior, 6(3/4):409-432, 1998.
[32] Borenstein J., Everett B. and Feng L., Navigating Mobile Robots: Systems and Techniques, A. K. Peters, Ltd., Wellesley, MA,

1996.
[33] Huber S.A., Mallot H.A. and Bulthoff H.H., Modeling Biological Sensorimotor Control with Genetic Algorithms, Technical

Report No. 060, Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany, May 1998.
[34] Mataric M.J., Integration of Representation Into Goal-Driven Behavior-Based Robots, The Artificial Life Route to Artificial

Intelligence: Building Embodied, Situated Agents, L. Steels and R. Brooks, eds., Lawrence Erlbaum Associates, Hillsdale, 165-
186, 1995.

[35] Garcia-Alegre M.C. and Recio F., Basic Agents for Visual/Motor Coordination of a Mobile Robot, Proceedings of the first
international conference on Autonomous Agents, 429-434, 1997.

http://www.cyberbotics.com/

Mobile Robots That Learn to Navigate 80
References

[36] Martinetz T., Ritter H. and Schulten K., Learning of visuomotor coordination of a robot arm with redundant degrees of freedom.
In Proc. ICNC-90, Dusseldorf, 431-434, North Holland, Amsterdam, March 1990.

[37] Martinetz T., Ritter H. and Schulten K., Three-dimensional neural net for learning visuomotor coordination of a robot arm, IEEE
Trans. Neural Networks, 1(1):131-136, March 1990.

[38] Hagen S.T., l’Ecluse D. and Krose B., Q-Learning for Mobile Robot Control, In Proc. 11th BNAIC, 203-210, Maastricht, Nov.
1999.

[39] Rome E., Hertzberg J., Christaller Th., Kirchner F., and Licht U., Towards Autonomous Sewer Robots: The MAKRO Project, J.
Urban Water, 1:57-70, 1999.

[40] Collett T.S., Insect Navigation En Route to the Goal: Multiple Strategies for the Use of Landmarks, Journal of Experimental
Biology, 199:227-235, 1996.

[41] Brooks R.A., A Robust Layered Control System for a Mobile Robot, IEEE J. Robotics and Automation, 2(1):14-23, 1986.
[42] Maes P. and Brooks R.A., Learning to Coordinate Behaviors, in Proceedings AAAI-91, Boston, MA, 796-802, 1990.
[43] Mataric M.J., A Distributed Model for Mobile Robot Environment-Learning and Navigation, Technical Report AI-TR-1228, MIT

Artificial Intelligence Laboratory, 1990.
[44] Yamagauchi B. and Beer R., Spatial Learning for Navigation in Dynamic Environments, IEEE Transactions on Systems, Man

and Cybernetics-Part B, Special Issue on Learning Autonomous Robots, 26:496-505, 1996.
[45] Mataric M.J., Behavior-Based Control: Examples from Navigation, Learning, and Group Behavior, Journal of Experimental and

Theoretical Artificial Intelligence, special issue on Software Architectures for Physical Agents, 9(2-3):323-336, H. Hexmoor, I.
Horswill, and D. Kortenkamp, eds., 1997.

[46] Stoytchev A. and Arkin R.C., Combining Deliberation, Reactivity and Motivation in the Context of a Behavior-Based Robot
Architecture, Mobile Robot Laboratory, College of Computing, Georgia Institute of Technology, Sep. 2000.

[47] Saffioti A., Fuzzy Logic in Autonomous Robotics: Behavior Coordination, Procs. Of the 6th IEEE Int. Conf. On Fuzzy Systems,
Barcelona, SP, 573-578, July 1997.

[48] Krose B.J.A. and Eecen M., A Self-Organizing Representation of Sensor Space for Mobile Robot Navigation, Proc. of the
IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems IROS’94 , Munich, Germany, 9-14, 1994.

[49] Walker A., Hallam J. and Willshaw D., Bee-havior in a Mobile Robot: The Construction of a Self-Organized Cognitive Map and
its Use in Robot Navigation within a Complex, Natural Environment, IEEE International Conference on Neural Networks,
3:1451-1456, 1993.

[50] Chase T.A., White M., Janet J.A., Gutierrez-Osuna R. and Luo R.C., Global Self-Localization for Autonomous Mobile Robots
using Self-Organizing Kohonen Neural Networks, In Proc. of 1995 IEEE Int. Conf. on IROS, 3:504-509, 1995.

[51] Kohonen T., Hynninen J., Kangas J. and Laaksonen J., SOM PAK: The Self-Organizing Map Program Package, Report A31,
Helsinki University of Technology, Laboratory of Computer and Information Science, January 1996.

[52] Fritzke B., Some Competitive Learning Methods, http://www.neuroinformatik.ruhr-uni-
bochum.de/ini/VDM/research/gsn/JavaPaper/, April 1997.

[53] Kaski S., Kangas J., Kohonen T. Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997, Neural Computing Surveys 1,
102-350, 1998. http://www.icsi.berkeley.edu/~jagota/NCS

[54] Kohonen T., 4311 Works that have been based on the Self-Organizing Map (SOM) method developed by Kohonen, Neural
Networks Research Centre, Helsinki University of Technology, 2000. http://www.cis.hut.fi/nnrc/refs

[55] Hofner C. and Schmidt G., Path Planning and Guidance Techniques for an Autonomous Mobile Cleaning Robot, J. Robotics and
Autonomous Systems, 14:199-212, 1995.

[56] Braitenberg V., VEHICLES – Experiments in Synthetic Psychology, MIT Press, Cambridge, MA, 1984.
[57] Pirjanian P., Behavior Coordination Mechanisms -- State-of-the-art, Technical Report IRIS-99-375, Institute of Robotics and

Intelligent Systems, School of Engineering, University of Southern California, October 1999. http://iris.usc.edu/~irislib
[58] Sahin E. and Gaudiano P., KITE: The Khepera Integrated Testing Environment, Proceedings of the First International Khepera

Workshop, Paderborn, Germany, 199-208, 1999. http://www.starlab.org/neurobotics/
[59] Webb B., Robots, Crickets and Ants: Models of Neural Control of Chemotaxis and Phototaxis, Neural Networks, 11:1479-1496,

1998.
[60] Gaudiano P., Zalama E. and López Coronado J., An Unsupervised Neural Network for Low-level Control of a Mobile Robot:

Noise Resistance, Stability, and Hardware Implementation, IEEE Transactions on Systems, Man, and Cybernetics - Part B,
26:485-496, 1996.

[61] Schonbein, W., Khep_Core Package Version 0.5, PNP Robot Lab, Department of Philosophy, Washington University, March
2000. http://artsci.wustl.edu/~philos/pnp/robotlab/robotlab.html

[62] Sarle W.S., Neural Network FAQ, part 1 of 7: Introduction, periodic posting to the Usenet newsgroup comp.ai.neural-nets,
ftp://ftp.sas.com/pub/neural/FAQ.html, ed. 1997.

[63] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P., Numerical Recipes in C, The Art of Scientific Computing, 2nd
ed., Cambridge Univ. Press, 1992.

[64] Makhoul J., Roucos S., Gish H., Vector Quantization in Speech Coding, Proc. IEEE, 73:1551-1558, 1985.

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper/
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper/
http://www.icsi.berkeley.edu/~jagota/NCS
http://www.cis.hut.fi/nnrc/refs
http://iris.usc.edu/~irislib
http://www.starlab.org/neurobotics/
http://artsci.wustl.edu/~philos/pnp/robotlab/robotlab.html
ftp://ftp.sas.com/pub/neural/FAQ.html

	Mobile Robots
	That Learn to Navigate
	
	
	Low Kian Hsiang
	National University of Singapore

	Project No.H40020
	
	SupervisorA/P Leow Wee Kheng, A/P Marcelo H. Ang Jr.

	Subject Descriptors
	I.2.6Learning

	Keywords
	Implementation Software and Hardware
	
	
	TABLE OF CONTENTS

	Title
	
	INTRODUCTION
	LEARNING IN AN OBSTACLE-RIDDEN ENVIRONMENT
	Chapter 1 Introduction identifies the problem domain and the specific objectives to be achieved.

	Chapter 2 Background and Related Work describes the research direction and some critical design considerations to evolve the unsupervised learning and motor control mechanisms. Following that, our proposed method is differentiated from other related work
	The background section describes the research direction and some critical design considerations to evolve the unsupervised learning and motor control mechanisms. Following that, we differentiate our proposed method with other related work.
	2.1Background
	2.1.1Motor Control in Mobile Robots
	Destination Locations
	Source
	
	2.2.1Zalama, Gaudiano and Coronado (NETMORC)
	A Neural NETwork MObile Robot Controller (NETMORC) is introduced by E. Zalama et al. [5, 60] to autonomously learn the motion control of the mobile robot. The network architecture essentially comprises of two arrays of 1-D neurons encoding distance and
	Chapter 3
	CHARACTERISTICS OF MOBILE ROBOT
	�
	�
	COMPONENT
	DESCRIPTION
	
	stereoscopic vision and

	2.Initialization of the neurons on the four edges
	3.Initialization of the remaining neurons

	Chapter 5
	SIMULATION RESULTS AND ANALYSIS
	Chapter 6
	LEARNING IN AN
	OBSTACLE-RIDDEN ENVIRONMENT
	Chapter 7
	DISCUSSION, FUTURE WORK
	AND CONCLUSION
	7.2Future Work
	7.3Conclusion

