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Abstract

This paper presents an action selection framework
based on an assemblage of self-organizing neu-
ral networks called Cooperative Extended Kohonen
Maps. This framework encapsulates two features
that significantly enhance a robot’s action selection
capability: self-organization in the continuous state
and action spaces to provide smooth, efficient and
fine motion control; action selection via the cooper-
ation and competition of Extended Kohonen Maps
to achieve more complex motion tasks. Qualitative
and quantitative comparisons for single- and multi-
robot tasks show our framework can provide better
action selection than do potential fields method.

1 Introduction
A central issue in the design of behavior-based control archi-
tectures for autonomous agents is the formulation of effective
action selection mechanisms (ASMs) to coordinate the be-
haviors. This paper describes a neural network-based ASM
for autonomous non-holonomic mobile robots. Our motiva-
tion is to develop a motion control strategy that can perform
distributed multi-robot surveillance in unknown, dynamic,
and unpredictable environments. By implementing the ASM
using an assemblage of self-organizing neural networks, it in-
duces the following key features that significantly enhance
the agent’s action selection capability: self-organization of
continuous state and action spaces to provide smooth, effi-
cient and fine motion control, and action selection via the
cooperation and competition of Extended Kohonen Maps to
achieve more complex motion tasks.

2 Action Selection Framework
Our proposed ASM, termed Cooperative Extended Kohonen
Maps (EKMs), is implemented by connecting an ensemble of
EKMs. An EKM extends the Kohonen Self-Organizing Map.
Besides encoding a set of input weights that self-organize in
the sensory input space, the neurons also produce outputs that
vary with the incoming sensed inputs. Our implementation
extends the work of [Low et al., 2002] by connecting several
EKMs to form cooperative EKMs. These neural networks co-
operate and compete to produce an appropriate motor action

for the robot to approach targets, negotiate unforeseen, possi-
bly concave, obstacles, and keep away from robot kins when
it is tracking moving targets (Fig. 1).

Our ASM framework consists of four types of EKMs: tar-
get localization, obstacle localization, robot kin localization,
and motor control EKMs. In the presence of a target, neurons
in the target localization EKM, which encodes target location
in the local sensory input space U ′, are activated (Fig. 1a). A
target field with the shape of an elongated Gaussian is pro-
duced (Fig. 1b) such that the neurons at and near the target
location have the strongest activities. The elongated target
field is crucial to the robot’s avoidance of concave obstacles.

Similarly, the presence of an obstacle activates neurons in
the obstacle localization EKMs. The neurons in these EKMs
at and near the obstacle locations will be activated to produce
obstacle fields (Fig. 1c). These obstacle fields are stretched
along the obstacle directions such that neurons beyond the
obstacle locations are also inhibited to indicate inaccessibil-
ity. Robot kin fields are activated in a similar way in the robot
EKMs in the presense of robot kins.

In activating the motor control EKM, the obstacle fields
are subtracted from the target field (Fig. 1d). If the target lies
within the obstacle fields, the activation of the motor con-
trol EKM neurons close to the target location will be sup-
pressed. Consequently, another neuron at a location that is
not inhibited by the obstacle fields becomes most highly ac-
tivated (Fig. 1d). This neuron produces a control parameter
that moves the robot away from the obstacle. While the robot
moves around the obstacle, the target and obstacle localiza-
tion EKMs are continuously updated with the current loca-
tions and directions of the target and obstacles. Their interac-
tions with the motor control EKM produce fine and smooth
motion control of the robot to negotiate the obstacle and reach
the target. In the case of multi-robot tracking of multiple tar-
gets, multiple target fields and robot kins fields are activated.
The robots act like highly repulsive obstacles to other robots,
thus separating them from each other.

3 Experiments and Discussions
Two qualitative tests were conducted to demonstrate the ca-
pabilities of cooperative EKMs in performing complex mo-
tion tasks. The experiments were performed using Webots,
an embodied simulator for Khepera mobile robots, which in-
corporated 10% noise in its sensors and actuators.

Proc. 18th IJCAI’03, Aug 9-15, 2003, Acapulco, Mexico.



+

U’

+

U’

+

XX

X

U’

+

XX

X

U’

(a) (b) (c) (d)
Figure 1: Cooperative EKMs. (a) In response to the target ⊕, the nearest neuron (black dot) in the target localization EKM
(ellipse) of the robot (gray circle) is activated. (b) The activated neuron produces a target field (dotted ellipse) in the motor
control EKM. (c) Three of the robot’s sensors detect obstacles and activate three neurons (crosses) in the obstacle localization
EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of the obstacle fields from the target field results in
the neuron at 4 to become the winner in the motor control EKM, which moves the robot away from the obstacle.
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Figure 2: Motion of robot (dark gray) in an environment with
unforeseen static obstacles (light gray). The robot success-
fully navigated through the checkpoints (small black dots)
located at the doorways to reach the goal.

The environment for the first test consisted of three rooms
connected by two doorways with unforeseen static obsta-
cles (Fig. 2). The robot began in the top corner of the left-
most room and was tasked to move into the narrow corner
of the right-most room via checkpoints plotted by a planner.
The robot with cooperative EKMs was able to move through
the checkpoints to the goal by traversing between narrowly
spaced convex obstacles in the first and the last room, and
overcoming an concave obstacle in the middle room. A robot
with potential fields would be trapped by these local minimas.

The second test (Fig. 3) illustrates how two robots endowed
with cooperative EKMs cooperate to track four moving tar-
gets. When the targets were moving out of the robots’ sensory
range, the robot below chose to track the two targets moving
to the bottom left while the robot above responded by track-
ing the two targets moving to the top right. In this manner, all
targets could be observed by the robots. This test shows that
the two robots can cooperate to track multiple moving targets
without communicating with each other.

Two quantitative tests were conducted to determine the
overall tracking performance of the robot team based on the
following performance index:

observation coverage =

T∑

t=1

100
n(t)

NT
(1)

where N is total number of targets, n is number of targets
being tracked at time t, and the experiment lasts T amount of
time. For both tests, N and T were fixed respectively as 10
targets and 1000 time steps at intervals of 128 ms.

The first test compared the mean observation coverage of
robots adopting four different tracking strategies: coopera-
tive EKMs, potential fields, fixed deployment, and random
deployment. The environment or arena was an enclosed
obstacle-free region that varied in size. The mobile tar-
gets were forward-moving, obstacle-avoidance vehicles that
changed their direction and speed with 5% probability. Five
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Figure 3: Cooperative tracking of moving targets. When the
targets were moving out of the robots’ sensory range, the
robot below decided to track the targets moving to the bottom
left while the robot above responded by tracking the targets
moving to the top right. In this way, all targets could still be
observed by the robots.
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Figure 4: Comparison of observation coverage for (a) robots
using different tracking strategies in varying arena size, and
(b) varying number of robots with different sensing ranges.

robots, each with target and robot sensing radius of 0.3 m,
were deployed in this task. The fixed deployment approach
distributed stationary robots uniformly over the arena. The
random deployment approach allowed the robots to move
randomly in a manner similar to the moving targets. Test re-
sults in Fig. 4(a) reveal that, in very large arenas, tracking
strategies that respond dynamically to targets’ motion (co-
operative EKMs and potential fields) are significantly better
than those that do not (fixed and random). In particular, co-
operative EKMs offered the highest observation coverage as
it could overcome local minimas posed by targets and robots.

The second test compared the mean observation coverage
of the cooperative-EKM robots with different sensing ranges
and number of robots. The size of the arena was 6.4 m2,
which corresponded to the largest arena used for the first test.
Test results in Fig. 4(b) show that observation coverage in-
creases with increasing number of robots and sensing range.
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