
Interactive POMDP Lite: Towards Practical Planning to Predict and
Exploit Intentions for Interacting with Self-Interested Agents

Trong Nghia Hoang and Kian Hsiang Low
Department of Computer Science, National University of Singapore

Republic of Singapore
{nghiaht, lowkh}@comp.nus.edu.sg

Abstract

A key challenge in non-cooperative multi-agent
systems is that of developing efficient planning al-
gorithms for intelligent agents to interact and per-
form effectively among boundedly rational, self-
interested agents (e.g., humans). The practicality
of existing works addressing this challenge is being
undermined due to either the restrictive assump-
tions of the other agents’ behavior, the failure in
accounting for their rationality, or the prohibitively
expensive cost of modeling and predicting their in-
tentions. To boost the practicality of research in this
field, we investigate how intention prediction can
be efficiently exploited and made practical in plan-
ning, thereby leading to efficient intention-aware
planning frameworks capable of predicting the in-
tentions of other agents and acting optimally with
respect to their predicted intentions. We show that
the performance losses incurred by the resulting
planning policies are linearly bounded by the er-
ror of intention prediction. Empirical evaluations
through a series of stochastic games demonstrate
that our policies can achieve better and more robust
performance than the state-of-the-art algorithms.

1 Introduction
A fundamental challenge in non-cooperative multi-agent sys-
tems (MAS) is that of designing intelligent agents that can
efficiently plan their actions under uncertainty to interact
and perform effectively among boundedly rational1, self-
interested agents (e.g., humans). Such a challenge is posed
by many real-world applications [Hansen et al., 2004], which
include automated electronic trading markets where software
agents interact, and traffic intersections where autonomous
cars have to negotiate with human-driven vehicles to cross
them, among others. These applications can be modeled
as partially observable stochastic games (POSGs) in which
the agents are self-interested (i.e., non-cooperative) and do
not necessarily share the same goal, thus invalidating the

1Boundedly rational agents are subject to limited cognition and
time in making decisions [Gigerenzer and Selten, 2002].

use of planning algorithms developed for coordinating co-
operative agents (i.e., solving POSGs with common pay-
offs) [Nair and Tambe, 2003; Seuken and Zilberstein, 2007;
Spaan et al., 2011]. Existing planning frameworks for non-
cooperative MAS can be generally classified into:
Game-theoretic frameworks. Based on the well-founded
classical game theory, these multi-agent planning frameworks
[Hansen et al., 2004; Hu and Wellman, 1998]2 characterize
the agents’ interactions in a POSG using solution concepts
such as Nash equilibrium. Such frameworks suffer from the
following drawbacks: (a) Multiple equilibria may exist, (b)
only the optimal actions corresponding to the equilibria are
specified, and (c) they assume that the agents do not col-
laborate to beneficially deviate from the equilibrium (i.e., no
coalition), which is often violated by human agents.
Decision-theoretic frameworks. Unafflicted by the draw-
backs of game-theoretic approaches, they extend single-agent
decision-theoretic planning frameworks such as the Markov
decision process (MDP) and partially observable Markov
decision process (POMDP) to further characterize interac-
tions with the other self-interested agents in a POSG. In
particular, the interactive POMDP (I-POMDP) framework
[Doshi and Gmytrasiewicz, 2009; Doshi and Perez, 2008;
Gmytrasiewicz and Doshi, 2005; Rathnasabapathy et al.,
2006] is proposed to explicitly account for the bounded ra-
tionality of self-interested agents: It replaces POMDP’s flat
beliefs over the physical states with interactive beliefs over
both the physical states and the other agent’s beliefs. Em-
powered by such an enriched, highly expressive belief space,
I-POMDP can explicitly model and predict the other agent’s
intention (i.e., mixed strategy) under partial observability.

However, solving I-POMDP is prohibitively expensive due
to the following computational difficulties [Doshi and Perez,
2008; Gmytrasiewicz and Doshi, 2005]: (a) Curse of di-
mensionality – since I-POMDP’s interactive belief is over
the joint space of physical states and the other agent’s beliefs
(termed interactive state space in [Doshi and Perez, 2008]),
its dimension can be extremely large and possibly infinite;
(b) curse of history – similar to POMDP, I-POMDP’s pol-
icy space grows exponentially with the length of planning
horizon; and (c) curse of nested reasoning – as I-POMDP

2The learning framework of Hu and Wellman [1998] trivially re-
duces to planning when the transition model is known a priori.



utilizes a nested structure within our agent’s belief space to
represent its belief over the other agent’s belief and the other
agent’s belief over our agent’s belief and so on, it aggravates
the effects of the other two curses [Doshi and Perez, 2008].

To date, a number of approximate I-POMDP techniques
[Doshi and Gmytrasiewicz, 2009; Doshi and Perez, 2008;
Rathnasabapathy et al., 2006] have been proposed to miti-
gate some of the above difficulties. Notably, Interactive Par-
ticle Filtering (I-PF) [Doshi and Gmytrasiewicz, 2009] fo-
cused on alleviating the curse of dimensionality by gener-
alizing the particle filtering technique to accommodate the
multi-agent setting while Interactive Point-based Value Itera-
tion [Doshi and Perez, 2008] (I-PBVI) aimed at relieving the
curse of history by generalizing the well-known point-based
value iteration (PBVI) [Pineau et al., 2003] to operate in the
interactive belief space. Unfortunately, I-PF fails to address
the curse of history and it is not clear how PBVI or other
sampling-based algorithm can be modified to work with a
particle representation of interactive beliefs, whereas I-PBVI
suffers from the curse of dimensionality because its dimen-
sion of interactive belief grows exponentially with the length
of planning horizon of the other agent (Section 3). Using in-
teractive beliefs, it is therefore not known whether it is even
possible to jointly lift both curses, for example, by extending
I-PF or I-PBVI. Furthermore, they do not explicitly account
for the curse of nested reasoning. As a result, their use has
been restricted to small, simple problems [Ng et al., 2010]
(e.g., multiagent Tiger [Gmytrasiewicz and Doshi, 2005;
Nair and Tambe, 2003; Doshi and Perez, 2008]).

To tractably solve larger problems, existing approximate
I-POMDP techniques such as I-PF and I-PBVI have to sig-
nificantly reduce the quality of approximation and impose re-
strictive assumptions (Section 3), or risk not producing a pol-
icy at all with the available memory of modern-day comput-
ers. This naturally raises the concern of whether the resulting
policy can still perform well or not under different partially
observable environments, as investigated in Section 5. Since
such drastic compromises in solution quality are necessary
of approximate I-POMDP techniques to tackle a larger prob-
lem directly, it may be worthwhile to instead consider for-
mulating an approximate version of the problem with a less
sophisticated structural representation such that it allows an
exact or near-optimal solution policy to be more efficiently
derived. More importantly, can the induced policy perform
robustly against errors in modeling and predicting the other
agent’s intention? If we are able to formulate such an approx-
imate problem, the resulting policy can potentially perform
better than an approximate I-POMDP policy in the original
problem while incurring significantly less planning time.

Our work in this paper investigates such an alternative: We
first develop a novel intention-aware nested MDP framework
(Section 2) for planning in fully observable multi-agent en-
vironments. Inspired by the cognitive hierarchy model of
games [Camerer et al., 2004], nested MDP constitutes a re-
cursive reasoning formalism to predict the other agent’s in-
tention and then exploit it to plan our agent’s optimal inter-
action policy. Its formalism is by no means a reduction of
I-POMDP. We show that nested MDP incurs linear time in
the planning horizon length and reasoning depth. Then, we

propose an I-POMDP Lite framework (Section 3) for plan-
ning in partially observable multi-agent environments that, in
particular, exploits a practical structural assumption: The in-
tention of the other agent is driven by nested MDP, which is
demonstrated theoretically to be an effective surrogate of its
true intention when the agents have fine sensing and actuation
capabilities. This assumption allows the other agent’s inten-
tion to be predicted efficiently and, consequently, I-POMDP
Lite to be solved efficiently in polynomial time, hence lifting
the three curses of I-POMDP. As demonstrated empirically,
it also improves I-POMDP Lite’s robustness in planning per-
formance by overestimating the true sensing capability of the
other agent. We provide theoretical performance guarantees
of the nested MDP and I-POMDP Lite policies that improve
with decreasing error of intention prediction (Section 4). We
extensively evaluate our frameworks through experiments in-
volving a series of POSGs that have to be modeled using a
significantly larger state space (Section 5).

2 Nested MDP

Given that the environment is fully observable, our proposed
nested MDP framework can be used to predict the other
agent’s strategy and such predictive information is then ex-
ploited to plan our agent’s optimal interaction policy. Inspired
by the cognitive hierarchy model of games [Camerer et al.,
2004], it constitutes a well-defined recursive reasoning pro-
cess that comprises k levels of reasoning. At level 0 of rea-
soning, our agent simply believes that the other agent chooses
actions randomly and computes its best response by solving a
conventional MDP that implicitly represents the other agent’s
actions as stochastic noise in its transition model. At higher
reasoning levels k ≥ 1, our agent plans its optimal strategy
by assuming that the other agent’s strategy is based only on
lower levels 0, 1, . . . , k − 1 of reasoning. In this section, we
will formalize nested MDP and show that our agent’s optimal
policy at level k can be computed recursively.

Nested MDP Formulation. Formally, nested MDP for
agent t at level k of reasoning is defined as a tuple Mk

t ,(
S,U, V, T,R, {πi-t}k−1

i=0 , φ
)

where S is a set of all possi-
ble states of the environment; U and V are, respectively,
sets of all possible actions available to agents t and -t; T :
S×U×V ×S → [0, 1] denotes the probability Pr(s′|s, u, v)
of going from state s ∈ S to state s′ ∈ S using agent t’s ac-
tion u ∈ U and agent -t’s action v ∈ V ; R : S×U ×V → R
is a reward function of agent t; πi-t : S × V → [0, 1] is a
reasoning model of agent -t at level i < k, as defined later in
(3); and φ ∈ (0, 1) is a discount factor.

Nested MDP Planning. The optimal (h+1)-step-to-go value
function of nested MDP Mk

t at level k ≥ 0 for agent t satis-
fies the following Bellman equation:

Uk,h+1
t (s) , max

u∈U

∑
v∈V

π̂k-t(s, v) Qk,h+1
t (s, u, v)

Qk,h+1
t (s, u, v) , R(s, u, v) + φ

∑
s′∈S

T (s, u, v, s′) Uk,ht (s′)

(1)
where the mixed strategy π̂k-t of the other agent -t for k > 0



is predicted as

π̂k-t(s, v) ,

{ ∑k−1
i=0 p(i)π

i
-t(s, v) if k > 0,

|V |−1 otherwise.
(2)

where the probability p(i) (i.e.,
∑k−1
i=0 p(i) = 1) specifies

how likely agent -t will reason at level i; a uniform distribu-
tion is assumed when there is no such prior knowledge. Alter-
natively, one possible direction for future work is to learn p(i)
using multi-agent reinforcement learning techniques such
as those described in [Chalkiadakis and Boutilier, 2003;
Hoang and Low, 2013a]. At level 0, agent -t’s reasoning
model π0

-t is induced by solving M0
-t. To obtain agent -t’s

reasoning models {πi-t}k−1
i=1 at levels i = 1, . . . , k − 1, let

Opti-t(s) be the set of agent -t’s optimal actions for state s
induced by solving its nested MDP M i

-t, which recursively
involves building agent t’s reasoning models {πlt}i−1

l=0 at lev-
els l = 0, 1, . . . , i− 1, by definition. Then,

πi-t(s, v) ,

{
|Opti-t(s)|−1 if v ∈ Opti-t(s),

0 otherwise.
(3)

After predicting agent -t’s mixed strategy π̂k-t (2), agent t’s
optimal policy (i.e., reasoning model) πkt at level k can be
induced by solving its corresponding nested MDP Mk

t (1).

Time Complexity. Solving Mk
t involves solving {M i

-t}k−1
i=0 ,

which, in turn, requires solving {M i
t}k−2
i=0 , and so on. Thus,

solving Mk
t requires solving M i

t (i = 0, . . . , k − 2) and
M i

-t (i = 0, . . . , k − 1), that is, O(k) nested MDPs. Given
π̂k-t, the cost of deriving agent t’s optimal policy grows lin-
early with the horizon length h as the backup operation (1)
has to be performed h times. In turn, each backup opera-
tion incursO

(
|S|2

)
time given that |U | and |V | are constants.

Then, given agent -t’s profile of reasoning models {πi-t}k−1
i=0 ,

predicting its mixed strategy π̂k-t(s, v) (2) incurs O(k) time.
Therefore, solving agent t’s nested MDP Mk

t (1) or inducing
its corresponding reasoning model πkt incurs O

(
kh|S|2

)
.

3 Interactive POMDP Lite
To tackle partial observability, it seems obvious to first
consider generalizing the recursive reasoning formalism of
nested MDP. This approach yields two practical complica-
tions: (a) our agent’s belief over both the physical states
and the other agent’s beliefs (i.e., a probability distribution
over probability distributions) has to be modeled, and (b) the
other agent’s mixed strategy has to be predicted for each of
its infinitely many possible beliefs. Existing approximate I-
POMDP techniques address these respective difficulties by
(a) using a finite particle representation like I-PF [Doshi and
Gmytrasiewicz, 2009] or (b) constraining the interactive state
space IS to IS′ = S × Reach(B, h) like I-PBVI [Doshi and
Perez, 2008] where Reach(B, h) includes the other agent’s
beliefs reachable from a finite set B of its candidate initial
beliefs over horizon length h.

However, recall from Section 1 that since I-PF suffers from
the curse of history, the particle approximation of interac-
tive beliefs has to be made significantly coarse to solve larger

problems tractably, thus degrading its planning performance.
I-PBVI, on the other hand, is plagued by the curse of dimen-
sionality due to the need of constructing the set Reach(B, h)
whose size grows exponentially with h. As a result, it can-
not tractably plan beyond a few look-ahead steps for even
the small test problems in Section 5. Furthermore, it im-
poses a restrictive assumption that the true initial belief of
the other agent, which is often not known in practice, needs
to be included in B to satisfy the absolute continuity condi-
tion of interactive beliefs [Doshi and Perez, 2008] (see Ap-
pendix C of Hoang and Low [2013b] for more details). So,
I-PBVI may not perform well under practical environmen-
tal settings where a long planning horizon is desirable or the
other agent’s initial belief is not included in B. For I-PF and
I-PBVI, the curse of nested reasoning aggravates the effects
of other curses.

Since predicting the other agent’s intention using approx-
imate I-POMDP techniques is prohibitively expensive, it is
practical to consider a computationally cheaper yet credible
information source providing its intention such as its nested
MDP policy. Intuitively, such a policy describes the inten-
tion of the other agent with full observability who believes
that our agent has full observability as well. Knowing the
other agent’s nested MDP policy is especially useful when
the agents’ sensing and actuation capabilities are expected to
be good (i.e., accurate observation and transition models), as
demonstrated in the following simple result:

Theorem 1 Let Q̂n-t(s, v) , |U |−1
∑
u∈U Q

0,n
-t (s, v, u) and

Q̂n-t(b, v) denote n-step-to-go values of selecting action v ∈
V in state s ∈ S and belief b, respectively, for the other agent
-t using nested MDP and I-POMDP at reasoning level 0 (i.e.,
MDP and POMDP). If b(s) ≥ 1− ε and

∀ (s, v, u)∃ (s′, o)Pr(s′|s, v, u)≥1− ε
2
∧ Pr(o|s, v)≥1− ε

2
for some ε ≥ 0, then∣∣∣Q̂n-t(s, v)− Q̂n-t(b, v)

∣∣∣ ≤ ε O(Rmax −Rmin

1− φ

)
(4)

where Rmax and Rmin denote agent -t’s maximum and mini-
mum immediate payoffs, respectively.
Its proof is given in Appendix A of Hoang and Low [2013b].
Following from Theorem 1, we conjecture that, as ε decreases
(i.e., observation and transition models become more accu-
rate), the nested MDP policy π0

-t of the other agent is more
likely to approximate the exact I-POMDP policy closely.
Hence, the nested MDP policy serves as an effective surro-
gate of the exact I-POMDP policy (i.e., true intention) of the
other agent if the agents have fine sensing and actuation ca-
pabilities; such a condition often holds for typical real-world
environments.

Motivated by the above conjecture and Theorem 1, we
propose an alternative I-POMDP Lite framework by exploit-
ing the following structural assumption: The intention of the
other agent is driven by nested MDP. This assumption al-
lows the other agent’s intention to be predicted efficiently by
computing its nested MDP policy, thus lifting I-POMDP’s
curse of nested reasoning (Section 2). More importantly, it
enables both the curses of dimensionality and history to be



lifted, which makes solving I-POMDP Lite very efficient,
as explained below. Compared to existing game-theoretic
frameworks [Hu and Wellman, 1998; Littman, 1994] which
make strong assumptions of the other agent’s behavior, our
assumption is clearly less restrictive. Unlike the approximate
I-POMDP techniques, it does not cause I-POMDP Lite to be
subject to coarse approximation when solving larger prob-
lems, which can potentially result in better planning perfor-
mance. Furthermore, by modeling and predicting the other
agent’s intention using nested MDP, I-POMDP Lite tends
to overestimate its true sensing capability and can therefore
achieve a more robust performance than I-PBVI using signif-
icantly less planning time under different partially observable
environments (Section 5).

I-POMDP Lite Formulation. Our I-POMDP Lite frame-
work constitutes an integration of the nested MDP for pre-
dicting the other agent’s mixed strategy into a POMDP for
tracking our agent’s belief in partially observable environ-
ments. Naively, this can be achieved by extending the be-
lief space to ∆(S × V ) (i.e., each belief b is now a prob-
ability distribution over the state-action space S × V ) and
solving the resulting augmented POMDP. The size of repre-
senting each belief therefore becomes O(|S||V |) (instead of
O(|S|)), which consequently increases the cost of processing
each belief (i.e., belief update). Fortunately, our I-POMDP
Lite framework can alleviate this extra cost: By factorizing
b(s, v) = b(s) π̂k-t(s, v), the belief space over S × V can
be reduced to one over S because the predictive probabilities
π̂k-t(s, v) (2) (i.e., predicted mixed strategy of the other agent)
are derived separately in advance by solving nested MDPs.
This consequently alleviates the curse of dimensionality per-
taining to the use of interactive beliefs, as discussed in Sec-
tion 1. Furthermore, such a reduction of the belief space de-
creases the time and space complexities and typically allows
an optimal policy to be derived faster in practice: the space
required to store n sampled beliefs is only O(n|S|+ |S||V |)
instead of O(n|S||V |).

Formally, I-POMDP Lite (for our agent t) is defined as a
tuple (S,U, V,O, T, Z,R, π̂k-t, φ, b0) where S is a set of all
possible states of the environment; U and V are sets of all
actions available to our agent t and the other agent -t, respec-
tively; O is a set of all possible observations of our agent t;
T : S × U × V × S → [0, 1] is a transition function that
depends on the agents’ joint actions; Z : S×U ×O → [0, 1]
denotes the probability Pr(o|s′, u) of making observation
o ∈ O in state s′ ∈ S using our agent t’s action u ∈ U ;
R : S × U × V → R is the reward function of agent t;
π̂k-t : S × V → [0, 1] denotes the predictive probability
Pr(v|s) of selecting action v in state s for the other agent -t
and is derived using (2) by solving its nested MDPs at levels
0, . . . , k − 1; φ ∈ (0, 1) is a discount factor; and b0 ∈ ∆(S)
is a prior belief over the states of environment.

I-POMDP Lite Planning. Similar to solving POMDP (ex-
cept for a few modifications), the optimal value function of
I-POMDP Lite for our agent t satisfies the below Bellman
equation:

Vn+1(b) = max
u

(
R(b, u) + φ

∑
v,o

Pr(v, o|b, u) Vn(b′)
)

(5)

where our agent t’s expected immediate payoff is

R(b, u) =
∑
s,v

R(s, u, v) Pr(v|s) b(s) (6)

and the belief update is given as

b′(s′) = β Z(s′, u, o)
∑
s

T (s, u, v, s′) Pr(v|s) b(s) .

Note that (6) yields an intuitive interpretation: The uncer-
tainty over the state of the environment can be factored out of
the prediction of the other agent -t’s strategy by assuming that
agent -t can fully observe the environment. Consequently,
solving I-POMDP Lite (5) involves choosing the policy that
maximizes the expected total reward with respect to the pre-
diction of agent -t’s mixed strategy using nested MDP. Like
POMDP, the optimal value function Vn(b) of I-POMDP Lite
can be approximated arbitrarily closely (for infinite horizon)
by a piecewise-linear and convex function that takes the form
of a set Vn3 of α vectors:

Vn(b) = max
α∈Vn

(α · b) . (7)

Solving I-POMDP Lite therefore involves computing the
corresponding set of α vectors that can be achieved induc-
tively: given a finite set Vn of α vectors, we can plug (7) into
(5) to derive Vn+1 (see Theorem 3 in Section 4). Similar
to POMDP, the number of α vectors grows exponentially
with the time horizon: |Vn+1| = |U ||Vn||V ||O|. To avoid
this exponential blow-up, I-POMDP Lite inherits essential
properties from POMDP (Section 4) that make it amenable
to be solved by existing sampling-based algorithm such as
PBVI [Pineau et al., 2003] used here. The idea is to sample
a finite set B of reachable beliefs (from b0) to approximately
represent the belief simplex, thus avoiding the need to
generate the full belief reachability tree to compute the
optimal policy. This alleviates the curse of history pertaining
to the use of interactive beliefs (Section 1). Then, it suffices
to maintain a single α vector for each belief point b ∈ B
that maximizes Vn(b). Consequently, each backup step can
be performed in polynomial time: O(|U ||V ||O||B|2|S|), as
sketched below:

BACKUP(Vn, B)
1. Γu,∗ ← αu,∗(s) =

∑
v R(s, u, v) Pr(v|s)

2. Γu,v,o ← ∀α′i ∈ Vn α
u,v,o
i (s) =

φ Pr(v|s)
∑
s′ Z(s′, u, o) T (s, u, v, s′)α′i(s

′)
3. Γub ← Γu,∗ +

∑
v,o arg maxα∈Γu,v,o(α · b)

4. Return Vn+1 ← ∀b ∈ B arg maxΓu
b ,∀u∈U

(Γub · b)
Time Complexity. Given the set B of sampled beliefs, the
cost of solving I-POMDP Lite is divided into two parts:
(a) The cost of predicting the mixed strategy of the other
agent using nested MDP (2) is O

(
kh|S|2

)
(Section 2); (b)

To determine the cost of approximately solving I-POMDP
Lite with respect to this predicted mixed strategy, since each
backup step incurs O

(
|U ||V ||O||B|2|S|

)
time, solving I-

POMDP Lite for h steps incurs O
(
h|U ||V ||O||B|2|S|

)
time.

3With slight abuse of notation, the value function is also used to
denote the set of corresponding α vectors.



By considering |U |, |V |, and |O| as constants, the cost of
solving I-POMDP Lite can be simplified to O

(
h|S||B|2

)
.

Thus, the time complexity of solving I-POMDP Lite is
O
(
h|S|(k|S|+ |B|2)

)
, which is much less computationally

demanding than the exponential cost of I-PF and I-PBVI
(Section 1).

4 Theoretical Analysis
In this section, we prove that I-POMDP Lite inherits conver-
gence, piecewise-linear, and convex properties of POMDP
that make it amenable to be solved by existing sampling-
based algorithms. More importantly, we show that the perfor-
mance loss incurred by I-POMDP Lite is linearly bounded by
the error of prediction of the other agent’s strategy. This result
also holds for that of nested MDP policy because I-POMDP
Lite reduces to nested MDP under full observability.
Theorem 2 (Convergence) Let V∞ be the value function of
I-POMDP Lite for infinite time horizon. Then, it is contract-
ing/converging: ‖V∞ − Vn+1‖∞ ≤ φ‖V∞ − Vn‖∞.

Theorem 3 (Piecewise Linearity and Convexity) The opti-
mal value function Vn can be represented as a finite set of α
vectors: Vn(b) = maxα∈Vn(α · b).

We can prove by induction that the number of α vectors grows
exponentially with the length of planning horizon; this ex-
plains why deriving the exact I-POMDP Lite policy is in-
tractable in practice.
Definition 1 Let π∗-t be the true strategy of the other agent -t
such that π∗-t(s, v) denotes the true probability Pr∗(v|s) of
selecting action v ∈ V in state s ∈ S for agent -t. Then, the
prediction error is εp , maxv,s |Pr∗(v|s)− Pr(v|s)|.

Definition 2 Let Rmax , maxs,u,v R(s, u, v) be the maxi-
mum value of our agent t’s payoffs.

Theorem 4 (Policy Loss) The performance loss δn incurred
by executing I-POMDP Lite policy, induced w.r.t the pre-
dicted strategy π̂k-t of the other agent -t using nested MDP
(as compared to its true strategy π∗-t), after n backup steps is
linearly bounded by the prediction error εp :

δn ≤ 2εp|V |Rmax

[
φn−1 +

1

1− φ

(
1 +

3φ|O|
1− φ

)]
.

The above result implies that, by increasing the accuracy of
the prediction of the other agent’s strategy, the performance
of the I-POMDP Lite policy can be proportionally improved.
This gives a very strong motivation to seek better and more
reliable techniques, other than our proposed nested MDP
framework, for intention prediction. The formal proofs of the
above theorems are provided in Appendix D of Hoang and
Low [2013b].

5 Experiments and Discussion
This section first evaluates the empirical performance of
nested MDP in a practical multi-agent task called Intersection
Navigation for Autonomous Vehicles (INAV) (Section 5.1),
which involves a traffic scenario with multiple cars com-
ing from different directions (North, East, South, West) into
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Figure 1: Intersection Navigation: (a) The road intersection
modeled as a 7×7 grid (the black areas are not passable); and
(b) accidents caused by cars crossing trajectories.

an intersection and safely crossing it with minimum delay.
Our goal is to implement an intelligent autonomous vehicle
(AV) that cooperates well with human-driven vehicles (HV)
to quickly and safely clear an intersection, in the absence of
communication. Then, the performance of I-POMDP Lite
is evaluated empirically in a series of partially observable
stochastic games (POSGs) (Section 5.2). All experiments
are run on a Linux server with two 2.2GHz Quad-Core Xeon
E5520 processors and 24GB RAM.

5.1 Performance of Nested MDP
In this task, the road intersection is modeled as a 7×7 grid, as
shown in Fig. 1a. The autonomous car (AV) starts at the bot-
tom row of the grid and travels North while a human-driven
car (HV) starts at the leftmost column and travels to the East.
Each car has five actions: Slow down (0), forward right (1),
forward left (2), forward (3) and fast forward (4). Further-
more, it is assumed that ‘slow down’ has speed level 0, ‘for-
ward left’, ‘forward’, and ‘forward right’ have speed level 1
while ‘fast forward’ has speed level 2. The difference in speed
levels of two consecutive actions should be at most 1. In gen-
eral, the car is penalized by the delay cost D > 0 for each
executed action. But, if the joint actions of both cars lead to
an accident by crossing trajectories or entering the same cell
(Fig. 1b), they are penalized by the accident cost C > 0. The
goal is to help the autonomous car to safely clear the intersec-
tion as fast as possible. So, a smaller value of D/C is desired
as it implies a more rational behavior in our agent.

The above scenario is modeled using nested MDP, which
requires more than 18000 states. Each state comprises the
cells occupied by the cars and their current speed levels. The
discount factor φ is set to 0.99. The delay and accident costs
are hard-coded as D = 1 and C = 100. Nested MDP is
used to predict the mixed strategy of the human driver and
our car’s optimal policy is computed with respect to this pre-
dicted mixed strategy. For evaluation, our car is run through
800 intersection episodes. The human-driven car is scripted
with the following rational behavior: the human-driven car
probabilistically estimates how likely a particular action will
lead to an accident in the next time step, assuming that our car
selects actions uniformly. It then forms a distribution over all
actions such that most of the probability mass concentrates
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Figure 2: Performance comparison between nested MDPs at
reasoning levels 0, 1, and 2.

on actions that least likely lead to an accident. Its next action
is selected by sampling from this distribution.

We compare the performance of nested MDPs at reasoning
levels k = 0, 1, 2. When k = 0, it is equivalent to the tradi-
tional MDP policy that treats the other car as environmental
noise. During execution, we maintain a running average Tt
(over the first t episodes) of the number of actions taken to
clear an intersection and the number It of intersections expe-
riencing accidents. The average ratio of the empirical delay
is defined as Rdt = (Tt − Tmin)/Tmin = Tt/Tmin − 1 with
Tmin = 3 (i.e., minimum delay required to clear the intersec-
tion). The empirical accident rate is defined as Rct = It/t.
The average incurred cost is therefore Mt = CRct +DRdt . A
smaller Mt implies better policy performance.

Fig. 2 shows the results of the performance of the evalu-
ated policies. It can be observed that the Mt curves of nested
MDPs at reasoning levels 1 and 2 lie below that of MDP pol-
icy (i.e., reasoning level 0). So, nested MDP outperforms
MDP. This is expected since our rationality assumption holds:
Nested MDP’s prediction is closer to the human driver’s true
intention and is thus more informative than the uniformly-
distributed human driver’s strategy assumed by MDP. Thus,
we conclude that nested MDP is effective when the other
agent’s behavior conforms to our definition of rationality.

5.2 Performance of I-POMDP Lite
Specifically, we compare the performance of I-POMDP Lite
vs. I-POMDP (at reasoning level k = 1) players under ad-
versarial environments modeled as zero-sum POSGs. These
players are tasked to compete against nested MDP and I-
POMDP opponents at reasoning level k = 0 (i.e., respec-
tively, MDP and POMDP opponents) whose strategies ex-
actly fit the structural assumptions of I-POMDP Lite (Sec-
tion 3) and I-POMDP (at k = 1), respectively. The I-
POMDP player is implemented using I-PBVI, which is re-
ported to be the best approximate I-POMDP technique [Doshi
and Perez, 2008]. Each competition consists of 40 stages; the
reward/penalty is discounted by 0.95 after each stage. The
performance of each player, against its opponent, is measured
by averaging its total rewards over 1000 competitions. Our
test environment is larger than the benchmark problems in
[Doshi and Perez, 2008]: There are 10 states, 3 actions, and 8
observations for each player. In particular, we let each of the
first 6 states be associated with a unique observation with high
probability. For the remaining 4 states, every disjoint pair of
states is associated with a unique observation with high prob-

Table 1: I-POMDP’s and I-POMDP Lite’s performance
against POMDP and MDP opponents with varying horizon
lengths h (|S| = 10, |A| = 3, |O| = 8). ‘∗’ denotes that the
program ran out of memory after 10 hours.

POMDP MDP Time (s) |IS′|
I-POMDP (h = 2) 13.33±1.75 −37.88±1.74 177.35 66110
I-POMDP (h = 3) ∗ ∗ ∗ 1587010
I-POMDP Lite (h = 1) 15.22±1.81 15.18±1.41 0.02 N.A.
I-POMDP Lite (h = 3) 17.40±1.71 24.23±1.54 0.45 N.A.
I-POMDP Lite (h = 8) 17.42±1.70 24.66±1.54 17.11 N.A.
I-POMDP Lite (h = 10) 17.43±1.70 24.67±1.55 24.38 N.A.

ability. Hence, the sensing capabilities of I-POMDP Lite and
I-POMDP players are significantly weaker than that of the
MDP opponent with full observability.

Table 1 shows the results of I-POMDP and I-POMDP Lite
players’ performance with varying horizon lengths. The ob-
servations are as follows: (a) Against a POMDP opponent
whose strategy completely favors I-POMDP, both players win
by a fair margin and I-POMDP Lite outperforms I-POMDP;
(b) against a MDP opponent, I-POMDP suffers a huge loss
(i.e.,−37.88) as its structural assumption of a POMDP oppo-
nent is violated, while I-POMDP Lite wins significantly (i.e.,
24.67); and (c) the planning times of I-POMDP Lite and I-
POMDP appear to, respectively, grow linearly and exponen-
tially in the horizon length.

I-POMDP’s exponential blow-up in planning time is ex-
pected because its bounded interactive state space IS′ in-
creases exponentially in the horizon length (i.e., curse of di-
mensionality), as shown in Table 1. Such a scalability is-
sue is especially critical to large-scale problems. To demon-
strate this, Fig. 3b shows the planning time of I-POMDP Lite
growing linearly in the horizon length for a large zero-sum
POSG with 100 states, 3 actions, and 20 observations for each
player; it takes about 6 and 1/2 hours to plan for 100-step
look-ahead. In contrast, I-POMDP fails to even compute its
2-step look-ahead policy within 12 hours.

It may seem surprising that I-POMDP Lite outperforms
I-POMDP even when tested against a POMDP opponent
whose strategy completely favors I-POMDP. This can be ex-
plained by the following reasons: (a) I-POMDP’s exponential
blow-up in planning time forbids it from planning beyond 3
look-ahead steps, thus degrading its planning performance;
(b) as shown in Section 3, the cost of solving I-POMDP
Lite is only polynomial in the horizon length and reasoning
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Figure 3: Graphs of (a) performance R of I-POMDP Lite and
I-POMDP players against hybrid opponents (|S| = 10, |A| =
3, |O| = 8); (b) I-POMDP Lite’s planning time vs. horizon
length h in a large POSG (|S| = 100, |A| = 3, |O| = 20);
and (c) I-POMDP Lite’s planning time vs. reasoning level k
for h = 1 and 10 (|S| = 10, |A| = 3, |O| = 10).



Table 2: I-POMDP’s and I-POMDP Lite’s performance
against POMDP and MDP opponents with varying horizon
lengths h (|S| = 10, |A| = 3, |O| = 10). ‘∗’ denotes that the
program ran out of memory after 10 hours.

POMDP MDP Time (s) |IS′|
I-POMDP (h = 2) 5.70±1.67 −9.62±1.50 815.28 102410
I-POMDP (h = 3) ∗ ∗ ∗ 3073110
I-POMDP Lite (h = 1) 11.18±1.75 20.25±1.53 0.03 N.A.
I-POMDP Lite (h = 3) 14.89±1.79 27.49±1.53 0.95 N.A.
I-POMDP Lite (h = 8) 14.99±1.79 26.91±1.55 24.10 N.A.
I-POMDP Lite (h = 10) 15.01±1.79 26.91±1.55 33.74 N.A.

depth, thus allowing our player to plan with a much longer
look-ahead (Fig. 3b) and achieve substantially better plan-
ning performance; and (c) with reasonably accurate obser-
vation and transition models, Theorem 1 indicates that the
strategy of the MDP opponent (i.e., nested MDP at reason-
ing level 0) is likely to approximate that of the true POMDP
opponent closely, thus reducing the degree of violation of I-
POMDP Lite’s structural assumption of a nested MDP oppo-
nent. Such an assumption also seems to make our I-POMDP
Lite player overestimate the sensing capability of an unfore-
seen POMDP opponent and consequently achieve a robust
performance against it. On the other hand, the poor perfor-
mance of I-POMDP against a MDP opponent is expected be-
cause I-POMDP’s structural assumption of a POMDP oppo-
nent is likely to cause its player to underestimate an unfore-
seen opponent with superior sensing capability (e.g., MDP)
and therefore perform badly against it. In contrast, I-POMDP
Lite performs significantly better due to its structural assump-
tion of a nested MDP opponent at level 0, which matches the
true MDP opponent exactly.

Interestingly, it can be empirically shown that when both
players’ observations are made more informative than those
used in the previous experiment, the performance advan-
tage of I-POMDP Lite over I-POMDP, when tested against
a POMDP opponent, increases. To demonstrate this, we
modify the previous zero-sum POSG to involve 10 observa-
tions (instead of 8) such that every state (instead of a dis-
joint pair of states) is associated with a unique observation
with high probability (i.e., ≥ 0.8); the rest of the probability
mass is then uniformly distributed among the other observa-
tions. Hence, the sensing capabilities of I-POMDP Lite and I-
POMDP players in this experiment are much better than those
used in the previous experiment and hence closer to that of the
MDP opponent with full observability. Table 2 summarizes
the results of I-POMDP Lite’s and I-POMDP’s performance
when tested against the POMDP and MDP opponents in the
environment described above.

To further understand how the I-POMDP Lite and I-
POMDP players perform when the sensing capability of an
unforeseen opponent varies, we set up another adversarial
scenario in which both players pit against a hybrid opponent:
At each stage, with probability p, the opponent knows the
exact state of the game (i.e., its belief is set to be peaked at
this known state) and then follows the MDP policy; other-
wise, it follows the POMDP policy. So, a higher value of p
implies better sensing capability of the opponent. The envi-
ronment settings are the same as those used in the first exper-
iment, that is, 10 states, 8 observations and 3 actions for each

player (Table 1). Fig. 3a shows the results of how the perfor-
mance, denoted R, of I-POMDP Lite and I-POMDP players
vary with p: I-POMDP’s performance decreases rapidly as p
increases (i.e., opponent’s strategy violates I-POMDP’s struc-
tural assumption more), thus increasing the performance ad-
vantage of I-POMDP Lite over I-POMDP. This demonstrates
I-POMDP Lite’s robust performance when tested against un-
foreseen opponents whose sensing capabilities violate its
structural assumption.

To summarize the above observations, (a) in different par-
tially observable environments where the agents have reason-
ably accurate observation and transition models, I-POMDP
Lite significantly outperforms I-POMDP (Tables 1, 2 and
Fig. 3a); and (b) interestingly, it can be observed from Fig. 3a
that when the sensing capability of the unforeseen opponent
improves, the performance advantage of I-POMDP Lite over
I-POMDP increases. These results consistently demonstrate
I-POMDP Lite’s robust performance against unforeseen op-
ponents with varying sensing capabilities. In contrast, I-
POMDP only performs well against opponents whose strate-
gies completely favor it, but its performance is not as good
as that of I-POMDP Lite due to its limited horizon length
caused by the extensive computational cost of modeling the
opponent. Unlike I-POMDP’s exponential blow-up in hori-
zon length h and reasoning depth k (Section 1), I-POMDP
Lite’s processing cost grows linearly in both h (Fig. 3b) and
k (Fig. 3c). When h = 10, it can be observed from Fig. 3c
that I-POMDP Lite’s overall processing cost does not change
significantly with increasing k because the costO

(
kh|S|2

)
of

predicting the other agent’s strategy with respect to k is dom-
inated by the cost O

(
h|S||B|2

)
of solving I-POMDP Lite for

large h (Section 3).

6 Conclusion
This paper proposes the novel nested MDP and I-POMDP
Lite frameworks [Hoang and Low, 2012], which incorporate
the cognitive hierarchy model of games [Camerer et al., 2004]
for intention prediction into the normative decision-theoretic
POMDP paradigm to address some practical limitations of
existing planning frameworks for self-interested MAS such as
computational impracticality [Doshi and Perez, 2008] and re-
strictive equilibrium theory of agents’ behavior [Hu and Well-
man, 1998]. We have theoretically guaranteed that the perfor-
mance losses incurred by our I-POMDP Lite policies are lin-
early bounded by the error of intention prediction. We have
empirically demonstrated that I-POMDP Lite performs sig-
nificantly better than the state-of-the-art planning algorithms
in partially observable stochastic games. Unlike I-POMDP,
I-POMDP Lite’s performance is very robust against unfore-
seen opponents whose sensing capabilities violate the struc-
tural assumption (i.e., of a nested MDP opponent) that it has
exploited to achieve significant computational gain. In terms
of computational efficiency and robustness in planning per-
formance, I-POMDP Lite is thus more practical for use in
larger-scale problems.
Acknowledgments. This work was supported by Singapore-
MIT Alliance Research & Technology Subaward Agreements
No. 28 R-252-000-502-592 & No. 33 R-252-000-509-592.



References
[Camerer et al., 2004] C. F. Camerer, T. H. Ho, and J. K.

Chong. A cognitive hierarchy model of games. Quarterly
J. Economics, 119(3):861–898, 2004.

[Chalkiadakis and Boutilier, 2003] Georgios Chalkiadakis
and Craig Boutilier. Coordination in multiagent reinforce-
ment learning: A Bayesian approach. In Proc. AAMAS,
pages 709–716, 2003.

[Doshi and Gmytrasiewicz, 2009] P. Doshi and P. Gmy-
trasiewicz. Monte Carlo sampling methods for approxi-
mating interactive POMDPs. JAIR, pages 297–337, 2009.

[Doshi and Perez, 2008] P. Doshi and D. Perez. Generalized
point based value iteration for interactive POMDPs. In
Proc. AAAI, pages 63–68, 2008.

[Gigerenzer and Selten, 2002] G. Gigerenzer and R. Selten.
Bounded Rationality. MIT Press, 2002.

[Gmytrasiewicz and Doshi, 2005] P. J. Gmytrasiewicz and
P. Doshi. A framework for sequential planning in multi-
agent settings. JAIR, 24:49–79, 2005.

[Hansen et al., 2004] E. A. Hansen, D. S. Bernstein, and
S. Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proc. AAAI, pages 709–715,
2004.

[Hoang and Low, 2012] T. N. Hoang and K. H. Low.
Intention-aware planning under uncertainty for interacting
with self-interested, boundedly rational agents. In Proc.
AAMAS, pages 1233–1234, 2012.

[Hoang and Low, 2013a] T. N. Hoang and K. H. Low. A
general framework for interacting Bayes-optimally with
self-interested agents using arbitrary parametric model and
model prior. In Proc. IJCAI, 2013.

[Hoang and Low, 2013b] T. N. Hoang and K. H. Low. Inter-
active POMDP Lite: Towards practical planning to predict
and exploit intentions for interacting with self-interested
agents. arXiv:1304.5159, 2013.

[Hu and Wellman, 1998] J. Hu and M. P. Wellman. Multi-
agent reinforcement learning: Theoretical framework and
an algorithm. In Proc. ICML, pages 242–250, 1998.

[Littman, 1994] M. L. Littman. Markov games as a frame-
work for multi-agent reinforcement learning. In Proc.
ICML, pages 157–163, 1994.

[Nair and Tambe, 2003] R. Nair and M. Tambe. Taming de-
centralized POMDPs: Towards efficient policy computa-
tion for multiagent settings. In Proc. IJCAI, pages 705–
711, 2003.

[Ng et al., 2010] B. Ng, C. Meyers, K. Boakye, and J. Nitao.
Towards applying interactive POMDPs to real-world ad-
versary modeling. In Proc. IAAI, pages 1814–1820, 2010.

[Pineau et al., 2003] J. Pineau, G. Gordon, and S. Thrun.
Point-based value iteration: An anytime algorithm for
POMDPs. In Proc. IJCAI, pages 1025–1032, 2003.

[Rathnasabapathy et al., 2006] B. Rathnasabapathy,
P. Doshi, and P. Gmytrasiewicz. Exact solutions of

interactive POMDPs using behavioral equivalence. In
Proc. AAMAS, pages 1025–1032, 2006.

[Seuken and Zilberstein, 2007] S. Seuken and S. Zilber-
stein. Memory-bounded dynamic programming for DEC-
POMDPs. In Proc. IJCAI, pages 2009–2015, 2007.

[Spaan et al., 2011] M. T. J. Spaan, F. A. Oliehoek, and
C. Amato. Scaling up optimal heuristic search in DEC-
POMDPs via incremental expansion. In Proc. IJCAI,
pages 2027–2032, 2011.


