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Abstract

Recent research in robot exploration and mapping has
focused on sampling environmental hotspot fields. This
exploration task is formalized by Low, Dolan, and
Khosla (2008) in a sequential decision-theoretic plan-
ning under uncertainty framework called MASP. The
time complexity of solving MASP approximately de-
pends on the map resolution, which limits its use in
large-scale, high-resolution exploration and mapping.
To alleviate this computational difficulty, this paper
presents an information-theoretic approach to MASP
(iMASP) for efficient adaptive path planning; by re-
formulating the cost-minimizing iMASP as a reward-
maximizing problem, its time complexity becomes in-
dependent of map resolution and is less sensitive to in-
creasing robot team size as demonstrated both theoret-
ically and empirically. Using the reward-maximizing
dual, we derive a novel adaptive variant of maximum
entropy sampling, thus improving the induced explo-
ration policy performance. It also allows us to estab-
lish theoretical bounds quantifying the performance ad-
vantage of optimal adaptive over non-adaptive policies
and the performance quality of approximately optimal
vs. optimal adaptive policies. We show analytically
and empirically the superior performance of iMASP-
based policies for sampling the log-Gaussian process to
that of policies for the widely-used Gaussian process in
mapping the hotspot field. Lastly, we provide sufficient
conditions that, when met, guarantee adaptivity has no
benefit under an assumed environment model.

Introduction
Recent research in multi-robot exploration and mapping
(Low, Dolan, and Khosla 2008; Singh et al. 2007) has fo-
cused on sampling environmental fields, some of which typ-
ically feature a few small hotspots in a large region (Web-
ster and Oliver 2007). Such a hotspot field often arises
in environmental and ecological sensing applications such
as precision agriculture, mineral prospecting, monitoring of
ocean phenomena, forest ecosystems, pollution, or contam-
ination. In particular, the hotspot field (e.g., plankton den-
sity and mineral distribution in Fig. 2) is characterized by
continuous, positively skewed, spatially correlated measure-
ments with the hotspots exhibiting extreme measurements
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and much higher spatial variability than the rest of the field.
With limited (e.g., point-based) robot sensing range, a com-
plete coverage becomes impractical in terms of resource
costs (e.g., energy consumption). So, to accurately map the
field, the hotspots have to be sampled at a higher resolution.

The hotspot field discourages static sensor placement
(Guestrin, Krause, and Singh 2005) because a large num-
ber of sensors has to be positioned to detect and refine the
sampling of hotspots. If these static sensors are not placed in
any hotspot initially, they cannot reposition by themselves to
locate one. In contrast, a robot team is capable of performing
high-resolution hotspot sampling due to its mobility. Hence,
it is desirable to build a mobile robot team that can actively
explore to map a hotspot field.

To learn a hotspot field map, the exploration strategy of
the robot team has to plan resource-constrained observa-
tion paths that minimize the map uncertainty of the hotspot
field. To achieve this, the recent work of Low, Dolan, and
Khosla (2008) has proposed such a strategy that plans non-
myopic adaptive paths to minimize the uncertainty of a spa-
tial model of the hotspot field. In particular, both (a) mod-
eling and (b) planning components are designed to fully ex-
ploit the environmental structure in order to yield a high-
quality map: (a) The hotspot field is assumed to be real-
ized from a non-parametric probabilistic model called the
log-Gaussian process, which can provide a formal mea-
sure of map uncertainty and more importantly, characterize
the abovementioned hotspot field measurements well; (b)
The exploration task is formalized in a sequential decision-
theoretic planning under uncertainty framework, which we
call the multi-robot adaptive sampling problem (MASP). So,
MASP can be viewed as a sequential, non-myopic version
of active learning. In contrast to finite-state Markov de-
cision problems, MASP adopts a more complex but real-
istic continuous-state, non-Markovian problem structure so
that its induced exploration policy can be informed by the
complete history of continuous, spatially correlated obser-
vations for selecting paths. It is unique in unifying formu-
lations of exploration problems along the entire adaptivity
(see Def. 2) spectrum, thus subsuming existing non-adaptive
formulations and allowing the performance advantage of a
more adaptive policy to be theoretically realized. Through
MASP, it is demonstrated that a more adaptive strategy can
exploit clustering phenomena in a hotspot field to produce
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lower map uncertainty.
However, MASP is besieged by a serious computational

drawback due to its measure of map uncertainty using the
mean-squared error criterion. Consequently, the time com-
plexity of solving MASP (approximately) depends on the
map resolution, which limits its practical use in large-scale,
high-resolution exploration and mapping.

The principal contribution of this paper is to alleviate this
computational difficulty through an information-theoretic
approach to MASP (iMASP) for efficient adaptive path
planning, which measures map uncertainty based on the en-
tropy criterion instead. Unlike MASP, reformulating the
cost-minimizing iMASP as a reward-maximizing problem
causes its time complexity of being solved approximately
to be independent of the map resolution and less sensitive to
larger robot team size as demonstrated both theoretically and
empirically in this paper. Additional contributions stemming
from this reward-maximizing formulation include:
• transforming the commonly-used non-adaptive maximum

entropy sampling problem (Shewry and Wynn 1987) into
a novel adaptive variant, thus improving the performance
of the induced exploration policy;

• establishing theoretical bounds to quantify the perfor-
mance advantage of optimal adaptive over non-adaptive
exploration policies, and the performance quality of ap-
proximately optimal vs. optimal adaptive policies;

• given an assumed environment model (e.g., occupancy
grid map), establishing sufficient conditions that, when
met, guarantee adaptivity provides no benefit; and

• showing analytically and empirically the superior perfor-
mance of iMASP-based policies for sampling the log-
Gaussian process (�GP) to that of policies for the widely-
used Gaussian process (GP) (Guestrin, Krause, and Singh
2005; Shewry and Wynn 1987; Singh et al. 2007) in map-
ping the hotspot field.

Related Work. Beyond its computational gain, iMASP re-
tains the beneficial properties of MASP: it is novel in the
class of model-based exploration strategies to perform both
wide-area coverage and hotspot sampling. The former con-
siders sparsely sampled areas to be of high uncertainty and
thus spreads the observations evenly across the environmen-
tal field. The latter expects areas of high uncertainty to con-
tain highly-varying measurements and hence produces clus-
tered observations. Like MASP, iMASP also covers the en-
tire adaptivity spectrum, thus subsuming the existing non-
adaptive entropy-based problem formulation (Shewry and
Wynn 1987). In contrast, all other model-based strategies
(Meliou et al. 2007; Singh et al. 2007) are non-adaptive
and achieve only wide-area coverage; they are observed to
perform well only with smoothly-varying fields. Similar
to MASP, iMASP can plan non-myopic multi-robot paths,
which are more desirable than greedy or single-robot paths
(Meliou et al. 2007; Singh et al. 2007).

Cost-Minimizing Problem Formulations

We formalize here the information-theoretic exploration
problems at the two extremes of the adaptivity spectrum.
Exploration problems residing within the spectrum can be

formalized in a similar manner. Note that the use of the en-
tropy criterion in non-myopic active learning is not new but
is limited to the non-adaptive problem formulation (Shewry
and Wynn 1987), which is presented here as a comparison to
the novel adaptive problem formulation. It can be observed
that the resulting cost-minimizing formulations differ from
that of MASP by only the entropy criterion. However, as
we shall see in a later section, their reward-maximizing dual
formulations are significantly different from that of MASP
in terms of interpretation and computational complexity.
Notation and Preliminaries. Let X be the domain of the
hotspot field corresponding to a finite set of grid cell loca-
tions. An observation taken (e.g., by a single robot) at stage
i comprises a pair of location xi ∈ X and its measurement
zxi

. More generally, k observations taken (e.g., by k robots
or 1 robot taking k observations) at stage i can be repre-
sented by a pair of vectors xi of k locations and zxi of the
corresponding measurements.
Definition 1 (Posterior Data) The posterior data di at
stage i > 0 comprises
• the prior data d0 = 〈x0, zx0〉 available at stage 0, and
• a complete history of observations x1, zx1 , . . . ,xi, zxi in-

duced by k observations per stage over stages 1 to i.
Let x0:i and zx0:i denote vectors comprising the location and
measurement components of the posterior data di (i.e., con-
catenations of x0,x1, . . . ,xi and zx0 , zx1 , . . . , zxi

), respec-
tively. Let x0:i denote the vector comprising locations of do-
main X not observed in di, and zx0:i be the vector compris-
ing the corresponding measurements. Let Zxi , Zxi , Zx0:i ,
Zx0:i be the random measurements corresponding to the re-
spective realizations zxi , zxi , zx0:i , zx0:i .
Definition 2 (Characterizing Adaptivity) Suppose prior
data d0 are available and n new locations are to be
explored. Then, an exploration strategy is
• adaptive if its policy to select each vector xi+1 of k new

locations depends only on the previously sampled data di

for i = 0, . . . , n/k− 1. So, this strategy selects k observa-
tions per stage over n/k stages. If k = 1, this strategy is
strictly adaptive. Increasing k makes it partially adaptive;

• non-adaptive if its policy to select each new location xi+1

for i = 0, . . . , n − 1 is independent of the measurements
zx1 , . . . , zxn . As a result, all n new locations x1, . . . , xn

can be selected prior to exploration. That is, this strategy
selects all n observations in a single stage.

Objective Function. The exploration objective is to plan
observation paths that minimize the uncertainty of mapping
the hotspot field. To achieve this, we use the entropy crite-
rion to measure map uncertainty. Given the posterior data
dn, the posterior map entropy of domain X can be repre-
sented by the posterior joint entropy of the measurements
Zx0:n at the unobserved locations x0:n:

H[Zx0:n |dn]
�
= −

∫
f(zx0:n |dn) log f(zx0:n |dn) dzx0:n (1)

where f denotes a probability density function.
Value Function. If only the prior data d0 are available,
an exploration strategy has to produce a policy for select-
ing observation paths that minimize the expected posterior
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map entropy instead. This policy must then collect the op-
timal observations x1, zx1 , . . . ,xn, zxn during exploration
to form posterior data dn. The value under an exploration
policy π is defined to be the expected posterior map entropy
(i.e., expectation of (1)) when starting in d0 and following π
thereafter:

V π
0 (d0)

�
= E{H[Zx0:n |dn]|d0, π}
=

∫
f(zx1:n |d0, π) H[Zx0:n |dn] dzx1:n .

(2)

The strategies of Guestrin, Krause, and Singh (2005) and
Singh et al. (2007) have optimized a closely related mutual
information criterion that measures the expected entropy re-
duction of unobserved locations x0:n by observing x1:n (i.e.,
H[Zx0:n |d0] − E{H[Zx0:n |dn]|d0}). This is deficient for
the exploration objective because mutual information may
be maximized by a choice of x1:n inducing a very large
prior entropy H[Zx0:n |d0] but not necessarily the smallest
expected posterior map entropy E{H[Zx0:n |dn]|d0}.

In the next two subsections, we will describe how the
adaptive and non-adaptive exploration policies can be de-
rived to minimize the expected posterior map entropy (2).
Adaptive Exploration. The adaptive policy π for direct-
ing a team of k robots is structured to collect k observa-
tions per stage over a finite planning horizon of n stages.
This implies each robot observes 1 location per stage and
is thus constrained to explore at most n new locations over

n stages. Formally, π
�
= 〈π0(d0), . . . , πn−1(dn−1)〉 where

πi : di → ai maps data di to a vector of robots’ actions
ai ∈ A(xi) at stage i, and A(xi) is the joint action space
of the robots given their current locations xi. We assume
the transition function τ : xi × ai → xi+1 deterministically
moves the robots to their next locations xi+1 at stage i + 1.
Combining πi and τ gives xi+1 ← τ(xi, πi(di)). We can
observe from this assignment that the sequential (i.e., stage-
wise) selection of k new locations xi+1 to be included in the
observation paths depends only on the previously sampled
data di along the paths for stage i = 0, . . . , n − 1. Hence,
policy π is adaptive (Def. 2).

Solving the adaptive exploration problem iMASP(1)
means choosing the adaptive policy π to minimize V π

0 (d0)
(2), which we call the optimal adaptive policy π1. That is,
V π1

0 (d0) = minπ V π
0 (d0). Plugging π1 into (2) gives the

n-stage dynamic programming equations:

V π1

i (di) =
∫

f(zxi+1 |di, π
1
i ) V π1

i+1(di+1) dzxi+1

=
∫

f(zτ(xi,π1
i (di))|di) V π1

i+1(di+1) dzτ(xi,π1
i (di))

= min
ai∈A(xi)

∫
f(zτ(xi,ai)|di) V π1

i+1(di+1) dzτ(xi,ai)

V π1

n (dn) = H[Zx0:n |dn] (3)
for stage i = 0, . . . , n − 1. The first and second equal-
ities follow from f(zx1:n |d0, π

1) = Πn−1
i=0 f(zxi+1 |di, π

1
i )

and xi+1 ← τ(xi, π
1
i (di)) respectively. Policy π1 =

〈π1
0(d0), . . . , π1

n−1(dn−1)〉 can be determined in a stagewise
manner by
π1

i (di) = arg min
ai∈A(xi)

∫
f(zτ(xi,ai)|di) V π1

i+1(di+1) dzτ(xi,ai) .

Note that the optimal action π1
0(d0) at stage 0 can be de-

termined prior to exploration using prior data d0. However,
each action rule π1

i (di) at stage i = 1, . . . , n− 1 defines the
optimal action to take in response to di, part of which (i.e.,
x1, zx1 , . . . ,xi, zxi) are only observed during exploration.
Non-Adaptive Exploration. The non-adaptive policy π is
structured to collect, in 1 stage, n observations per robot
with a team of k robots. So, each robot is also con-
strained to explore at most n new locations, but they have

to do this within 1 stage. Formally, π
�
= π0(d0) where

π0 : d0 → a0:n−1 maps prior data d0 to a vector a0:n−1

of action components concatenating a sequence of robots’
actions a0, . . . ,an−1. Combining π0 and τ gives x1:n ←
τ(x0:n−1, π0(d0)). We can observe from this assignment
that the selection of k ×n new locations x1, . . . ,xn to form
the observation paths are independent of the measurements
zx1 , . . . , zxn

obtained along the paths during exploration.
Hence, policy π is non-adaptive (Def. 2) and all new loca-
tions can be selected in a single stage prior to exploration.

Solving the non-adaptive exploration problem iMASP(n)
involves choosing π to minimize V π

0 (d0) (2), which we
call the optimal non-adaptive policy πn (i.e., V πn

0 (d0) =
minπ V π

0 (d0)). Plugging πn into (2) gives the 1-stage equa-
tion:
V πn

0 (d0) =
∫

f(zx1:n |d0, π
n
0 ) H[Zx0:n |dn] dzx1:n

=
∫

f(zτ(x0:t,πn
0 (d0))|d0) H[Zx0:n |dn] dzτ(x0:t,πn

0 (d0))

= min
a0:t

∫
f(zτ(x0:t,a0:t)|d0) H[Zx0:n |dn] dzτ(x0:t,a0:t)

(4)

where t = n − 1. The second equality is due to x1:n ←
τ(x0:n−1, π

n
0 (d0)) described above. Policy πn = πn

0 (d0)
can therefore be determined in a single stage by πn

0 (d0) =

arg min
a0:t

∫
f(zτ(x0:t,a0:t)|d0) H[Zx0:n |dn] dzτ(x0:t,a0:t) .

Note that the optimal sequence of robots’ actions πn
0 (d0)

(i.e., optimal observation paths) can be determined prior to
exploration since the prior data d0 are available.

Reward-Maximizing Dual Formulations

In this section, we transform the cost-minimizing iMASP(1)
(3) and iMASP(n) (4) into reward-maximizing problems
and show their equivalence. The reward-maximizing
iMASP(n) turns out to be the well-known maximum entropy
sampling (MES) problem (Shewry and Wynn 1987):

Uπn

0 (d0) = max
a0:n−1

H[Zτ(x0:n−1,a0:n−1)|d0] , (5)

which is a single-staged problem of selecting k×n new loca-
tions x1, . . . ,xn with maximum entropy to form the obser-
vation paths. This dual ensues from the equivalence result
V πn

0 (d0) = H[Zx0 |d0]−Uπn

0 (d0) relating cost-minimizing
and reward-maximizing iMASP(n)’s in the non-adaptive ex-
ploration setting, which follows from the chain rule of en-
tropy. This result says the original objective of minimizing
expected posterior map entropy (i.e., V πn

0 (d0) (4)) is equiva-
lent to that of discharging from prior map entropy H[Zx0 |d0]
the largest entropy into the selected paths (i.e., Uπn

0 (d0) (5)).
Hence, their optimal non-adaptive policies coincide.
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Our reward-maximizing iMASP(1) is a novel adaptive
variant of MES. Unlike the cost-minimizing iMASP(1), it
can be subject to convex analysis, which allows monotone-
bounding approximations to be developed as shown later.
It comprises the following n-stage dynamic programming
equations:
Uπ1

i (di) = max
ai∈A(xi)

H[Zτ(xi,ai)|di] +∫
f(zτ(xi,ai)|di) Uπ1

i+1(di+1) dzτ(xi,ai)

Uπ1

t (dt) = max
at∈A(xt)

H[Zτ(xt,at)|dt]

(6)

for stage i = 0, . . . , t − 1 where t = n − 1. Each stage-
wise reward reflects the entropy of k new locations xi+1 to
be potentially selected into the paths. By maximizing the
sum of expected rewards over n stages in (6), the reward-
maximizing iMASP(1) absorbs the largest expected entropy
into the selected paths. In the adaptive exploration setting,
the cost-minimizing and reward-maximizing iMASP(1)’s
are also equivalent (i.e., their optimal adaptive policies co-
incide):
Theorem 3 V π1

i (di) = H[Zx0:i |di]−Uπ1

i (di) for stage i =
0, . . . , n − 1.
The work of Low, Dolan, and Khosla (2008) has also pro-
vided an equivalence result to relate the cost-minimizing and
reward-maximizing MASPs through the use of the variance
decomposition formula in its induction proof. In contrast,
the induction proof to Theorem 3 uses the chain rule of en-
tropy, which entails a computational complexity reduction
(not available to MASP) as described next.

In cost-minimizing iMASP(1), the time complexity of
evaluating the cost (i.e., posterior map entropy (1)) depends
on the domain size |X | for the environment models de-
scribed in the next section. By transforming into the dual,
the time complexity of evaluating each stagewise reward be-
comes independent of |X | because it reflects only the un-
certainty of the new locations to be potentially selected into
the observation paths. As a result, the runtime of the ap-
proximation algorithm proposed in a later section does not
depend on the map resolution, which is clearly advantageous
in large-scale, high-resolution exploration and mapping. In
contrast, the reward-maximizing MASP (Low, Dolan, and
Khosla 2008) utilizing the mean-squared error criterion does
not share this computational advantage, as the time needed
to evaluate each stagewise reward still depends on |X |. We
will evaluate this computational advantage using time com-
plexity analysis in a later section.

Learning the Hotspot Field Map

Traditionally, a hotspot is defined as a location where its
measurement exceeds a pre-defined extreme. But, hotspot
locations do not usually occur in isolation but in clusters.
So, it is useful to characterize hotspots with spatial prop-
erties. Accordingly, we define a hotspot field to vary as a
realization of a spatial random field {Yx > 0}x∈X such that
putting together the observed measurements of a realization
{yx}x∈X gives a positively skewed 1D sample frequency
distribution (e.g., Fig. 1b). In this section, we will highlight
the problem with modeling the hotspot field directly using
GP and explain how the �GP remedies this. We will also

show analytically that the iMASP-based policy for sampling
�GP is adaptive and exploits clustering phenomena but that
for sampling GP lacks these properties.
Gaussian Process. A widely-used random field to model
environmental phenomena is the GP (Guestrin, Krause, and
Singh 2005; Meliou et al. 2007; Singh et al. 2007). The sta-
tionary assumption on the GP covariance structure is very
sensitive to strong positive skewness of hotspot field mea-
surements (e.g., Fig. 1b) and is easily violated by a few ex-
treme ones (Webster and Oliver 2007). In practice, this can
cause reconstructed fields to display large hotspots centered
about a few extreme observations and prediction variances to
be unrealistically small in hotspots, which are undesirable.
So, if GP is used to model a hotspot field directly, it may not
map well. To remedy this, a standard statistical practice is to
take the log of the measurements (i.e., Zx = log Yx) to re-
move skewness and extremity (e.g., Fig. 1c), and use GP to
map the log-measurements. As a result, the entropy criterion
(1) has to be optimized in the transformed log-scale.

We will apply iMASP(1) to sampling GP and determine
if π1 exhibits adaptive and hotspot sampling properties.
Let {Zx}x∈X denote a GP, i.e., the joint distribution over
any finite subset of {Zx}x∈X is Gaussian (Rasmussen and
Williams 2006). The GP can be completely specified by its

mean μZx

�
= E[Zx] and covariance σZxZu

�
= cov[Zx, Zu]

for x, u ∈ X . We adopt a common assumption that the GP
is second-order stationary, i.e., it has a constant mean and a
stationary covariance structure (i.e., σZxZu

is a function of
x − u for all x, u ∈ X ). In this paper, we assume that the
mean and covariance structure of Zx are known. Given dn,
the distribution of Zx is Gaussian with posterior mean and
covariance

μZx|dn
= μZx

+ Σxx0:nΣ−1
x0:nx0:n

{zx0:n − μZx0:n
}� (7)

σZxZu|dn
= σZxZu − Σxx0:nΣ−1

x0:nx0:n
Σx0:nu (8)

where, for every pair of locations v, w of x0:n, μZx0:n
is a

row vector with mean components μZv
, Σxx0:n is a row vec-

tor with covariance components σZxZv
, Σx0:nu is a column

vector with covariance components σZvZu
, and Σx0:nx0:n is

a covariance matrix with components σZvZw
. An important

property of σZxZu|dn
is its independence of zx1:n .

Policy π1 can be reduced to be non-adaptive: observe that
each stagewise reward is independent of the measurements

H[Zτ(xi,ai)|di] = log
√

(2πe)k |ΣZτ(xi,ai)|di
| (9)

where ΣZτ(xi,ai)|di
is a covariance matrix with com-

ponents σZxZu|di
, x, u of τ(xi,ai), that are indepen-

dent of zx1:n . As a result, it follows from (6) that
Uπ1

i (di) and π1
i (di) are independent of zx1:n for i =

0, . . . , n − 1. The expectations in iMASP(1) (6) can
then be integrated out. As a result, iMASP(1) for sam-
pling GP can be reduced to a 1-stage deterministic prob-
lem Uπ1

0 (d0) =
∑n−1

i=0 max
ai

H[Zτ(xi,ai)|di] = max
a0,...,an−1∑n−1

i=0 H[Zτ(xi,ai)|di] = max
a0:n−1

H[Zτ(x0:n−1,a0:n−1)|d0] =

Uπn

0 (d0). This indicates the induced optimal values from
solving iMASP(1) and iMASP(n) are equal. So, π1 offers
no performance advantage over πn.
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Figure 1: Hotspot field simulation: (a) �GP and (d) GP real-
izations with their 1D sample frequency distributions shown,
respectively, in (b) and (c).

Based on the above analysis, the following sufficient con-
ditions, when met, guarantee that adaptivity has no benefit
under an assumed environmental model:
Theorem 4 If H[Zτ(xi,ai)|di] is independent of zx1:n for
stage i = 0, . . . , n− 1, iMASP(1) and π1 can be reduced to
be single-staged and non-adaptive, respectively.
For example, Theorem 4 also holds for the simple case of an
occupancy grid map modeling an obstacle-ridden environ-
ment, which typically assumes zx for x ∈ X to be indepen-
dent. As a result, H[Zτ(xi,ai)|di] can be reduced to a sum
of prior entropies over the unobserved locations τ(xi,ai),
which are independent of zx1:n .

Policy π1 performs wide-area coverage only: to maxi-
mize stagewise rewards (9), π1 selects new locations with
large posterior variance for observation. If we assume
isotropic covariance structure (i.e., the covariance σZxZu

decreases monotonically with ||x − u||) (Rasmussen and
Williams 2006), the posterior data di provide the least
amount of information on unobserved locations that are far
away from all observed locations. As a result, the poste-
rior variance of unobserved locations in sparsely sampled
regions are still largely unreduced by the posterior data
di from the observed locations. Hence, by exploring the
sparsely sampled areas, a large expected entropy can be ab-
sorbed into the selected observation paths. Using the ob-
servations selected from wide-area coverage, the field of
original measurements may not be mapped well because
the under-sampled hotspots with extreme, highly-varying
measurements contribute considerably to map entropy in the
original scale, as discussed below.
Log-Gaussian Process. To map the original, rather than
the log-, measurements directly, it is a conventional practice
in geostatistics to use the �GP. Consequently, the entropy
criterion (1) is optimized in the original scale. To do this, let
{Yx}x∈X denote a �GP: if Zx = log Yx, {Zx}x∈X is a GP.
So, the positive-valued Yx = exp{Zx} denotes the original
random measurement at location x. It is straightforward to
derive the predictive properties of �GP from that of GP as
shown in (Low, Dolan, and Khosla 2008).

A �GP can model a field with hotspots that exhibit much
higher spatial variability than the rest of the field: Figs. 1a
and 1d compare the realizations of �GP and GP; the GP real-
ization results from taking the log of the �GP measurements.
This does not just dampen the extreme measurements, but
also dampens and amplifies the difference between extreme
and small measurements respectively, thus removing the

positive skew (compare Figs. 1b and 1c). Compared to the
GP realization, the �GP one thus exhibits higher spatial vari-
ability within hotspots but lower variability in the rest of the
field. This intuitively explains why wide-area coverage suf-
fices for GP but hotspot sampling is further needed for �GP.

Policy π1 is adaptive: observe that each stagewise reward
depends on the previously sampled data di:

H[Yτ(xi,ai)|di]=log
√

(2πe)k|ΣZτ(xi,ai)|di
|+μZτ(xi,ai)|di

1�

(10)where μZτ(xi,ai)|di
is a mean vector with components μZx|di

for x of τ(xi,ai). Since μZx|di
depends on di by (7),

H[Yτ(xi,ai)|di] depends on di. Consequently, it follows
from (6) that Uπ1

i (di) and π1
i (di) depend on di for i =

0, . . . , n − 1. Hence, π1 is adaptive.
Policy π1 performs both hotspot sampling and wide-area

coverage: to maximize stagewise rewards (10), π1 selects
new locations with large Gaussian posterior variance and
mean for observation. So, it directs exploration towards
sparsely sampled areas and hotspots.

Value-Function Approximations

Strictly Adaptive Exploration. With a team of k > 1
robots, π1 collects k > 1 observations per stage, thus be-
coming partially adaptive. We will now derive the optimal
strictly adaptive policy (in particular, for sampling �GP),
which, among policies of all adaptivity, selects paths with
the largest expected entropy. By Def. 2, a strictly adaptive
policy has to be structured to collect only 1 observation per
stage. To achieve strict adaptivity, iMASP(1) (6) can be re-
vised as follows: (a) The space A(xi) of simultaneous joint
actions is reduced to a constrained set A′(xi) of joint ac-
tions that allows one robot to move to observe a new loca-
tion and the other robots stay put. This tradeoff for strict
adaptivity allows A′(xi) to grow linearly, rather than expo-
nentially, with the number of robots; (b) We constrain each
robot to explore a path of at most n new adjacent locations;
this can be viewed as an energy consumption constraint on
each robot. The horizon then spans k × n, rather than n,
stages, which reflects the additional time of exploration in-
curred by strict adaptivity; (c) If ai ∈ A′(xi), the assign-
ment xi+1 ← τ(xi,ai) moves one chosen robot to a new
location xi+1 while the other unselected robots stay put at
their current locations. Then, only one component of xi is
changed to xi+1 to form xi+1; the other components of xi+1

are unchanged from xi. Hence, there is only one unobserved
component Yxi+1 in Yxi+1 ; the other components of Yxi+1

are already observed in the previous stages and can be found
in di. As a result, the probability distribution of Yxi+1 can
be simplified to a univariate Yxi+1 .

These revisions of iMASP(1) yield the strictly adaptive
exploration problem called iMASP( 1

k ):

Ui(di)= max
ai∈A′(xi)

H[Yxi+1 |di]+
∫

f(yxi+1 |di) Ui+1(di+1) dyxi+1

= max
ai∈A′(xi)

H[Yxi+1 |di]+ E[Ui+1(di, xi+1, Yxi+1)|di]

Ut(dt)= max
at∈A′(xt)

H[Yxt+1 |dt] (11)
for stage i = 0, . . . , t − 1 where t = kn − 1. Without am-
biguity, we omit the superscript π

1
k (i.e., the optimal strictly
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adaptive policy) from the optimal value functions above.
Since Yxi+1 is continuous, it entails infinite state transi-

tions. So, E[Ui+1(di, xi+1, Yxi+1)|di] has to be evaluated in
closed form for iMASP( 1

k ) to be solved exactly. This can be
performed for t = 1. When t > 1, the expectation of the
optimal value function results in an integral that is too com-
plex to be evaluated. Hence, we will resort to approximating
iMASP( 1

k ) as described below. For ease of exposition, we
will revert to using Zxi+1 = log Yxi+1 for �GP from now on.
Approximately Optimal Exploration. To approximate
iMASP( 1

k ), we will first approximate the expectation in
(11) from below and above using the ν-fold generalized
Jensen and Edmundson-Madansky (EM) bounds respec-
tively (Huang, Ziemba, and Ben-Tal 1977). To do this, we
need the following convexity result for iMASP( 1

k ) (11):
Lemma 5 Ui(di) is convex in zx0:i for i = 0, . . . , t.
Let the support of Zxi+1 given di be Zν

xi+1
that is parti-

tioned into ν disjoint intervals Z [j]
xi+1 = [z[j−1]

xi+1 , z
[j]
xi+1 ] for

j = 1, . . . , ν. Then,
ν∑

j=1

p[j]
xi+1

Ui+1(di, xi+1, z
[j]
xi+1

) ≤ E[Ui+1(di, xi+1, Zxi+1)|di]

≤
ν∑

j=0

p[j]
xi+1

Ui+1(di, xi+1, z
[j]
xi+1

)
(12)

where p[j]
xi+1

�
=

∫
Z[j]

xi+1

f(zxi+1 |di) dzxi+1 and

z
[j]
xi+1

�
=

1
p[j]

xi+1

∫
Z[j]

xi+1

zxi+1f(zxi+1 |di) dzxi+1 for j = 1, . . . , ν,

p
[j]
xi+1

�
= p[j]

xi+1

z
[j]
xi+1 − z

[j−1]
xi+1

z
[j]
xi+1 − z

[j−1]
xi+1

+ p[j+1]
xi+1

z
[j+1]
xi+1 − z

[j+1]
xi+1

z
[j+1]
xi+1 − z

[j]
xi+1

for

j = 0, . . . , ν, and p[0]
xi+1

:= p[ν+1]
xi+1

:= z
[0]
xi+1 := z

[ν+1]
xi+1 :=

z
[−1]
xi+1 := 0. By increasing ν to refine the partition, the

bounds can be improved.
The upper approximate problem iMASP( 1

k ) can be con-
structed from iMASP( 1

k ) (11) by replacing the expecta-
tion with the upper EM bound (12) to yield the optimal
value functions U

ν

i (di) for i = 0, . . . , t. Similarly, the
lower approximate problem iMASP( 1

k ) can be constructed
from iMASP( 1

k ) (11) by replacing the expectation with the
lower Jensen bound (12) to yield the optimal value functions
Uν

i (di) for i = 0, . . . , t and optimal policy π
1
k .

The next result uses the induced optimal values from solv-
ing the lower and upper approximate problems to monotoni-
cally bound the maximum expected entropy achieved by the
optimal strictly adaptive policy π

1
k :

Theorem 6 If Zν+1
xi+1

is obtained by splitting one of the
intervals in Zν

xi+1
, Uν

i (di) ≤ Uν+1
i (di) ≤ Ui(di) ≤

U
ν+1

i (di) ≤ U
ν

i (di) for i = 0, . . . , t.
A previous result of Low, Dolan, and Khosla (2008) has
guaranteed that π

1
k can achieve an expected entropy not

worse than Uν
0(d0). But, that result does not account for

how much it differs from the maximum expected entropy
achieved by π

1
k . With the upper bound of Theorem 6, this

error difference can be bounded:

Corollary 7 π
1
k is guaranteed to achieve an expected en-

tropy that is not more than U
ν

0(d0) − Uν
0(d0) from the max-

imum expected entropy U0(d0) achieved by π
1
k .

Bounds on Performance Advantage of Adaptive Explo-
ration. A previous result of Low, Dolan, and Khosla (2008)
has established the performance advantage of optimal adap-
tive over non-adaptive policies. Realizing the extent of such
an advantage is important if adaptivity incurs a cost. In
particular, we are interested in quantifying the performance
difference between the strictly adaptive π

1
k and the non-

adaptive πn. This performance advantage of π
1
k over πn

is defined as the difference of their achieved maximum ex-
pected entropies U0(d0) − Uπn

0 (d0). Using the induced op-
timal values from solving the approximate problems (The-
orem 6), the advantage U0(d0) − Uπn

0 (d0) can be bounded
between Uν

0(d0)−Uπn

0 (d0) and U
ν

0(d0)−Uπn

0 (d0). A large
lower bound Uν

0(d0) − Uπn

0 (d0) implies π
1
k is to be pre-

ferred. A small upper bound U
ν

0(d0)−Uπn

0 (d0) implies πn

performs close to that of π
1
k and should be preferred if it is

more costly to deploy π
1
k . For GP, this advantage is zero as

π
1
k can be reduced to be non-adaptive as shown previously.

Real-Time Dynamic Programming. For our bounding ap-
proximation scheme, the state size grows exponentially with
the number of stages. This is due to the nature of dynamic
programming problems (e.g., iMASP( 1

k )), which takes into
account all possible states. To alleviate this computational
difficulty, we modify the anytime algorithm URTDP of Low,
Dolan, and Khosla (2008) based on iMASP( 1

k ), which can
guarantee its policy performance in real time. It simulates
greedy exploration paths through a large state space, result-
ing in desirable properties of focused search and good any-
time behavior. The greedy exploration is guided by compu-
tationally efficient, informed initial heuristic bounds inde-
pendent of state size.

In URTDP (Algorithm 1), each simulated path involves
an alternating selection of actions and their corresponding
outcomes till the last stage. Each action is selected based on
the upper bound (line 3). For each encountered state, the al-
gorithm maintains both lower and upper bounds, which are
used to derive the uncertainty of its corresponding optimal
value function. It exploits them to guide future searches in
an informed manner; it explores the next state/outcome with
the greatest amount of uncertainty (lines 4-5). Then, the al-
gorithm backtracks up the path to update the upper heuristic
bounds using maxai

Qi(ai, di) (line 11) where

Qi(ai, di)
�
= H[Yxi+1 |di] +

ν∑
j=1

p[j]
xi+1

U i+1(di, xi+1, z
[j]
xi+1

)

and the lower bounds via maxai
Q

i
(ai, di) (line 12) where

Q
i
(ai, di)

�
= H[Yxi+1 |di]+

ν∑
j=1

p[j]
xi+1

U i+1(di, xi+1, z
[j]
xi+1

) .

When an exploration policy is requested, we provide the
greedy policy induced by the lower bound. The policy per-
formance has a similar guarantee to Corollary 7.

We will show that the time complexity of SIMULATED-
PATH(d0, t) is independent of map resolution but the same
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procedure in (Low, Dolan, and Khosla 2008) is not. It is also
less sensitive to increasing robot team size. Assuming no
prior data and |A′(xi)| = Δ, the time needed to evaluate the
stagewise rewards H[Yxi+1 |di] for all Δ new locations xi+1

(i.e., using Cholesky factorization) is O(t3 + Δt2), which
is independent of |X | and results in O(t(t3 + Δ(t2 + ν)))
time to run SIMULATED-PATH(d0, t). In contrast, the time
needed to evaluate the stagewise rewards in (Low, Dolan,
and Khosla 2008) is O(t3+Δ(t2+|X |t)+|X |t2), which de-
pends on |X | and entails O(t(t3+Δ(t2+|X |t+ν)+|X |t2))
time to run the same procedure. When the joint action set
size Δ increases with larger robot team size, the time to run
the procedure in (Low, Dolan, and Khosla 2008) increases
faster than that of ours due to the gradient factor |X |t involv-
ing large domain size. In the next section, we will report the
time taken to run this procedure empirically.
URTDP(d0, t):

while U0(d0) − U0(d0) > α do SIMULATED-PATH(d0, t)

SIMULATED-PATH(d0, t):
1: i ← 0

2: while i < t do

3: a∗i ← arg maxai
Qi(ai, di)

4: ∀j, Ξj ← p
[j]
x∗

i+1
{Ui+1(di, x∗i+1, z

[j]
x∗

i+1
) −

Ui+1(di, x∗i+1, z
[j]
x∗

i+1
)}

5: z ← sample from distribution at points z
[j]
x∗

i+1
of probability Ξj/

P
k Ξk

6: di+1 ← di, x∗i+1, z

7: i ← i + 1

8: Ui(di) ← maxai
H[Yxi+1 |di], Ui(di) ← Ui(di)

9: while i > 0 do

10: i ← i − 1

11: Ui(di) ← maxai
Qi(ai, di)

12: Ui(di) ← maxai
Q

i
(ai, di)

Algorithm 1: URTDP (α is user-specified bound).

Experiments and Discussion

This section evaluates, empirically, the approximately opti-
mal strictly adaptive policy π

1
k on 2 real-world datasets ex-

hibiting positive skew: (a) June 2006 plankton density data
(Fig. 2a) of Chesapeake Bay bounded within lat. 38.481 −
38.591N and lon. 76.487 − 76.335W, and (b) potassium
distribution data (Fig. 2d) of Broom’s Barn farm spanning
520m by 440m. Each region is discretized into a 14 × 12
grid of sampling units. Each unit x is, respectively, asso-
ciated with (a) plankton density yx (chl-a) in mg m−3, and
(b) potassium level yx (K) in mg l−1. Each region com-
prises, respectively, (a) |X | = 148 and (b) |X | = 156 such
units. Using a team of 2 robots, each robot is tasked to ex-
plore 9 adjacent units in its path including its starting unit.
If only 1 robot is used, it is placed, respectively, in (a) top
and (b) bottom starting unit, and samples all 18 units. Each
robot’s actions are restricted to move to the front, left, or
right unit. We use the data of 20 randomly selected units to
learn the hyperparameters (i.e., mean and covariance struc-
ture) of GP and �GP through maximum likelihood estima-
tion (Rasmussen and Williams 2006). So, prior data d0 com-
prise the randomly selected and robot starting units.

The performance of π
1
k is compared to the policies pro-
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Figure 2: (a) chl-a field with prediction error maps for (b)
strictly adaptive π1/k and (c) non-adaptive πn: 20 units
(white circles) are randomly selected as prior data. The
robots start at locations marked by ‘×’s. The black and gray
robot paths are produced by π1/k and πn respectively. (d-f)
K field with error maps for π1/k and πn.

duced by four state-of-the-art exploration strategies: The
optimal non-adaptive policy πn for GP (Shewry and Wynn
1987) is produced by solving iMASP(n) (5). Similar to The-
orem 4, it can be shown to be equivalent to the strictly adap-
tive π

1
k for GP. Although iMASP( 1

k ) and iMASP(n) can
be solved exactly, their state size grows exponentially with
the number of stages. To alleviate this computational dif-
ficulty, we use anytime heuristic search algorithms URTDP
(Algorithm 1) and Learning Real-Time A∗ to, respectively,
solve iMASP( 1

k ) and iMASP(n) approximately. The adap-
tive greedy policy for �GP repeatedly chooses a reward-
maximizing action (i.e., by repeatedly solving iMASP( 1

k )
with t = 0 in (11)) to form the paths. The non-adaptive
greedy policy for GP performs likewise but does it in the
log-scale. In contrast to the above policies that optimize the
entropy criterion (1), a non-adaptive greedy policy is pro-
posed by Guestrin, Krause, and Singh (2005) to approxi-
mately maximize the mutual information (MI) criterion for
GP; it repeatedly selects a new sampling location that maxi-
mizes the increase in MI. We call this the MI-based policy.
Performance metrics. Two metrics are used to evalu-
ate the above policies: (a) Posterior map entropy (ENT)
H[Yx0:t |dt] of domain X is the optimized criterion (1) mea-
suring the posterior joint entropy of the original measure-
ments Yx0:t at the unobserved locations x0:t where t = 16
(17) for the case of 2 (1) robots. A smaller ENT implies
lower map uncertainty; (b) Mean-squared relative error
(ERR) |X |−1

∑
x∈X {(yx−μYx|dt

)/μ̄}2 measures the poste-
rior map error from using the best unbiased predictor μYx|dt

(i.e., �GP posterior mean) (Low, Dolan, and Khosla 2008)
of the measurement yx to predict the hotspot field where
μ̄ = |X |−1

∑
x∈X yx. Although this criterion is not the one

being optimized, it allows the use of ground truth measure-
ments to evaluate if the field is being mapped accurately. A
smaller ERR implies lower map prediction error.

Table 1 shows the results of various policies with different
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Table 1: Performance comparison of information-theoretic
policies for chl-a and K fields: 1R (2R) denotes 1 (2) robots.

Plankton density (chl-a) field ENT ERR
Exploration policy Model 1R 2R 1R 2R
Adaptive π1/k �GP 381.37 376.19 0.1827 0.2319
Adaptive greedy �GP 382.97 383.55 0.2919 0.2579
Non-adaptive πn GP 390.62 399.63 0.4145 0.3194
Non-adaptive greedy GP 392.35 392.51 0.2994 0.3356
MI-based GP 395.37 397.02 0.2764 0.2706

Potassium (K) field ENT ERR
Exploration policy Model 1R 2R 1R 2R
Adaptive π1/k �GP 47.330 48.287 0.0299 0.0213
Adaptive greedy �GP 61.080 56.181 0.0457 0.0302
Non-adaptive πn GP 67.084 59.318 0.0434 0.0358
Non-adaptive greedy GP 58.704 64.186 0.0431 0.0335
MI-based GP 59.058 67.390 0.0435 0.0343

assumed models and robot team sizes for chl-a and K fields.
For iMASP( 1

k ) and iMASP(n), the results are obtained us-
ing the policies provided by the anytime algorithms after
running 120000 simulated paths. The differences in results
between policies have been verified using t-tests (α = 0.1)
to be statistically significant.
Plankton density data. The results show that the strictly
adaptive π

1
k achieves lowest ENT and ERR as compared

to the tested policies. From Fig. 2a, π
1
k moves the robots

to sample the hotspots showing higher spatial variability
whereas πn moves them to sparsely sampled areas. Figs. 2b
and 2c show, respectively, the prediction error maps result-
ing from π

1
k and πn; the prediction error at each location

x is measured using |yx − μYx|dt
|/μ̄. Locations with large

errors are mostly concentrated in the left region where the
field is highly-varying and contains higher measurements.
Compared to π

1
k , πn incurs large errors at more locations in

or close to hotspots, thus resulting in higher ERR.
We also compare the time needed to run the first 10000

SIMULATED-PATH(d0, t)’s of our URTDP algorithm to
that of Low, Dolan, and Khosla (2008), which are 115s and
10340s respectively for 2 robots (i.e., 90× faster). They, re-
spectively, take 66s and 2835s for 1 robot (i.e., 43× faster).
So, scaling to 2 robots incurs 1.73× and 3.65× more time
for the respective algorithms. Policy π

1
k can already achieve

the performance reported in Table 1 for 2 robots, and ENT
of 389.23 and ERR of 0.231 for 1 robot. In contrast, the
policy of Low, Dolan, and Khosla (2008) only improves to
ENT of 377.82 (391.85) and ERR of 0.233 (0.252) for 2 (1)
robots, which are slightly worse off.
Potassium distribution data. The results show again that
π

1
k achieves lowest ENT and ERR. From Fig. 2d, π

1
k again

moves the robots to sample the hotspots showing higher spa-
tial variability whereas πn moves them to sparsely sampled
areas. Compared to π

1
k , πn incurs large errors at a greater

number of locations in or close to hotspots as shown in
Figs. 2e and 2f, thus resulting in higher ERR.

To run 10000 SIMULATED-PATH(d0, t)’s, our URTDP
algorithm is 84× (48×) faster than that of Low, Dolan, and
Khosla (2008) for 2 (1) robots. Scaling to 2 robots incurs
1.93× and 3.37× more time for the respective algorithms.

Policy π
1
k can already achieve the performance reported in

Table 1 for 1 and 2 robots. In contrast, the policy of Low,
Dolan, and Khosla (2008) achieves worse ENT of 67.132
(55.015) for 2 (1) robots. It achieves worse ERR of 0.032
for 2 robots but better ERR of 0.025 for 1 robot.
Summary of test results. The above results show that the
strictly adaptive π

1
k can learn the highest-quality hotspot

field map (i.e., lowest ENT and ERR) among the tested state-
of-the-art strategies. After evaluating whether MASP- vs.
iMASP-based planners are time-efficient for real-time de-
ployment, we observe that π

1
k can achieve mapping perfor-

mance comparable to the policy of Low, Dolan, and Khosla
(2008) using significantly less time, and the incurred plan-
ning time is also less sensitive to larger robot team size.
Lastly, we see in Fig. 2 that the strictly adaptive π

1
k has

exploited clustering phenomena (i.e., hotspots) to achieve
lower ENT and ERR than that of the non-adaptive πn.

Conclusion
This paper describes an information-theoretic approach to
efficient adaptive path planning for active exploration and
mapping of hotspot fields. We have shown that, like MASP,
iMASP is capable of exploiting clustering phenomena to
produce lower map uncertainty. In contrast to MASP, the
time complexity of solving (reward-maximizing) iMASP
approximately is independent of map resolution and is also
less sensitive to increasing robot team size as demonstrated
theoretically and empirically. This is clearly advantageous
in large-scale, high-resolution exploration and mapping.
The proposed approximation techniques can be generalized
to solve iMASPs that utilize the full joint action space of the
robot team, thus allowing the robots to move simultaneously
at every stage and the mission time to be constrained.
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