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Abstract

Recent advances in Bayesian reinforcement learn-
ing (BRL) have shown that Bayes-optimality is
theoretically achievable by modeling the envi-
ronment’s latent dynamics using Flat-Dirichlet-
Multinomial (FDM) prior. In self-interested multi-
agent environments, the transition dynamics are
mainly controlled by the other agent’s stochastic
behavior for which FDM’s independence and mod-
eling assumptions do not hold. As a result, FDM
does not allow the other agent’s behavior to be
generalized across different states nor specified us-
ing prior domain knowledge. To overcome these
practical limitations of FDM, we propose a gener-
alization of BRL to integrate the general class of
parametric models and model priors, thus allowing
practitioners’ domain knowledge to be exploited to
produce a fine-grained and compact representation
of the other agent’s behavior. Empirical evalua-
tion shows that our approach outperforms existing
multi-agent reinforcement learning algorithms.

1 Introduction
In reinforcement learning (RL), an agent faces a dilemma
between acting optimally with respect to the current, possi-
bly incomplete knowledge of the environment (i.e., exploita-
tion) vs. acting sub-optimally to gain more information about
it (i.e., exploration). Model-based Bayesian reinforcement
learning (BRL) circumvents such a dilemma by consider-
ing the notion of Bayes-optimality [Duff, 2003]: A Bayes-
optimal policy selects actions that maximize the agent’s ex-
pected utility with respect to all possible sequences of future
beliefs (starting from the initial belief) over candidate mod-
els of the environment. Unfortunately, due to the large belief
space, the Bayes-optimal policy can only be approximately
derived under a simple choice of models and model priors.
For example, the Flat-Dirichlet-Multinomial (FDM) prior
[Poupart et al., 2006] assumes the next-state distributions for
each action-state pair to be modeled as independent multino-
mial distributions with separate Dirichlet priors. Despite its
common use to analyze and benchmark algorithms, FDM can
perform poorly in practice as it often fails to exploit the struc-

tured information of a problem [Asmuth and Littman, 2011;
Araya-Lopez et al., 2012].

To elaborate, a critical limitation of FDM lies in its inde-
pendence assumption driven by computational convenience
rather than scientific insight. We can identify practical exam-
ples in the context of self-interested multi-agent RL (MARL)
where the uncertainty in the transition model is mainly caused
by the stochasticity in the other agent’s behavior (in different
states) for which the independence assumption does not hold
(e.g., motion behavior of pedestrians [Natarajan et al., 2012a;
2012b]). Consider, for example, an application of BRL in the
problem of placing static sensors to monitor an environmental
phenomenon: It involves actively selecting sensor locations
(i.e., states) for measurement such that the sum of predictive
variances at the unobserved locations is minimized. Here, the
phenomenon is the “other agent” and the measurements are
its actions. An important characterization of the phenomenon
is that of the spatial correlation of measurements between
neighboring locations/states [Low et al., 2007; 2008; 2009;
2011; 2012; Chen et al., 2012; Cao et al., 2013], which makes
FDM-based BRL extremely ill-suited for this problem due to
its independence assumption.

Secondly, despite its computational convenience, FDM
does not permit generalization across states [Asmuth and
Littman, 2011], thus severely limiting its applicability in
practical problems with a large state space where past obser-
vations only come from a very limited set of states. Interest-
ingly, in such problems, it is often possible to obtain prior do-
main knowledge providing a more “parsimonious” structure
of the other agent’s behavior, which can potentially resolve
the issue of generalization. For example, consider using BRL
to derive a Bayes-optimal policy for an autonomous car to
navigate successfully among human-driven vehicles [Hoang
and Low, 2012; 2013b] whose behaviors in different situa-
tions (i.e., states) are governed by a small, consistent set of
latent parameters, as demonstrated in the empirical study of
Gipps [1981]. By estimating/learning these parameters, it is
then possible to generalize their behaviors across different
states. This, however, contradicts the independence assump-
tion of FDM; in practice, ignoring this results in an inferior
performance, as shown in Section 4. Note that, by using pa-
rameter tying [Poupart et al., 2006], FDM can be modified to
make the other agent’s behavior identical in different states.
But, this simple generalization is too restrictive for real-world



problems like the examples above where the other agent’s be-
havior in different states is not necessarily identical but re-
lated via a common set of latent “non-Dirichlet” parameters.

Consequently, there is still a huge gap in putting BRL
into practice for interacting with self-interested agents of un-
known behaviors. To the best of our knowledge, this is first
investigated by Chalkiadakis and Boutilier [2003] who offer
a myopic solution in the belief space instead of solving for
a Bayes-optimal policy that is non-myopic. Their proposed
BPVI method essentially selects actions that jointly maxi-
mize a heuristic aggregation of myopic value of perfect infor-
mation [Dearden et al., 1998] and an average estimation of
expected utility obtained from solving the exact MDPs with
respect to samples drawn from the posterior belief of the other
agent’s behavior. Moreover, BPVI is restricted to work only
with Dirichlet priors and multinomial likelihoods (i.e., FDM),
which are subject to the above disadvantages in modeling the
other agent’s behavior. Also, BPVI is demonstrated empiri-
cally in the simplest of settings with only a few states.

Furthermore, in light of the above examples, the other
agent’s behavior often needs to be modeled differently de-
pending on the specific application. Grounding in the context
of the BRL framework, either the domain expert struggles
to best fit his prior knowledge to the supported set of mod-
els and model priors or the agent developer has to re-design
the framework to incorporate a new modeling scheme. Ar-
guably, there is no free lunch when it comes to modeling the
other agent’s behavior across various applications. To cope
with this difficulty, the BRL framework should ideally allow
a domain expert to freely incorporate his choice of design in
modeling the other agent’s behavior.

Motivated by the above practical considerations, this pa-
per presents a novel generalization of BRL, which we call
Interactive BRL (I-BRL) (Section 3), to integrate any para-
metric model and model prior of the other agent’s behavior
(Section 2) specified by domain experts, consequently yield-
ing two advantages: The other agent’s behavior can be rep-
resented (a) in a fine-grained manner based on the practition-
ers’ prior domain knowledge, and (b) compactly to be gener-
alized across different states, thus overcoming the limitations
of FDM. We show how the non-myopic Bayes-optimal policy
can be derived analytically by solving I-BRL exactly (Sec-
tion 3.1) and propose an approximation algorithm to compute
it efficiently in polynomial time (Section 3.2). Empirically,
we evaluate the performance of I-BRL against that of BPVI
[Chalkiadakis and Boutilier, 2003] using an interesting traffic
problem modeled after a real-world situation (Section 4).

2 Modeling the Other Agent
In our proposed Bayesian modeling paradigm, the oppo-
nent’s1 behavior is modeled as a set of probabilities pvsh(λ) ,
Pr(v|s, h, λ) for selecting action v in state s conditioned on
the history h , {si, ui, vi}di=1 of d latest interactions where
ui is the action taken by our agent in the i-th step. These
distributions are parameterized by λ, which abstracts the ac-

1For convenience, we will use the terms the “other agent” and
“opponent” interchangeably from now on.

tual parametric form of the opponent’s behavior; this abstrac-
tion provides practitioners the flexibility in choosing the most
suitable degree of parameterization. For example, λ can sim-
ply be a set of multinomial distributions λ , {θvsh} such that
pvsh(λ) , θvsh if no prior domain knowledge is available. Oth-
erwise, the domain knowledge can be exploited to produce a
fine-grained representation of λ; at the same time, λ can be
made compact to generalize the opponent’s behavior across
different states (e.g., Section 4).

The opponent’s behavior can be learned by monitoring the
belief b(λ) , Pr(λ) over all possible λ. In particular, the be-
lief (or probability density) b(λ) is updated at each step based
on the history h ◦ 〈s, u, v〉 of d + 1 latest interactions (with
〈s, u, v〉 being the most recent one) using Bayes’ theorem:

bvsh(λ) ∝ pvsh(λ) b(λ) . (1)
Let s̄ = (s, h) denote an information state that consists of the
current state and the history of d latest interactions. When
the opponent’s behavior is stationary (i.e., d = 0), it follows
that s̄ = s. For ease of notations, the main results of our work
(in subsequent sections) are presented only for the case where
d = 0 (i.e., s̄ = s); extension to the general case just requires
replacing s with s̄. In this case, (1) can be re-written as

bvs(λ) ∝ pvs(λ) b(λ) . (2)
The key difference between our Bayesian modeling paradigm
and FDM [Poupart et al., 2006] is that we do not require b(λ)
and pvs(λ) to be, respectively, Dirichlet prior and multino-
mial likelihood where Dirichlet is a conjugate prior for multi-
nomial. In practice, such a conjugate prior is desirable be-
cause the posterior bvs belongs to the same Dirichlet family
as the prior b, thus making the belief update tractable and
the Bayes-optimal policy efficient to be derived. Despite its
computational convenience, this conjugate prior restricts the
practitioners from exploiting their domain knowledge to de-
sign more informed priors (e.g., see Section 4). Furthermore,
this turns out to be an overkill just to make the belief update
tractable. In particular, we show in Theorem 1 below that,
without assuming any specific parametric form of the initial
prior, the posterior belief can still be tractably represented
even though they are not necessarily conjugate distributions.
This is indeed sufficient to guarantee and derive a tractable
representation of the Bayes-optimal policy using a finite set
of parameters, as shall be seen later in Section 3.1.
Theorem 1 If the initial prior b can be represented exactly
using a finite set of parameters, then the posterior b′ condi-
tioned on a sequence of observations {(si, vi)}n

′

i=1 can also
be represented exactly in parametric form.
Proof Sketch. From (2), we can prove by induction on n′ that

b′(λ) ∝ Φ(λ)b(λ) (3)

Φ(λ) ,
∏
s∈S

∏
v∈V

pvs(λ)ψ
v
s (4)

where ψvs ,
∑n′

i=1 δsv(si, vi) and δsv is the Kronecker delta
function that returns 1 if s = si and v = vi, and 0 otherwise2.

2Intuitively, Φ(λ) can be interpreted as the likelihood of observ-
ing each pair (s, v) for ψv

s times while interacting with an opponent
whose behavior is parameterized by λ.



From (3), it is clear that b′ can be represented by a set of
parameters {ψvs}s,v and the finite representation of b. Thus,
belief update is performed simply by incrementing the hyper-
parameter ψvs according to each observation (s, v). �

3 Interactive Bayesian RL (I-BRL)
In this section, we first extend the proof techniques used
in [Poupart et al., 2006] to theoretically derive the agent’s
Bayes-optimal policy against the general class of parametric
models and model priors of the opponent’s behavior (Sec-
tion 2). In particular, we show that the derived Bayes-optimal
policy can also be represented exactly using a finite number of
parameters. Based on our derivation, a naive algorithm can be
devised to compute the exact parametric form of the Bayes-
optimal policy (Section 3.1). Finally, we present a practical
algorithm to efficiently approximate this Bayes-optimal pol-
icy in polynomial time (with respect to the size of the envi-
ronment model) (Section 3.2).

Formally, an agent is assumed to be interacting with its
opponent in a stochastic environment modeled as a tuple
(S,U, V, {rs}, {puvs }, {pvs(λ)}, φ) where S is a finite set of
states, U and V are sets of actions available to the agent
and its opponent, respectively. In each stage, the immedi-
ate payoff rs(u, v) to our agent depends on the joint action
(u, v) ∈ U × V and the current state s ∈ S. The envi-
ronment then transitions to a new state s′ with probability
puvs (s′) , Pr(s′|s, u, v) and the future payoff (in state s′) is
discounted by a constant factor 0 < φ < 1, and so on. Fi-
nally, as described in Section 2, the opponent’s latent behav-
ior {pvs(λ)} can be selected from the general class of para-
metric models and model priors, which subsumes FDM (i.e.,
independent multinomials with separate Dirichlet priors).

Now, let us recall that the key idea underlying the notion of
Bayes-optimality [Duff, 2003] is to maintain a belief b(λ) that
represents the uncertainty surrounding the opponent’s behav-
ior λ in each stage of interaction. Thus, the action selected
by the learner in each stage affects both its expected imme-
diate payoff Eλ[

∑
v p

v
s(λ)rs(u, v)|b] and the posterior belief

state bvs(λ), the latter of which influences its future payoff and
builds in the information gathering option (i.e., exploration).
As such, the Bayes-optimal policy can be obtained by maxi-
mizing the expected discounted sum of rewards Vs(b):

Vs(b) , max
u

∑
v

〈pvs , b〉

(
rs(u, v) + φ

∑
s′

puvs (s′)Vs′(b
v
s)

)
(5)

where 〈a, b〉 ,
∫
λ
a(λ)b(λ)dλ. The optimal policy for the

learner is then defined as a function π∗ that maps the belief
b to an action u maximizing its expected utility, which can
be derived by solving (5). To derive our solution, we first
re-state two well-known results concerning the augmented
belief-state MDP in single-agent RL [Poupart et al., 2006],
which also hold straight-forwardly for our general class of
parametric models and model priors.

Theorem 2 The optimal value function V k for k steps-to-go
converges to the optimal value function V for infinite horizon
as k →∞: ‖V − V k+1‖∞ ≤ φ‖V − V k‖∞ .

Theorem 3 The optimal value function V ks (b) for k steps-to-
go can be represented by a finite set Γks of α-functions:

V ks (b) = max
αs∈Γk

s

〈αs, b〉 . (6)

Simply put, these results imply that the optimal value Vs in
(5) can be approximated arbitrarily closely by a finite set Γks
of piecewise linear α-functions αs, as shown in (6). Each α-
function αs is associated with an action uαs yielding an ex-
pected utility of αs(λ) if the true behavior of the opponent is
λ and consequently an overall expected reward 〈αs, b〉 by as-
suming that, starting from (s, b), the learner selects action uαs

and continues optimally thereafter. In particular, Γks and uαs

can be derived based on a constructive proof of Theorem 3.
However, due to limited space, we only state the constructive
process below. Interested readers are referred to [Hoang and
Low, 2013a] for a detailed proof. Specifically, given {Γks}s
such that (6) holds for k, it follows (see [Hoang and Low,
2013a]) that

V k+1
s (b) = max

u,t

〈
αuts , b

〉
(7)

where t , (ts′v)s′∈S,v∈V with ts′v ∈
{

1, . . . ,
∣∣Γks′ ∣∣}, and

αuts (λ) ,
∑
v

pvs(λ)
(
rs(u, v)+φ

∑
s′

α
ts′v
s′ (λ)puvs (s′)

)
(8)

such that αts′vs′ denotes the ts′v-th α-function in Γks′ . Set-
ting Γk+1

s = {αuts }u,t and uαut
s

= u, it follows that (6) also
holds for k + 1. As a result, the optimal policy π∗(b) can
be derived directly from these α-functions by π∗(b) , uα∗s
where α∗s = arg maxαut

s ∈Γk+1
s
〈αuts , b〉 . Thus, constructing

Γk+1
s from the previously constructed sets {Γks}s essentially

boils down to an exhaustive enumeration of all possible pairs
(u, t) and the corresponding application of (8) to compute
αuts . Though (8) specifies a bottom-up procedure construct-
ing Γk+1

s from the previously constructed sets {Γks′}s′ of α-
functions, it implicitly requires a convenient parameterization
for the α-functions that is closed under the application of (8).
To complete this analytical derivation, we present a final re-
sult to demonstrate that each α-function is indeed of such
parametric form. Note that Theorem 4 below generalizes a
similar result proven in [Poupart et al., 2006], the latter of
which shows that, under FDM, each α-function can be rep-
resented by a linear combination of multivariate monomials.
A practical algorithm building on our generalized result in
Theorem 4 is presented in Section 3.2.
Theorem 4 Let Φ denote a family of all functions Φ(λ) (4).
Then, the optimal value V ks′ can be represented by a finite set
Γks′ of α-functions αjs′ for j = 1, . . . , |Γks′ |:

αjs′(λ) =

m∑
i=1

ciΦi(λ) (9)

where Φi ∈ Φ. So, each α-function αjs′ can be compactly
represented by a finite set of parameters {ci}mi=1

3.

3To ease readability, we abuse the notations {ci,Φi}mi=1 slightly:
Each αj

s′(λ) should be specified by a different set {ci,Φi}mi=1.



Proof Sketch. We will prove (9) by induction on k4. Suppos-
ing (9) holds for k. Setting j = ts′v in (9) results in

α
ts′v
s′ (λ) =

m∑
i=1

ciΦi(λ) , (10)

which is then plugged into (8) to yield

αuts (λ) =
∑
v∈V

cvΨv(λ) +
∑
s′∈S

∑
v∈V

(
m∑
i=1

cvs′iΨ
v
s′i(λ)

)
(11)

where Ψv(λ) = pvs(λ), Ψv
s′i(λ) = pvs(λ)Φi(λ), and the coef-

ficients cv = rs(u, v) and cvs′i = φpuvs (s′)ci. It is easy to see
that Ψv ∈ Φ and Ψv

s′i ∈ Φ. So, (9) clearly holds for k+1. We
have shown above that, under the general class of parametric
models and model priors (Section 2), each α-function can be
represented by a linear combination of arbitrary parametric
functions in Φ, which subsume multivariate monomials used
in [Poupart et al., 2006]. �

3.1 An Exact Algorithm
Intuitively, Theorems 3 and 4 provide a simple and construc-
tive method for computing the set of α-functions and hence,
the optimal policy. In step k + 1, the sets Γk+1

s for all s ∈ S
are constructed using (10) and (11) from Γks′ for all s′ ∈ S,
the latter of which are computed previously in step k. When
k = 0 (i.e., base case), see the proof of Theorem 4 above (i.e.,
footnote 4). A sketch of this algorithm is shown below:
BACKUP(s, k + 1)

1. Γ∗s,u ←

{
g(λ) ,

∑
v

cvΨv(λ)

}

2. Γv,s
′

s,u ←

{
gj(λ) ,

m∑
i=1

cvs′iΨ
v
s′i(λ)

}
j=1,...,|Γk

s′ |

3. Γs,u ← Γ∗s,u ⊕

⊕
v,s′

Γv,s
′

s,u

5

4. Γk+1
s ←

⋃
u∈U

Γs,u

In the above algorithm, steps 1 and 2 compute the first and
second summation terms on the right-hand side of (11), re-
spectively. Then, steps 3 and 4 construct Γk+1

s = {αuts }u,t
using (11) over all t and u, respectively. Thus, by iteratively
computing Γk+1

s = BACKUP(s, k + 1) for a sufficiently
large value of k, Γk+1

s can be used to approximate Vs arbitrar-
ily closely, as shown in Theorem 2. However, this naive algo-
rithm is computationally impractical due to the following is-
sues: (a) α-function explosion − the number of α-functions
grows doubly exponentially in the planning horizon length, as
derived from (7) and (8):

∣∣Γk+1
s

∣∣ = O
([∏

s′

∣∣Γks′ ∣∣]|V | |U |),
and (b) parameter explosion − the average number of pa-
rameters used to represent an α-function grows by a factor
of O(|S||V |), as manifested in (11). The practicality of our
approach therefore depends crucially on how these issues are
resolved, as described next.

4When k = 0, (9) can be verified by letting ci = 0.
5A⊕B = {a+ b|a ∈ A, b ∈ B}.

3.2 A Practical Approximation Algorithm
In this section, we introduce practical modifications of the
BACKUP algorithm by addressing the above-mentioned is-
sues. We first address the issue of α-function explosion by
generalizing discrete POMDP’s PBVI solver [Pineau et al.,
2003] to be used for our augmented belief-state MDP: Only
the α-functions that yield optimal values for a sampled set
of reachable beliefs Bs = {b1s, b2s, · · · , b

|Bs|
s } are computed

(see the modifications in steps 3 and 4 of the PB-BACKUP
algorithm). The resulting algorithm is shown below:

PB-BACKUP(Bs = {b1s, b2s, · · · , b|Bs|
s }, s, k + 1)

1. Γ∗s,u ←

{
g(λ) ,

∑
v

cvΨv(λ)

}

2. Γv,s
′

s,u ←

{
gj(λ) ,

m∑
i=1

cvs′iΨ
v
s′i(λ)

}
j=1,...,|Γk

s′ |

3. Γis,u ←

g +
∑
s′,v

arg max
gj∈Γv,s′

s,u

〈
gj , b

i
s

〉
g∈Γ∗s,u

4. Γk+1
s ←

{
gi , arg max

g∈Γi
s,u

〈
g, bis

〉}
i=1,...,|Bs|

Secondly, to address the issue of parameter explosion, each
α-function is projected onto a fixed number of basis func-
tions to keep the number of parameters from growing expo-
nentially. This projection is done after each PB-BACKUP
operation, hence always keeping the number of parameters
fixed (i.e., one parameter per basis function). In particular,
since each α-function is in fact a linear combination of func-
tions in Φ (Theorem 4), it is natural to choose these basis
functions from Φ6. Besides, it is easy to see from (3) that
each sampled belief bis can also be written as

bis(λ) = ηΦis(λ)b(λ) (12)

where b is the initial prior belief, η = 1/〈Φis, b〉, and Φis ∈ Φ.
For convenience, these {Φis}i=1,...,|Bs| are selected as basis
functions. Specifically, after each PB-BACKUP operation,
each αs ∈ Γks is projected onto the function space defined by
{Φis}i=1,...,|Bs|. This projection is then cast as an optimiza-
tion problem that minimizes the squared difference J(αs) be-
tween the α-function and its projection with respect to the
sampled beliefs in Bs:

J(αs) ,
1

2

|Bs|∑
j=1

〈αs, bjs〉− |Bs|∑
i=1

ci
〈
Φis, b

j
s

〉2

. (13)

This can be done analytically by letting
∂J(αs)

∂ci
= 0 and

solving for ci, which is equivalent to solving a linear sys-
tem Ax = d where xi = ci, Aji =

∑|Bs|
k=1

〈
Φis, b

k
s

〉 〈
Φjs, b

k
s

〉
and dj =

∑|Bs|
k=1

〈
Φjs, b

k
s

〉 〈
αs, b

k
s

〉
. Note that this projection

works directly with the values
〈
αs, b

j
s

〉
instead of the exact

parametric form of αs in (9). This allows for a more compact
6See Appendix B of Hoang and Low [2013a] for other choices.



implementation of the PB-BACKUP algorithm presented
above: Instead of maintaining the exact parameters that repre-
sent each of the immediate functions g, only their evaluations
at the sampled beliefs Bs =

{
b1s, b

2
s, · · · , b

|Bs|
s

}
need to be

maintained. In particular, the values of
{〈
g, bis

〉}
i=1,...,|Bs|

can be estimated as follows:〈
g, bis

〉
= η

∫
λ

g(λ)Φis(λ)b(λ)dλ

≈
∑n
j=1 g(λj)Φis(λ

j)∑n
j=1 Φis(λ

j)
(14)

where
{
λj
}n
j=1

are samples drawn from the initial prior b.
During the online execution phase, (14) is also used to com-
pute the expected payoff for the α-functions evaluated at the
current belief b′(λ) = ηΦ(λ)b(λ):

〈αs, b′〉 ≈
∑n
j=1 Φ(λj)

∑|Bs|
i=1 ciΦ

i
s(λ

j)∑n
j=1 Φ(λj)

. (15)

So, the real-time processing cost of evaluating each α-
function’s expected reward at a particular belief is O(|Bs|n).
Since the sampling of {bis}, {λj} and the computation
of
{∑|Bs|

i=1 ciΦ
i
s(λ

j)
}

can be performed in advance, this
O(|Bs|n) cost is further reduced to O(n), which makes the
action selection incur O(|Bs|n) cost in total. This is signifi-
cantly cheaper as compared to the total costO(nk|S|2|U ||V |)
of online sampling and re-estimating Vs incurred by BPVI
[Chalkiadakis and Boutilier, 2003]. Also, note that since
the offline computational costs in steps 1 to 4 of PB-
BACKUP(Bs, s, k+1) and the projection cost, which is cast
as the cost of solving a system of linear equations, are al-
ways polynomial functions of the interested variables (e.g.,
|S|, |U |, |V |, n, |Bs|), the optimal policy can be approximated
in polynomial time.

4 Experiments and Discussion
In this section, a realistic scenario of intersection navigation is
modeled as a stochastic game; it is inspired from a near-miss
accident during the 2007 DARPA Urban Challenge. Consid-
ering the traffic situation illustrated in Fig. 1 where two au-
tonomous vehicles (marked A and B) are about to enter an
intersection (I), the road segments are discretized into a uni-
form grid with cell size 5 m × 5 m and the speed of each ve-
hicle is also discretized uniformly into 5 levels ranging from
0 m/s to 4 m/s. So, in each stage, the system’s state can be
characterized as a tuple {PA, PB, SA, SB} specifying the cur-
rent positions (P ) and velocities (S) of A and B, respectively.
In addition, our vehicle (A) can either accelerate (+1 m/s2),
decelerate (−1 m/s2), or maintain its speed (+0 m/s2) in each
time step while the other vehicle (B) changes its speed based
on a parameterized reactive model [Gipps, 1981]:

vsafe = SB +
Distance(PA, PB)− τSB

SB/d+ τ

vdes = min(4, SB + a, vsafe)

S
′

B ∼ Uniform(max(0, vdes − σa), vdes) .

In this model, the driver’s acceleration a ∈ [0.5 m/s2, 3 m/s2],
deceleration d ∈ [−3 m/s2,−0.5 m/s2], reaction time τ ∈
[0.5s, 2s], and imperfection σ ∈ [0, 1] are the unknown
parameters distributed uniformly within the corresponding
ranges. This parameterization can cover a variety of drivers’
typical behaviors, as shown in a preliminary study. For a fur-
ther understanding of these parameters, the readers are re-
ferred to [Gipps, 1981]. Besides, in each time step, each ve-
hicle X ∈ {A,B} moves from its current cell PX to the next
cell P

′

X with probability 1/t and remains in the same cell with
probability 1− 1/t where t is the expected time to move for-
ward one cell from the current position with respect to the cur-
rent speed (e.g., t = 5/SX). Thus, in general, the underlying
stochastic game has 6× 6× 5× 5 = 900 states (i.e., each ve-
hicle has 6 possible positions and 5 levels of speed), which is
significantly larger than the settings in previous experiments.
In each state, our vehicle has 3 actions, as mentioned previ-
ously, while the other vehicle has 5 actions corresponding to
5 levels of speed according to the reactive model.

B
DA
I DB

A

Figure 1: (Left) A near-miss accident during the 2007
DARPA Urban Challenge, and (Right) the discretized envi-
ronment: A and B move towards destinations DA and DB

while avoiding collision at I. Shaded areas are not passable.

The goal for our vehicle in this domain is to learn the other
vehicle’s reactive model and adjust its navigation strategy ac-
cordingly such that there is no collision and the time spent to
cross the intersection is minimized. To achieve this goal, we
penalize our vehicle in each step by −1 and reward it with
50 when it successfully crosses the intersection. If it collides
with the other vehicle (at I), we penalize it by −250. The
discount factor is set as 0.99. We evaluate the performance of
I-BRL in this problem against 100 different sets of reactive
parameters (for the other vehicle) generated uniformly from
the above ranges. Against each set of parameters, we run 20
simulations (h = 100 steps each) to estimate our vehicle’s
average performance7 R. In particular, we compare our algo-
rithm’s average performance against the average performance
of a fully informed vehicle (Upper Bound) who knows ex-
actly the reactive parameters before each simulation, a ratio-
nal vehicle (Exploit) who estimates the reactive parameters
by taking the means of the above ranges, and a vehicle em-
ploying BPVI [Chalkiadakis and Boutilier, 2003] (BPVI).

The results are shown in Fig. 2a: It can be observed that
our vehicle always performs significantly better than both
the rational and BPVI-based vehicles. In particular, our ve-
hicle manages to reduce the performance gap between the

7After our vehicle successfully crosses the intersection, the sys-
tem’s state is reset to the default state in Fig. 1 (Right).
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Figure 2: (a) Performance comparison between our vehicle
(I-BRL), the fully informed, the rational and the BPVI vehi-
cles (φ = 0.99); (b) Our approach’s offline planning time.

fully informed and rational vehicles roughly by half. The
difference in performance between our vehicle and the fully
informed vehicle is expected as the fully informed vehicle
always takes the optimal step from the beginning (since it
knows the reactive parameters in advance) while our vehi-
cle has to take cautious steps (by maintaining a slow speed)
before it feels confident with the information collected during
interaction. Intuitively, the performance gap is mainly caused
during this initial period of “caution”. Also, since the uni-
form prior over the reactive parameters λ = {a, d, τ, σ} is
not a conjugate prior for the other vehicle’s behavior model
θs(v) = p(v|s, λ), the BPVI-based vehicle has to directly
maintain and update its belief using FDM: λ = {θs}s with
θs = {θvs}v ∼ Dir({nvs}v) (Section 2), instead of λ =
{a, d, τ, σ}. However, FDM implicitly assumes that {θs}s
are statistically independent, which is not true in this case
since all θs are actually related by {a, d, τ, σ}. Unfortunately,
BPVI cannot exploit this information to generalize the other
vehicle’s behavior across different states due to its restrictive
FDM (i.e., independent multinomial likelihoods with separate
Dirichlet priors), thus resulting in an inferior performance.

5 Related Works
In self-interested (or non-cooperative) MARL, there has been
several groups of proponents advocating different learning
goals, the following of which have garnered substantial sup-
port: (a) Stability − in self-play or against a certain class
of learning opponents, the learners’ behaviors converge to
an equilibrium; (b) optimality − a learner’s behavior nec-
essarily converges to the best policy against a certain class
of learning opponents; and (c) security − a learner’s aver-
age payoff must exceed the maximin value of the game. For
example, the works of Littman [2001], Bianchi et al. [2007],
and Akchurina [2009] have focused on (evolutionary) game-
theoretic approaches that satisfy the stability criterion in self-
play. The works of Bowling and Veloso [2001], Suematsu
and Hayashi [2002], and Tesauro [2003] have developed al-
gorithms that address both the optimality and stability crite-
ria: A learner essentially converges to the best response if the
opponents’ policies are stationary; otherwise, it converges in
self-play. Notably, the work of Powers and Shoham [2005]
has proposed an approach that provably converges to an ε-
best response (i.e., optimality) against a class of adaptive,
bounded-memory opponents while simultaneously guaran-

teeing a minimum average payoff (i.e., security) in single-
state, repeated games.

In contrast to the above-mentioned works that focus on
convergence, I-BRL directly optimizes a learner’s perfor-
mance during its course of interaction, which may terminate
before it can successfully learn its opponent’s behavior. So,
our main concern is how well the learner can perform be-
fore its behavior converges. From a practical perspective, this
seems to be a more appropriate goal: In reality, the agents
may only interact for a limited period, which is not enough
to guarantee convergence, thus undermining the stability and
optimality criteria. In such a context, the existing approaches
appear to be at a disadvantage: (a) Algorithms that focus
on stability and optimality tend to select exploratory ac-
tions with drastic effect without considering their huge costs
(i.e., poor rewards) [Chalkiadakis and Boutilier, 2003]; and
(b) though the notion of security aims to prevent a learner
from selecting such radical actions, the proposed security val-
ues (e.g., maximin value) may not always turn out to be tight
lower bounds for the optimal performance [Hoang and Low,
2013a]. Interested readers are referred to [Chalkiadakis and
Boutilier, 2003] and Appendix C of Hoang and Low [2013a]
for a detailed discussion and additional experiments to com-
pare performances of I-BRL and these approaches, respec-
tively.

Note that while solving for the Bayes-optimal policy effi-
ciently has not been addressed explicitly in general prior to
this paper, we can actually avoid this problem by allowing
the agent to act sub-optimally in a bounded number of steps.
In particular, the works of Asmuth and Littman [2011] and
Araya-Lopez et al. [2012] guarantee that, in the worst case,
the agent will act nearly approximately Bayes-optimal in all
but a polynomially bounded number of steps with high prob-
ability. It is thus necessary to point out the difference be-
tween I-BRL and these worst-case approaches: We are in-
terested in maximizing the average-case performance with
certainty rather than the worst-case performance with some
“high probability” guarantee. Comparing their performances
is beyond the scope of this paper.

6 Conclusion

This paper describes a novel generalization of BRL, called
I-BRL, to integrate the general class of parametric mod-
els and model priors of the opponent’s behavior. As a re-
sult, I-BRL relaxes the restrictive assumption of FDM that
is often imposed in existing works, thus offering practition-
ers greater flexibility in encoding their prior domain knowl-
edge of the opponent’s behavior. Empirical evaluation shows
that I-BRL outperforms a Bayesian MARL approach utilizing
FDM called BPVI. I-BRL also outperforms existing MARL
approaches focusing on convergence (Section 5), as shown in
the additional experiments in [Hoang and Low, 2013a]. To
this end, we have successfully bridged the gap in applying
BRL to self-interested multi-agent settings.
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