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Summary

Knowing and understanding the environmental phenomena is important to many

real world applications. This thesis is devoted to study large-scale modeling

and prediction of spatiotemporal environmental phenomena (i.e., urban traffic

phenomena). Towards this goal, our proposed approaches rely on a class of

Bayesian non-parametric models: Gaussian processes (GP).

To accurately model spatiotemporal urban traffic phenomena in real world

situation, a novel relational GP taking into account both the road segment fea-

tures and road network topology information is proposed to model real world

traffic conditions over road network. Additionally, a GP variant called log-

Gaussian process (`GP) is exploited to model an urban mobility demand pattern

which contains skewness and extremity in demand measurements.

To achieve efficient and scalable urban traffic phenomenon prediction given

a large phenomenon data, we propose three novel parallel GPs: parallel par-

tially independent training conditional (pPITC), parallel partially independent

conditional(pPIC) and parallel incomplete Cholesky factorization (pICF)-based

approximations of GP model, which can distribute their computational load into

a cluster of parallel/multi-core machines, thereby achieving time efficiency. The

predictive performances of such parallel GPs are theoretically guaranteed to be

equivalent to that of some centralized approaches to approximate full/exact GP

regression. The proposed parallel GPs are implemented using the message pass-

ing interface (MPI) framework and tested on two large real world datasets. The

theoretical and empirical results show that our parallel GPs achieve significantly

I



better time efficiency and scalability than that of full GP, while achieving com-

parable accuracy. They also achieve fine speedup performance that is the ratio

of time required by the parallel algorithms and their centralized counterparts.

To exploit active mobile sensors to perform decentralized perception of the

spatiotemporal urban traffic phenomenon, we propose a decentralized algorithm

framework: Gaussian process-based decentralized data fusion and active sens-

ing (D2FAS) which is composed of a decentralized data fusion (DDF) compo-

nent and a decentralized active sensing (DAS) component. The DDF component

includes a novel Gaussian process-based decentralized data fusion (GP-DDF)

algorithm that can achieve remarkably efficient and scalable prediction of phe-

nomenon and a novel Gaussian process-based decentralized data fusion with lo-

cal augmentation (GP-DDF+) algorithm that can achieve better predictive accu-

racy while preserving time efficiency of GP-DDF. The predictive performances

of both GP-DDF and GP-DDF+ are theoretically guaranteed to be equivalent

to that of some sophisticated centralized sparse approximations of exact/full

GP. For the DAS component, we propose a novel partially decentralized active

sensing (PDAS) algorithm that exploits property in correlation structure of GP-

DDF to enable mobile sensors cooperatively gathering traffic phenomenon data

along a near-optimal joint walk with theoretical guarantee, and a fully decen-

tralized active sensing (FDAS) algorithm that guides each mobile sensor gather

phenomenon data along its locally optimal walk.

Lastly, to justify the practicality of the D2FAS framework, we develop and

test D2FAS algorithms running with active mobile sensors on real world datasets

for monitoring traffic conditions and sensing/servicing urban mobility demands.

Theoretical and empirical results show that the proposed algorithms are signifi-

cantly more time-efficient, more scalable in the size of data and in the number of

sensors than the state-of-the-art centralized approaches, while achieving com-

parable predictive accuracy.
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(ÿS , Σ̈SS) global summary in pPITC/pPIC/GP-DDF/GP-DDF+

N(µ̃U , ‹ΣUU) predictive distribution of pICF-based GP
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Chapter 1

Introduction

1.1 Motivation

Our modern world faces global issues such as non-renewable energy resources
depletion, human population explosion, and ecological environmental degrada-
tion. Confronted by these issues, in the Millennium Campaign [UNS, 2010], the
United Nations called for the worldwide effort in reversing the loss of natural
resources and reducing the loss of biodiversity to ensure environmental sustain-
ability. Crucial to achieving this ambitious goal is the need to study, analyze and
understand the environmental phenomena spatiotemporally distributed over our
urban cities and natural habitats, such as

i. Urban Traffic Phenomena Sensing: The traffic phenomena such as traffic
speeds and volumes [Min and Wynter, 2011], travel time along road segments
[Hofleitner et al., 2012a; Herring et al., 2010], congestion patterns [Hofleitner
et al., 2012b], or travel demand [Powell et al., 2011] are studied in urban trans-
portation domain (Figures 6.1 & 7.1 illustrate real-world examples of traffic
speeds over road networks and mobility demand patterns, respectively). Know-
ing and using these phenomena at network level or user level, drivers can reduce
the time wasted (e.g., waiting time during congestion, cruising time of taxicabs
seeking customers) on traffic network, and consequently reduce the wastage of
fossil fuel and emission of air pollutants.

ii. Natural Phenomena Sensing: The natural phenomena such as the ocean and
fresh water phenomena (e.g., plankton bloom, anoxic zones, temperature, salin-
ity) [Low et al., 2012; Low et al., 2009c; Podnar et al., 2010; Dolan et al.,

1



Chapter 1. Introduction

2009], forest ecosystems, rare species, pollution, or contamination are moni-
tored by environmental sensing applications. These environmental phenomena
can be used to predict thresholds and indicators that detect unsustainable situa-
tion endangering ecosystems [Srebotnjak et al., 2010].

This research will focus on the urban traffic phenomena sensing. We be-
lieve our work would be more promising in urban traffic domains as the tra-
ditional solutions to urban traffic are becoming unsustainable in increasingly
denser populated urban cities. For example, Hong Kong and Singapore have, re-
spectively, experienced 27.6% and 37% increase in private vehicles from 2003 to
2011 [RPT, 2012]. However, their road networks have only expanded less than
10% in size. Without implementing sustainable measures, traffic congestions
and delays will grow more severe and frequent, especially during peak hours.
According to a 2011 urban mobility report [Schrank et al., 2011], the traffic
congestions in the USA have caused 1.9 billion gallons of extra fuel, 4.8 billion
hours of travel delay, and $101 billion of delay and fuel cost. Such huge resource
wastage can be potentially mitigated if the spatiotemporally varying traffic phe-
nomena (e.g., speeds and travel times along road segments, mobility demand
in a region) are predicted accurately enough in real time to detect and forecast
the congestion hotspots; network-level (e.g., ramp metering, road pricing) and
user-level (e.g., route replanning, on-demand mobility servicing) measures can
then be taken to relieve these congestions, so as to improve the overall efficiency
of road networks. In addition, a large quantity of in situ high-resolution (meter-
level) urban traffic data1 is available, which is valuable to justify the practicality
of our work. Moreover, the proposed techniques can also be applied to natural
phenomena sensing where the model has to be modified to represent phenomena
with respect to geographic locations and time.

The urban traffic phenomena are spatiotemporally varying (e.g., traffic con-
ditions over road networks can vary between peak business hour and off-peak
hour, and vary between central business district and residency district at certain
time) and happening in large-scale domain (Figure 1.1 illustrates the road net-
work of Singapore). To accurately understand such large-scale spatiotemporal
urban traffic phenomena, the sensors deployed to collect phenomena data tend

1The traffic flow & taxicabs trajectory datasets collected from Singapore road network are
supported by future urban mobility (FM) research group of Singapore-MIT Alliance for Re-
search and Technology (SMART).

2



Chapter 1. Introduction

to be in large number which is proportional to the domain size. Moreover, the
proliferation of the use of static and mobile sensors within urban city enables
a large traffic phenomena data to be gathered over space and time. Such large
phenomena data can be exploited to understand the large-scale spatiotemporally
varying urban traffic phenomena.

Figure 1.1: The road network of Singapore with a large number 57848 of
road segments.

3



Chapter 1. Introduction

1.2 Objectives

1.2.1 Accurate Traffic Modeling and Prediction

Towards understanding the spatiotemporally varying urban traffic phenomena
(e.g., traffic speeds or mobility demand patterns), the first question to ask is

Question one: How can a model be built to accurately represent and predict a

spatiotemporal traffic phenomena within real-world situation?

To address this question, the modeling approach should be capable of represent-
ing and capturing the properties and characteristics (e.g., complex correlation
structure over road networks, or extremity and skewness in measurements) of
urban traffic phenomena. Existing methods (Section 2.1) failed to account for
both segment features and network topology in traffic phenomena modeling . In
this thesis, we investigate a class of data-driven models which can exploit the
phenomena data for flexibly modeling and predicting spatiotemporal phenom-
ena.

1.2.2 Efficiency and Scalability

Time efficiency and scalability are important factors for practical employment
of a proposed model. With a large traffic phenomena data available, the next
question to ask is

Question two: How can a model be built to achieve real-time and scalable pre-

diction on the unobserved area given a large observations?

The key to addressing the above question is to alleviate the high computation
overheads caused by a large phenomena data. To achieve this goal, this thesis ex-
plore along two directions: exploiting more computing resources (parallel/multi-
core machines) or using a smaller, more informative phenomena data; the for-
mer direction requires parallel/decentralized techniques to speed up learning the
model and the latter direction needs active sensing techniques to only collect
data that matters. The existing literatures pertaining to these two directions are
discussed in Section 2.2 and Section 2.4, respectively.
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Chapter 1. Introduction

1.2.3 Decentralized Perception

In practice, it is advantageous to exploit active mobile sensors to gather traffic
phenomena data (e.g., traffic speeds over road networks). Traditionally, static
sensors such as loop detectors [Krause et al., 2008a; Wang and Papageorgiou,
2005] are placed at designated locations in a road network to collect data for
predicting the traffic phenomena. However, they provide sparse coverage (i.e.,
many road segments are not observed, thus leading to data sparsity), incur high
installation and maintenance costs, and cannot reposition by themselves in re-
sponse to changes in the traffic phenomena. Low-cost GPS technology allows
the collection of traffic data using passive mobile probes [Work et al., 2010]

(e.g., taxis/cabs). Unlike static sensors, they can directly measure the travel
times along road segments. But, they provide fairly sparse coverage due to low
GPS sampling frequency (i.e., often imposed by taxi/cab companies) and no
control over their routes. In addition, they also incur high initial implemen-
tation cost, pose privacy issues, and produce highly-varying speeds and travel
times while traversing the same road segment due to inconsistent driving be-
haviors. A critical mass of probes is needed on each road segment to ease the
severity of the last drawback [Srinivasan and Jovanis, 1996] but is often hard
to achieve on non-highway segments due to sparse coverage. In contrast, we
proposed the use of active mobile probes2 [Turner et al., 1998] to overcome
the limitations of static and passive mobile probes. In particular, they can be
directed to explore any segment of a road network to gather traffic data at a
desired GPS sampling rate while enforcing consistent driving behavior.

Towards understanding the spatiotemporal traffic phenomena with active
mobile sensors, the third question to ask is

Question three: How do the mobile sensors actively explore an urban network

to gather and assimilate the most informative phenomenon data for predicting

a spatiotemporal traffic phenomenon?

We can gain some perspectives from addressing the previous two questions.
First, mobile sensors can also exploit phenomena data to model and predict the
spatiotemporal traffic phenomena. Second, as each mobile sensor stores some

2In this thesis, mobile probes, mobile sensors and vehicles will be used interchangeable as
they are essentially mobile agents with capability of actively collecting traffic phenomena data.
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local phenomena data and has certain (usually not so high) computing power,
the parallel/decentralized techniques can be adapted for mobile sensors to coop-
eratively assimilate the phenomena data to predict the traffic phenomena. Third,
since each individually mobile sensor can actively explore the traffic network
and decide which phenomena data to gather, then distributed active sensing
techniques are needed to coordinate the mobile sensors ensuring the most “in-
formative” phenomena data is gathered. The related literatures are discussed in
Sections 2.3 & 2.4.

1.3 Contributions

Towards large-scale modeling and prediction of spatiotemporal traffic phenom-
ena, the contributions of this thesis address three research questions raised in
previous section.

1.3.1 Accurate Traffic Modeling and Prediction

Answering question one, the spatiotemporal traffic phenomena modeling re-
lies on a class of Bayesian non-parametric (data-driven) models: Gaussian Pro-

cesses (GP) described in Section 3.1. Based on GP, a novel relational GP model
[Chen et al., 2012] is proposed to model real world traffic conditions over road
network. The correlation structure of such relation GP model takes into ac-
count both the road segment features and road network topology information
(Section 3.3).

1.3.2 Efficiency and Scalability

Along the first direction of question two, which aims to exploit parallel/multi-
core machines to achieve real-time prediction given a large phenomena data, this
thesis presents three novel parallel GPs: parallel partially independent train-

ing conditional (pPITC), parallel partially independent conditional(pPIC) and
parallel incomplete Cholesky factorization (pICF)-based approximations of GP
model [Chen et al., 2013a]. The predictive performances of these parallel GPs
are theoretically guaranteed to be equivalent to that of some centralized ap-
proaches to approximate GP regression (Sections 4.1 & 4.2). By analytically
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comparing the time, space, and communication complexity of the proposed par-
allel GPs, it is showed that the parallel GPs improves the scalability of their
centralized counterparts (Section 4.3). Furthermore, the proposed parallel GPs
are implemented using the message passing interface (MPI) framework to run
in a cluster of 20 computing nodes, and their performances (i.e., predictive ac-
curacy, time efficiency, scalability, and speedups) are empirically evaluated on
two large real-world datasets (Section 4.4). The results show that our paral-
lel GPs achieve significantly better time efficiency than that of full GP while
achieving comparable accuracy; the parallel GPs also achieve fine speedups to
their centralized counterparts (Section 4.5).

1.3.3 Decentralized Perception

The second direction of question two is investigated together with question
three in the context of traffic phenomena sensing with active mobile sensors.
Here, we propose a decentralized algorithm framework [Chen et al., 2012;
Chen et al., 2013b]: Gaussian process-based decentralized data fusion and ac-

tive sensing (D2FAS) which is composed of a decentralized data fusion (DDF)
component that can cooperatively assimilate the distributed traffic phenomena
data into a globally consistent predictive model and a decentralized active sens-

ing (DAS) component that can guide mobile sensors to cooperatively collect the
most informative phenomena data.

The DDF component [Chen et al., 2012; Chen et al., 2013b] includes a
novel Gaussian process-based decentralized data fusion (GP-DDF) algorithm
(Section 5.1.1) that can achieve remarkably efficient and scalable prediction of
phenomena and a novel Gaussian process-based decentralized data fusion with

local augmentation (GP-DDF+) algorithm (Section 5.1.2) that can achieve bet-
ter predictive accuracy while preserving time efficiency of GP-DDF. The predic-
tive performances of both GP-DDF and GP-DDF+ are theoretically guaranteed
to be equivalent to that of some sophisticated centralized sparse approximations
of exact/full GP.

For the DAS component [Chen et al., 2012; Chen et al., 2013b], we first
propose a novel partially decentralized active sensing (PDAS) algorithm which
exploits property in correlation structure of GP-DDF to enable mobile sensors
cooperatively selecting a joint walk of approximated maximum posterior Gaus-
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sian entropy. The performance of PDAS is theoretically guaranteed, and various
practical environment conditions can be established to ensure it be comparably
well (Section 5.2.3). To alleviate the issue that PDAS algorithm cannot perform
or perform poorly (in terms of time) in certain situations, a fully decentralized

active sensing (FDAS) algorithm is proposed to make each mobile sensor gather
phenomena data along its locally optimal walk (Section 5.2.4).

Lastly, the practicality of D2FAS framework is justified in two real-world
applications: traffic condition monitoring [Chen et al., 2012] (Chapter 6) and
mobility-on-demand systems [Chen et al., 2013b] (Chapter 7). We propose
D2FAS algorithms running with active mobile sensors for monitoring traffic
conditions (Section 6.2) and sensing/servicing urban mobility demands (Sec-
tion 7.2), respectively. By analysing the time and communication overheads
of these D2FAS algorithms, it is showed that the D2FAS algorithms scale better
with a large phenomena data and number of sensors than state-of-the-art central-
ized approaches (Section 6.2 & 7.2). Then, we simulate the D2FAS algorithms
on two real-world datasets (Sections 6.3 & 7.3) and empirically evaluate their
performance; the results show that the proposed algorithms are significantly
more time-efficient, more scalable in the size of data and number of sensors than
the state-of-the-art centralized approaches, while achieving comparable predic-
tive accuracy (Sections 6.4 & 7.4). Therefore, the proposed D2FAS framework
is of significant value in practical deployment of active mobile sensors to mon-
itor traffic conditions over road networks and to sense/service urban mobility
demands.
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Related Works

This chapter reviews existing literatures related to the three research questions
raised in Section 1.2. First, Section 2.1 investigates modeling approaches in
terms of the capability of accounting for properties and characteristics (e.g.,
space, time, road features, and road network topology etc.) pertaining to ur-
ban traffic phenomena, and the capability of quantifying predictive uncertainty.
Second, Section 2.1 reviews the techniques (i.e. approximation and parallelize
computation) of scaling up the GP model, which are related to the purpose
of achieving efficient and scalable prediction of traffic phenomena. As active
mobile sensors are exploited to explore road networks and gather phenomenon
data for prediction of the urban traffic phenomena, Section 2.3 discusses the re-
lated techniques of assimilating distributed data into predictive models and Sec-
tion 2.4 focuses on the active sensing strategies that can guide mobile agents to
collect the most informative data. Decentralization for both kinds of techniques
is also tightly related when a large size of mobile sensors are involved.

2.1 Spatiotemporal Phenomena Modeling

The spatiotemporal correlation structure of a traffic phenomenon can be ex-
ploited to predict the traffic conditions of any unobserved road segment at any
time using the observations taken along the sensors paths. To achieve this, exist-
ing Bayesian filtering frameworks [Chen et al., 2011; Wang and Papageorgiou,
2005; Work et al., 2010] utilize various handcrafted parametric models to pre-
dict traffic flow along a highway stretch that only correlates adjacent segments of
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the highway. As such, their predictive performance will be compromised when
the current observations are sparse and/or the actual spatial correlation spans
multiple segments. Their strong Markov assumption further exacerbates this
problem. It is also not shown how these models can be generalized to work for
arbitrary road network topologies and more complex correlation structures. On
the other hand, existing multivariate parametric traffic prediction models [Ka-
marianakis and Prastacos, 2003; Min and Wynter, 2011] do not quantify uncer-
tainty estimates of the predictions and impose rigid spatial locality assumptions
that do not adapt to the true underlying correlation structures.

In contrast, we assume the traffic phenomenon over an urban road network
(i.e., comprising full range of road types like highways, arterials, slip roads, etc.)
can be be realized from a rich class of Bayesian non-parametric models called
the Gaussian process (GP) (Section 3.1) that can formally characterize its spa-
tiotemporal correlation structure and be refined with a growing number of obser-
vations. The GP models have been used in modelling various complex phenom-
ena, for example, ocean-geographic phenomena [Low et al., 2012], large scale
terrain [Vasudevan et al., 2009], deformation cost of planning a robot trajectory
in a deformable environment [Frank et al., 2011], and surface of 3D structure for
ship hull inspection [Hollinger et al., 2012]. An important feature of GP is that
it can provide formal measures of predictive uncertainty (e.g., based on variance
or entropy criterion) for directing the sensors to explore highly uncertain areas
of the road network. Krause et al. in [Krause et al., 2008a] used GP to represent
the traffic phenomenon over a network of only highways and defined the corre-
lation of speeds between highway segments to depend only on the geodesic (i.e.,
shortest path) distance of these segments with respect to the network topology.
However, the features of road segments are not considered. Neumann et al. in
[Neumann et al., 2009] maintained a mixture of two independent GPs for flow
prediction such that the correlation structure of one GP utilized road segment
features while that of the other GP depended on manually specified relations
(instead of geodesic distance) between segments with respect to an undirected
network topology. In other words, the existing works on GP failed to account for
both types of information (segment features and network topology). To address
the above limitations, we propose a relational GP (Section 3.3) whose corre-
lation structure exploits the geodesic distance between segments based on the
topology of a directed road network with vertices denoting road segments and
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edges indicating adjacent segments weighted by dissimilarity of their features,
hence tightly integrating the features and relational information.

2.2 Scaling Up Gaussian Process

The exact/full GP prediction (Section 3.1) cannot be performed well in real
time due to its cubic time complexity. To reduce the computational cost, two
classes of approximate GP regression methods have been proposed: (a) Low-
rank covariance matrix approximation methods [Quiñonero-Candela and Ras-
mussen, 2005; Snelson and Ghahramani, 2005; Williams and Seeger, 2000] are
especially suitable for modeling smoothly-varying functions with high correla-
tion (i.e., long length-scales) and they utilize all the data for predictions like
the exact/full GP; and (b) localized regression methods (e.g., local GPs [Das
and Srivastava, 2010; Choudhury et al., 2002; Park et al., 2011] and compactly
supported covariance functions [Furrer et al., 2006]) are capable of modeling
highly-varying functions with low correlation (i.e., short length-scales) but they
use only local data for predictions, hence predicting poorly in input regions with
sparse data. Recent approximate GP regression methods of [Snelson, 2007]

and [Vanhatalo and Vehtari, 2008] have attempted to combine the best of both
worlds.

Another idea to achieve efficient and scalable predictions in real time is
to distribute computational loads to clusters of parallel machines. Such an
idea of scaling up machine learning techniques (e.g., clustering, support vec-
tor machines, graphical models) has recently attracted widespread interest in
the machine learning community [Bekkerman et al., 2011]. For the case of
Gaussian process regression, the local GPs method [Das and Srivastava, 2010;
Choudhury et al., 2002] appears most straightforward to be “embarrassingly”
parallelized but they suffer from discontinuities in predictions on the boundaries
of different local GPs. The work of [Park et al., 2011] rectifies this problem by
imposing continuity constraints along the boundaries in a centralized manner.
But, its use is restricted strictly to data with 1- and 2-dimensional input features.
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2.3 Data Fusion

The phenomenon data is distributed among mobile sensors, therefore has to be
assimilated into a predictive model for spatiotemporal phenomenon prediction.

Existing decentralized and distributed Bayesian filtering frameworks for ad-
dressing nontraffic related problems [Chung et al., 2004; Coates, 2004; Olfati-
Saber and Shamma, 2005; Rosencrantz et al., 2003; Sukkarieh et al., 2003] face
the same difficulties as their centralized counterparts described above if applied
to predict traffic phenomena, thus resulting in loss of predictive performance.
Distributed regression algorithms [Guestrin et al., 2004; Paskin and Guestrin,
2004] for static sensor networks gain efficiency from spatial locality assump-
tions. However, such methods cannot be exploited by mobile sensors whose
paths are not constrained by locality. Cortes in [Cortes, 2009] proposed a dis-
tributed data fusion approach to approximate GP prediction based on an iterative
Jacobi overrelaxation algorithm, which incurs some critical limitations: (a) the
past observations taken along the sensors paths are assumed to be uncorrelated,
which greatly undermines its predictive performance when they are in fact corre-
lated and/or the current observations are sparse; (b) when the number of sensors
grows large, it converges very slowly; (c) it assumes that the range of positive
correlation has to be bounded by some factor of the communication range. Our
proposed decentralized data fusion algorithms (Sections 5.1.1 and 5.1.2) do not
suffer from these limitations and can be computed exactly with efficient time
bounds.

2.4 Active Sensing

Towards sensing and predicting environmental phenomena with active mobile
sensors, one branch of active sensing strategies [Leonard et al., 2007; Zhang
and Sukhatme, 2007; Singh et al., 2007] focus on collecting phenomenon data
from sparsely sampled regions considering the unobserved phenomenon in these
regions are of high uncertainty. In addition, another branch [Popa and Lewis,
2008; Choi et al., 2007; Singh et al., 2006; Bryan et al., 2005] emphasize on col-
lecting phenomenon data from feature regions (e.g., hotspots) that have highly
varying measurements, as more observations in these regions are needed for
predicting the phenomenon. For certain environmental phenomena, such as
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the ocean phenomena (e.g., temperature, plankton density) [Low et al., 2012]

which contain multiple hotspots, active sensing strategies need to balance be-
tween sensing the feature regions (i.e., tracking hotspot boundary) and explor-
ing sparsely sampled regions to search for other hotspots. However, this strategy
can only be applied to boundary tracking and works in greedy fashion. Exist-
ing parametric approaches [Rahimi et al., 2005; Choi and Oh, 2008] combine
different criteria (e.g., for avoidance, tracing, or exploration) with trade-off co-
efficients, thereby achieving such balance. However, it is not showed how the
optimal coefficients of these parameterized active sensing strategies can be au-
tomatically obtained in online manner. To address this issue, Low et al. exploit a
principled approach log-Gaussian process (`GP) to model the phenomena con-
taining hotspot [Low et al., 2008a], and based on which develop an information-
theoretic sampling strategy [Low et al., 2009a] that can collect phenomenon data
from sparsely sampled regions and hotspot regions simultaneously without tun-
ing any coefficients. This active sensing strategy provides an important insight
on designing strategies for actively sensing an urban mobility pattern containing
extremity and skewness. This strategy requires centralized computation that is
a major limitation hindering it from performing efficiently.

Existing centralized active sensing algorithms [Low et al., 2008a; Low et al.,
2009a; Low et al., 2011] scale poorly with a large number of data and sensors,
therefore, are not suitable for providing online information. The active sensing
strategy in [Low et al., 2012] is decentralized in the sensing that each mobile
sensor selects their locally optimal walk. However, a centralized data fusion
method is needed to assimilate the phenomenon data to compute the strategy,
which is inefficient when the phenomenon data is large. [Graham and Cortés,
2009; Graham and Cortes, 2010; Graham and Cortes, 2011] present efficient
cooperative active sensing by partitioning the field into Voronoi configuration.
Then, only the static and mobile senors in correlated Voronoi cells have to be
coordinated. However, their approaches assume the availability of static sensors
that are deployed under near-independence assumption. Additionally, they can
only work in geospatia domain with 2-dimensional input features. [Stranders et

al., 2009] present a decentralized coordination algorithm for mobile sensors per-
forming active sensing based on GP model. However, this algorithm still suffers
from computation and communication issues: (a) direct employment of max-
sum message passing algorithm for decentralized algorithm is prohibitive due
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to enormous computation of messages, therefore, pruning algorithm is a neces-
sity; (b) the online joint action pruning algorithm relies on partial joint moves to
reduce the size of action space, which is not effective in large scale, in the worse
case, is still exponential in the number of agents and length of planning horizon;
(c) the run-time efficiency is extremely sensitive to the connectivity and latency
of network due to message passing; (d) a centralized fusion center is required to
assimilate all the measurements.
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Chapter 3

Modeling Spatiotemporal Traffic
Phenomena

This chapter starts by providing an overview of Gaussian process (GP) model
(Section 3.1). Then, we introduce a simple subset of data (SoD) approximation
of GP model (Section 3.2) to alleviate the cubic time complexity of full/exact
GP. Based on GP, a novel relational GP [Chen et al., 2012] is proposed to model
real world traffic conditions (speeds) over road network. The correlation struc-
ture of such relational GP model takes into account both the road segment fea-
tures and road network topology information (Section 3.3). Additionally, an-
other GP variant called log-Gaussian process (`GP) [Chen et al., 2013b] is ex-
ploited to model an urban mobility demand pattern which contains skewness
and extremity in demand measurements (Section 3.4).

3.1 Gaussian Process

The Gaussian processes (GP) which are Bayesian non-parametric models can be
used to perform probabilistic regression as follows: Let X be a set representing
the input domain such that each input x ∈ X denotes a p-dimensional feature
vector and is associated with a realized output value yx (random output variable
Yx) if it is observed (unobserved). Let {Yx}x∈X denote a GP, that is, every finite
subset of {Yx}x∈X follows a multivariate Gaussian distribution [Rasmussen and
Williams, 2006]. Then, the GP is fully specified by its prior mean µx , E[Yx]

and covariance σxx′ , cov[Yx, Yx′ ] for all x, x′ ∈ X , the latter of which is
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usually defined by a specific covariance function.
Given that a column vector yD of realized outputs is observed for some

set D ⊂ X of inputs, the GP can exploit this data (D, yD) to provide predic-
tions of the unobserved outputs for any set U ⊆ X \ D of inputs and their
corresponding predictive uncertainties using the posterior Gaussian distribution
N (µU|D,ΣUU|D) specified by posterior mean vector µU|D and covariance matrix
ΣUU|D defined as

µU|D , µU + ΣUDΣ−1DD(yD − µD) (3.1)

ΣUU|D , ΣUU − ΣUDΣ−1DDΣDU (3.2)

where µU (µD) is a column vector with mean components µx for all x ∈ U
(x ∈ D), ΣUD (ΣDD) is a covariance matrix with covariance components σxx′

for all x ∈ U , x′ ∈ D (x, x′ ∈ D), and ΣDU is the transpose of ΣUD.
The posterior covariance matrix ΣUU|D (3.2), which is independent of the

measurements yD, can be processed in two ways to quantify the uncertainty of
these predictions: (a) the trace of ΣUU|D yields the sum of posterior variances
Σxx|D over all x ∈ U ; (b) the determinant of ΣUU|D is used in calculating the
Gaussian posterior joint entropy

H[YU |YD] ,
1

2
log(2πe)|U|

∣∣∣ΣUU|D∣∣∣ . (3.3)

In contrast to the first measure of uncertainty that assumes conditional indepen-
dence between measurements in the set U of unobserved inputs, the entropy-
based measure (3.3) accounts for their correlation, thereby not overestimating
their uncertainty. Hence, this thesis will focus on using the entropy-based mea-
sure of uncertainty.

3.2 Subset of Data Approximation

Although the GP is an effective predictive model, it faces a practical limitation
of cubic time complexity in the number |D| of observations; this can be observed
from computing the posterior distribution (i.e., (3.1) and (3.2)), which requires
inverting covariance matrix ΣDD that incurs O

Ä
|D|3

ä
time. If |D| is expected to
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be large, GP prediction cannot be performed in real time. For practical usage,
we have to resort to computationally cheaper approximate GP prediction.

A simple method of approximation is to select only a subset S of the entire
set D of observed inputs (i.e., S ⊂ D) to compute the posterior distribution of
the measurements at any set U ⊆ X \ D of unobserved inputs. Such a sparse
subset of data (SoD) approximation method produces the following predictive
Gaussian distribution N (µU|S ,ΣUU|S), which closely resembles that of the full
GP model (i.e., by simply replacing D in (3.1) and (3.2) with S):

µU|S = µU + ΣUSΣ−1SS(yS − µS) (3.4)

ΣUU|S = ΣUU − ΣUSΣ−1SSΣSU . (3.5)

Notice that the covariance matrix ΣSS to be inverted only incurs O
Ä
|U|3

ä
time,

which is independent of |D|.
The predictive performance of SoD approximation is sensitive to the selec-

tion of subset S. In practice, random subset selection often yields poor perfor-
mance. This issue can be resolved by actively selecting an informative subset
S in an iterative greedy manner: Firstly, S is initialized to be an empty set.
Then, all inputs in D \ S are scored based on a criterion that can be chosen
from, for example, the works of [Krause et al., 2008b; Lawrence et al., 2003;
Seeger and Williams, 2003]. The highest-scored input is selected for inclusion
into S and removed from D. This greedy selection procedure is iterated un-
til S reaches a pre-defined size. Among the various criteria introduced in the
literatures, the differential entropy score [Lawrence et al., 2003] is reported to
perform well [Oh et al., 2010]; it is a monotonic function of the posterior vari-
ance Σxx|S (3.5), thus resulting in the greedy selection of a segment x ∈ D \ S
with the largest variance in each iteration.

3.3 Modeling a Traffic Condition over Road Net-

work

The Gaussian process (GP) can be used to model a spatiotemporal traffic phe-
nomenon (e.g., traffic speeds in Figure 6.1) over a road network as follows: The
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traffic phenomenon is defined to vary as a realization of a GP. Let V be a set
of road segments representing the domain of the road network such that each
road segment s ∈ V is specified by a p-dimensional vector of features and is
associated with a realized (random) measurement ys (Ys) of the traffic condition
such as speed if s is observed (unobserved).

If the observations are noisy (i.e., by assuming additive independent identi-
cally distributed Gaussian noise with variance σ2

n), then their prior covariance
σss′ can be expressed as σss′ = k(s, s′) + σ2

nδss′ where δss′ is a Kronecker delta
that is 1 if s = s′ and 0 otherwise, and k is a kernel function measuring the
pairwise “similarity” of road segments.

For a traffic phenomenon (e.g., road speeds), the correlation of measure-
ments between pairs of road segments depends not only on their features (e.g.,
length, number of lanes, speed limit, direction) but also the road network topol-
ogy. So, the kernel function is defined to exploit both the features and topol-
ogy information. To achieve this aim, we present a relational Gaussian process
model with a graph-based kernel in the subsequent section.

3.3.1 Relational Gaussian Process

The key to developing a relational GP is to specify a graph-based kernel that
can take into account the road segment features and the topology information of
road network. In the following, we first define the road network as

Definition 1 (Road Network). Let the road network be represented as a weighted

directed graph G , (V,E,m) that consists of
• a set V of vertices denoting the domain of all possible road segments,

• a set E ⊆ V × V of edges such that there is a edge (s, s′) from s ∈ V to

s′ ∈ V iff the end of segment s connects to the start of segment s′ in the road

network, and

• a weight function m : E → R+ measuring the standardized Manhattan dis-

tance [Borg and Groenen, 2005] m((s, s′)) ,
∑p
i=1 |[s]i − [s′]i|/ri of each

edge (s, s′) where [s]i ([s′]i) is the i-th component of the feature vector spec-

ifying road segment s (s′), and ri is the range of the i-th feature. The weight

functionm serves as a dissimilarity measure between adjacent road segments.

The next step is to compute the shortest path distance d(s, s′) between all
pairs of road segments s, s′ ∈ V (i.e., using Floyd-Warshall or Johnson’s algo-

18



Chapter 3. Modeling Spatiotemporal Traffic Phenomena

rithm) with respect to the topology of the weighted directed graph G. Such a
distance function is again a measure of dissimilarity, rather than one of similar-
ity, as required by a kernel function. Furthermore, a valid GP kernel needs to be
positive semidefinite and symmetric [Schölkopf and Smola, 2002], which are
clearly violated by d because d(s, s′) and d(s′, s) may not be equal.

To construct a valid GP kernel from d, multi-dimensional scaling [Borg and
Groenen, 2005] is applied to embed the domain of road segments into the p′-
dimensional Euclidean space Rp′ . Specifically, a mapping g : V → Rp′ is
determined by minimizing the squared loss g∗ = arg ming

∑
s,s′∈V (d(s, s′) −

‖g(s)− g(s′)‖)2.
With a small squared loss, the Euclidean distance ‖g∗(s)− g∗(s′)‖ between

g∗(s) and g∗(s′) is expected to closely approximate the shortest path distance
d(s, s′) between any pair of road segments s and s′. After embedding into Eu-
clidean space, a conventional kernel function such as the squared exponential
one [Rasmussen and Williams, 2006] can be used:

k(s, s′) = σ2
s exp

Ñ
−1

2

p′∑
i=1

Ç
[g∗(s)]i − [g∗(s′)]i

`i

å2
é

where [g∗(s)]i ([g∗(s′)]i) is the i-th component of the p′-dimensional vector g∗(s)
(g∗(s′)), and the hyperparameters σs, `1, . . . , `p′ are, respectively, signal vari-
ance and length-scales that can be learned using maximum likelihood estimation
[Rasmussen and Williams, 2006]. The resulting kernel function k1 is guaran-
teed to be valid. Then, a standard GP specified by this Graph-based kernel can
be used to model the spatiotemporal traffic phenomenon over road network.

3.4 Modeling an Urban Mobility Demand Pat-

tern

The GP can also be used to model a spatiotemporal urban mobility demand pat-
tern. First, the service area in an urban city can be represented as a directed
graph G , (V,E) where V denotes a set of all regions generated by gridding

1For spatiotemporal traffic modeling, the kernel function k can be extended to account for
the temporal dimension. Refer to Section 4.4 for the details that such kernel function is applied
to model spatiotemporal traffic speeds (i.e., AIMPEAK dataset).
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the service area, andE ⊆ V ×V denotes a set of edges such that there is an edge
(s, s′) from s ∈ V to s′ ∈ V iff at least one road segment in the road network
starts in s and ends in s′. Each region s ∈ V is associated with a p-dimensional
feature vector xs representing its context information (e.g., location, time, pre-
cipitation), and a measurement ys quantifying its mobility demand2. Since it is
often impractical in terms of sensing resource cost to determine the actual mo-
bility demand of a region, a common practice is to use the pickup count3 of the
region as a surrogate measure.

To elaborate, the user pickups made by vacant vehicles cruising in a region
contribute to its pickup count. Since we do not assume a data center to be avail-
able to keep track of the pickup count, a fully distributed gossip-based protocol
[Jelasity et al., 2005] is utilized to aggregate these pickup information from the
vehicles in the region that are connected via an ad hoc wireless communication
network. The gossip-based protocol supports distributed aggregation, such as,
counting number of nodes (vehicles) and summing up distributed local values
(pickup counts); moreover, these operations are robust with respect to changing
topology, crashing node, and link failure. Consequently, any vehicle entering
the region can access its pickup count simply by joining its ad hoc network.

3.4.1 Log-Gaussian Process

As observed in [Chang et al., 2010; Li et al., 2012] and our real-world data (see
Figure 7.1a), a mobility demand pattern over a large service area in an urban
city is typically characterized by spatiotemporally correlated demand measure-
ments and contains a few small-scale hotspots exhibiting extreme measurements
and much higher spatiotemporal variability than the rest of the demand pattern.
That is, if the measurements are put together into a 1D sample frequency distri-
bution, a positive skew results. We like to consider using a rich class of Bayesian
nonparametric models called Gaussian process (GP) [Rasmussen and Williams,
2006] to model the demand pattern. But, the GP covariance structure is sensitive
to strong positive skewness and easily destabilized by a few extreme measure-

2At the segment level, we observe a lower degree of spatial correlation across segments
because many road segments do not allow vehicles to stop, hence disrupting the smoothness of
demand measurements.

3In our experiments, a pickup point can be identified when a taxi’s status is changed from
free to passenger-on-board. Then, the pickups in the same region are aggregated into a pickup
count.
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ments [Webster and Oliver, 2007]. In practice, this can cause reconstructed pat-
terns to display large hotspots centered about a few extreme measurements and
predictive variances to be unrealistically small in hotspots [Hohn, 1998], which
are undesirable. So, if the GP is used to model a demand pattern directly, it may
not predict well. To resolve this, a standard statistical practice is to take the log
of the measurements (i.e., zs = log ys) to remove skewness and extremity, and
use the GP to model the demand pattern in the log-scale instead.

Since our ultimate interest is to predict the mobility demand in the original

scale, GP’s predicted log-measurements of these unobserved regions must be
transformed back unbiasedly. To achieve this, we utilize a widely-used variant
of GP in geostatistics called the Log-Gaussian Process (`GP) that can model the
demand pattern in the original scale. Let {Ys}s∈V denote a `GP: If Zs , log Ys,
then {Zs}s∈V is a GP. So, Ys = exp{Zs} denotes the original random demand
measurement of unobserved region s and is predicted using the log-Gaussian
posterior mean (i.e., best unbiased predictor)

µ`GP
s|D , exp(µs|D + Σss|D/2) (3.6)

where µs|D and Σss|D are simply the Gaussian posterior mean (3.1) and variance
(3.2) of GP, respectively.

The uncertainty of predicting the measurements of any set U ⊂ V of unob-
served regions can be quantified by the following log-Gaussian posterior joint
entropy:

H[YU |YD] ,
1

2
log(2πe)|U|

∣∣∣ΣUU|D∣∣∣+ µU|D · 1 (3.7)

where µU|D and ΣUU|D are the Gaussian posterior mean vector (3.1) and covari-
ance matrix (3.2) of GP, respectively.
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Parallel Gaussian Process

In chapter 3, it has been shown that spatiotemporal traffic phenomenon can
be modeled using Gaussian process (GP)-based models. In general, GP are
Bayesian non-parametric models for performing nonlinear regression, which
offer an important advantage of providing fully probabilistic predictive distri-
butions with formal measures of the uncertainty of the predictions. The key
limitation hindering the practical use of GP for large phenomenon data is the
high computational cost: It incurs cubic time and quadratic memory in the size
of the data. Despite various efforts to scale up GP (Section 2.2), it remains
computationally impractical for performing real-time predictions necessary in
many time-critical applications and decision support systems (e.g., ocean sens-
ing, traffic monitoring, geographical information systems) that need to process
and analyze huge quantities of data collected over short time durations (e.g., in
astronomy, internet traffic, meteorology, surveillance).

To resolve this, this chapter considers exploiting clusters of parallel/multi-
core machines to achieve efficient and scalable predictions in real time [Chen et

al., 2013a]. Section 4.1 presents two novel parallel GPs: parallel partially in-

dependent training conditional (pPITC) and parallel partially independent con-

ditional (pPIC) approximation of full GP (FGP) model. Such parallel GPs ex-
ploit the notion of a support set. In addition, Section 4.2 presents another novel
parallel GP based on parallel incomplete Cholesky factorization (pICF). Then,
the properties (i.e., time, space, and communication complexity, online learn-
ing, and structural assumptions) of all proposed parallel GPs are analysed in
comparison with their centralized counterparts and FGP (Section 4.3). Lastly,
Sections 4.4 & 4.5 empirically evaluate the predictive performances, time ef-
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ficiency, scalability, and speedups of our proposed parallel GPs against their
centralized counterparts and FGP on two real-world datasets.

4.1 Parallel Gaussian Process Regression us-

ing Support Set

In this section, we will present a class of parallel Gaussian processes (parallel

partially independent training conditional (pPITC) and parallel partially inde-

pendent conditional (pPIC)) which can distribute the computational load into a
cluster of parallel machines to achieve efficient and scalable approximate GP
regression by exploiting the notion of a support set.

4.1.1 Parallel Gaussian Process: pPITC

The key idea of pPITC is as follows: After distributing the data evenly amongM
machines (Step 1), each machine encapsulates its local data, based on a common
prior support set S ⊂ X where |S| � |D|, into a local summary that is commu-
nicated to the master1 (Step 2). The master assimilates the local summaries into
a global summary (Step 3), which is then sent back to the M machines to be
used for predictions distributed among them (Step 4). These steps are detailed
below:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.
The data (D, yD) is partitioned evenly into M blocks, each of which is as-

signed to a machine, as defined below:

Definition 2 (Local Data). The local data of machine m is defined as a tuple

(Dm, yDm) where Dm ⊆ D, Dm
⋂Di = ∅ and |Dm| = |Di| = |D|/M for

i 6= m.

STEP 2: EACH MACHINE CONSTRUCTS AND SENDS LOCAL SUMMARY TO

MASTER.
The local data of each machine is summarized into a local summary defined

below:
1One of the M machines can be assigned to be the master.
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Definition 3 (Local Summary). Given a common support set S ⊂ X known to

all M machines and the local data (Dm, yDm), the local summary of machine

m is defined as a tuple (ẏmS , Σ̇
m
SS) where

ẏmB , ΣBDmΣ−1DmDm|S (yDm − µDm) (4.1)

Σ̇m
BB′ , ΣBDmΣ−1DmDm|SΣDmB′ (4.2)

such that ΣDmDm|S is defined in a similar manner as (3.2) and B denotes any

subset of input domain X .

Remark. Since the local summary is independent of the outputs yS , they need
not be observed. As a result, the support set S does not have to be a subset
of D and can be selected prior to data collection. The predictive performance
of pPITC (and pPIC) is sensitive to the selection of S. An informative support
set S can be selected from domain X using an iterative greedy active selection
procedure [Krause et al., 2008b; Lawrence et al., 2003; Seeger and Williams,
2003] prior to observing data. For example, the differential entropy score crite-
rion [Lawrence et al., 2003] can be used to greedily select an input x ∈ X \ S
with the largest posterior variance Σxx|S (3.2) to be included in S in each itera-
tion.

STEP 3: MASTER CONSTRUCTS AND SENDS GLOBAL SUMMARY TO M MA-
CHINES.

The local summaries are assimilated into a global summary defined by

Definition 4 (Global Summary). Given a common support set S ⊂ X known

to all M machines and the local summary (ẏmS , Σ̇
m
SS) of every machine m =

1, . . . ,M , the global summary is defined as a tuple (ÿS , Σ̈SS) where

ÿS ,
M∑
m=1

ẏmS (4.3)

Σ̈SS , ΣSS +
M∑
m=1

Σ̇m
SS . (4.4)
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STEP 4: DISTRIBUTE PREDICTIONS AMONG M MACHINES.
To predict the unobserved outputs for any set U of inputs, U is partitioned

evenly into disjoint subsets U1, . . . ,UM to be assigned to the respective ma-
chines 1, . . . ,M . So, |Um| = |U|/M for m = 1, . . . ,M .

Definition 5 (pPITC). Given a common support set S ⊂ X known to all M

machines and the global summary (ÿS , Σ̈SS), each machine m computes a pre-

dictive Gaussian distributionN (µ̂Um ,
“ΣUmUm) of the unobserved outputs for the

set Um of inputs where

µ̂Um , µUm + ΣUmSΣ̈−1SS ÿS (4.5)“ΣUmUm , ΣUmUm − ΣUmS
Ä
Σ−1SS − Σ̈−1SS

ä
ΣSUm . (4.6)

Though pPITC scales very well with large data (Table 4.1), it can predict
poorly due to (a) loss of information caused by summarizing the realized out-
puts and correlation structure of the original data; and (b) sparse coverage of
U by the support set. To resolve this issue, subsequently, we propose a novel
parallel Gaussian process regression method called parallel partially indepen-

dent conditional (pPIC) approximation of GP that can improve the predictive
accuracy of pPITC, at the same time, preserve its efficiency.

4.1.2 Parallel Gaussian Process: pPIC

pPIC is based on the following intuition: A machine can exploit its local data to
improve the predictions of the unobserved outputs that are highly correlated with
its data. At the same time, pPIC can preserve the time efficiency of pPITC by
exploiting its idea of encapsulating information into local and global summaries.
pPIC differs from pPITC only in Step 4 when computes the prediction.

Definition 6 (pPIC). Given a common support set S ⊂ X known to all M ma-

chines, the global summary (ÿS , Σ̈SS), the local summary (ẏmS , Σ̇
m
SS), and the

local data (Dm, yDm), each machine m computes a predictive Gaussian distri-

butionN (µ̂+
Um ,
“Σ+
UmUm) of the unobserved outputs for the set Um of inputs where

µ̂+
Um , µUm +

Ä
Φm
UmSΣ̈−1SS ÿS − ΣUmSΣ−1SS ẏ

m
S
ä

+ ẏmUm (4.7)
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“Σ+
UmUm,ΣUmUm −

Ä
Φm
UmSΣ−1SSΣSUm − ΣUmSΣ−1SSΣ̇m

SUm

− Φm
UmSΣ̈−1SSΦm

SUm

ä
− Σ̇m

UmUm
(4.8)

such that

Φm
UmS , ΣUmS + ΣUmSΣ−1SSΣ̇m

SS − Σ̇m
UmS (4.9)

and Φm
SUm is the transpose of Φm

UmS .

Remark 1. The predictive Gaussian mean µ̂+
Um and covariance “Σ+

UmUm (see (4.7)
and (4.8)) of pPIC exploit both summary information (i.e., bracketed term) and
local information (i.e., last term). In contrast, pPITC only exploits the global
summary (see (5.1) and (5.2)).

Remark 2. To improve the predictive performance of pPIC, D and U should be
partitioned into tuples of (D1,U1), . . . , (DM ,UM) such that the outputs yDm and
YUm are as highly correlated as possible for m = 1, . . . ,M . To achieve this,
we employ a simple parallelized clustering scheme in our experiments: Each
machine m randomly selects a cluster center from its local dataDm and informs
the other machines about its chosen cluster center. Then, each input in Dm and
Um is simply assigned to the “nearest” cluster center i and sent to the corre-
sponding machine i while being subject to the constraints of the new Di and
Ui not exceeding |D|/M and |U|/M , respectively. More sophisticated cluster-
ing schemes can be utilized at the expense of greater time and communication
complexity.

Remark 3. The predictive performances of pPITC and pPIC can be improved by
increasing the size of S at the expense of greater time, space, and communica-
tion complexity (Table 4.1).

4.1.3 Performance Guarantee

Theorem 1. Let a common support set S ⊂ X be known to all M machines.

Let N (µPITC
U|D,Σ

PITC
UU|D) be the predictive Gaussian distribution computed by the

centralized partially independent training conditional (PITC) approximation of

FGP model [Quiñonero-Candela and Rasmussen, 2005] where

µPITC
U|D , µU + ΓUD (ΓDD + Λ)−1 (yD − µD) (4.10)
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ΣPITC
UU|D , ΣUU − ΓUD (ΓDD + Λ)−1 ΓDU (4.11)

such that

ΓBB′ , ΣBSΣ−1SSΣSB′ (4.12)

and Λ is a block-diagonal matrix constructed from the M diagonal blocks of

ΣDD|S , each of which is a matrix ΣDmDm|S for m = 1, . . . ,M where D =⋃M
m=1Dm. Then, µ̂U = µPITC

U|D and “ΣUU = ΣPITC
UU|D.

Theorem 2. Let a common support set S ⊂ X be known to allM machines. Let

N (µPIC
U|D,Σ

PIC
UU|D) be the predictive Gaussian distribution computed by the cen-

tralized partially independent conditional (PIC) approximation of FGP model
[Snelson, 2007] where

µPIC
U|D , µU + Γ̃UD (ΓDD + Λ)−1 (yD − µD) (4.13)

ΣPIC
UU|D , ΣUU − Γ̃UD (ΓDD + Λ)−1 Γ̃DU (4.14)

and Γ̃DU is the transpose of Γ̃UD such that

Γ̃UD ,
Ä
Γ̃UiDm

ä
i,m=1,...,M

(4.15)

Γ̃UiDm ,
®

ΣUiDm if i = m,

ΓUiDm otherwise.
(4.16)

Then, µ̂+
U = µPIC

U|D and “Σ+
UU = ΣPIC

UU|D.

The proofs of Theorems 1 and 2 are given in Appendix A and B, respec-
tively.

Remark 1. The equivalence results of Theorems 1 and 2 imply that the com-
putational load of the centralized PITC and PIC approximations of FGP can be
distributed among theM parallel machines, hence improving the time efficiency
and scalability of approximate GP regression (Table 4.1).

Remark 2. The equivalence results also shed some light on the underlying prop-
erties of pPITC and pPIC based on the structural assumptions of PITC and PIC,
respectively: pPITC assumes that YD1 , . . . , YDM

, YU1 , . . . , YUM are conditionally
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independent given YS . In contrast, pPIC can predict the unobserved outputs YU
better since it imposes a less restrictive assumption of conditional independence
between YD1

⋃
U1 , . . . , YDM

⋃
UM given YS . This assumption further supports

an earlier remark (i.e., just before Theorem 1) on clustering inputs Dm and
Um whose corresponding outputs are highly correlated for improving the pre-
dictive performance of pPIC. Experimental results on two real-world datasets
(Section 4.4) show that pPIC achieves predictive accuracy comparable to FGP
and significantly better than pPITC, thus justifying the practicality of such an
assumption.

Remark 3. Since PITC generalizes the Bayesian Committee Machine (BCM)
of [Schwaighofer and Tresp, 2002], pPITC generalizes parallel BCM [Ingram
and Cornford, 2010], the latter of which assumes the support set S to be U
[Quiñonero-Candela and Rasmussen, 2005]. As a result, parallel BCM does not
scale well with large U .

4.2 Parallel Gaussian Process Regression us-

ing Incomplete Cholesky Factorization

In this section, we will present another parallel Gaussian process called parallel

incomplete Cholesky factorization (pICF)-based GP approximation that can dis-
tribute the computational load into a cluster of parallel machines to achieve effi-
cient and scalable approximate GP regression by exploiting incomplete Cholesky

factorization (ICF) technique.

4.2.1 Parallel Incomplete Cholesky Factorization

Incomplete Cholesky Factorization (ICF) can approximate a rank-N symmetric
and positive semidefinite (PSD) matrix Σ ∈ RN×N by a low-rank PSD matrix
LLT whereL ∈ RN×R is the lower triangular incomplete Cholesky factor (R�
N ). L can be obtained with an iterative ICF algorithm, the k-th iteration of
which is as follows:

[L]ik,k ← [v]
−1/2
ik

[L]Jk,k ← [Σ]Jk,k −
∑k−1
j=1 [L]Jk,j[L]ik,j/[L]ik,k

[v]Jk ← [v]Jk − [L]2Jk,k ,

(4.17)
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where vector v is the diagonal of Σ, ik is the index of pivot element in iteration
k and Jk denotes {1, · · · , N}\{i1, · · · , ik}. Note that, running the above ICF
algorithm can generate the complete Cholesky factor of Σ.

ICF can in fact be parallelized: Instead of using a column-based parallel
implementation [Golub and Van Loan, 1996], our proposed pICF-based GP em-
ploys a row-based parallel implementation [Chang et al., 2007], the latter of
which incurs lower time, space, and communication complexity.

4.2.2 pICF-based Parallel Gaussian Process

A fundamental step of pICF-based GP is to use ICF to approximate the covari-
ance matrix ΣDD in (3.1) and (3.2) of FGP by a low-rank symmetric positive
semidefinite matrix: ΣDD ≈ F>F + σ2

nI where F ∈ RR×|D| denotes the upper
triangular incomplete Cholesky factor and R � |D| is the reduced rank. The
steps of performing pICF-based GP are detailed as follows:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.
This step is the same as that of pPITC and pPIC in Section 4.1.

STEP 2: RUN PARALLEL ICF TO PRODUCE INCOMPLETE CHOLESKY FAC-
TOR AND DISTRIBUTE ITS STORAGE.

The pICF-based GP exploits parallel ICF (Section 4.2.1) to produce an upper
triangular incomplete Cholesky factor F , (F1 · · ·FM) and each submatrix
Fm ∈ RR×|Dm| is stored distributedly on machine m for m = 1, . . . ,M .

STEP 3: EACH MACHINE CONSTRUCTS AND SENDS LOCAL SUMMARY TO

MASTER.

Definition 7 (Local Summary). Given the local data (Dm, yDm) and incom-

plete Cholesky factor Fm, the local summary of machine m is defined as a tuple

(ẏm, Σ̇m,Φm) where

ẏm , Fm(yDm − µDm) (4.18)

Σ̇m , FmΣDmU (4.19)

Φm , FmF
>
m . (4.20)
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STEP 4: MASTER CONSTRUCTS AND SENDS GLOBAL SUMMARY TO M MA-
CHINES.

Definition 8 (Global Summary). Given the local summary (ẏm, Σ̇m,Φm) of ev-

ery machine m = 1, . . . ,M , the global summary is defined as a tuple (ÿ, Σ̈)

where

ÿ , Φ−1
M∑
m=1

ẏm (4.21)

Σ̈ , Φ−1
M∑
m=1

Σ̇m (4.22)

such that Φ , I + σ−2n
∑M
m=1 Φm.

Remark. If |U| is large, the computation of (4.22) can be parallelized by par-
titioning U : Let Σ̇m , (Σ̇1

m · · · Σ̇M
m ) where Σ̇i

m , FmΣDmUi is defined in a
similar way as (4.19) and |Ui| = |U|/M . So, in Step 3, instead of sending Σ̇m

to the master, each machine m sends Σ̇i
m to machine i for i = 1, . . . ,M . Then,

each machine i computes and sends Σ̈i , Φ−1
∑M
m=1 Σ̇i

m to every other machine
to obtain Σ̈ = (Σ̈1 · · · Σ̈M).

STEP 5: EACH MACHINE CONSTRUCTS AND SENDS PREDICTIVE COMPO-
NENT TO MASTER.

Definition 9 (Predictive Component). Given the local data (Dm, yDm), a com-

ponent Σ̇m of the local summary, and the global summary (ÿ, Σ̈), the predictive

component of machine m is defined as a tuple (µ̃mU ,
‹Σm
UU) where

µ̃mU , σ−2n ΣUDm(yDm − µDm)− σ−4n Σ̇>mÿ (4.23)‹Σm
UU , σ−2n ΣUDmΣDmU − σ−4n Σ̇>mΣ̈ . (4.24)

STEP 6: MASTER PERFORMS PREDICTIONS.

Definition 10 (pICF-based GP). Given the predictive component (µ̃mU ,
‹Σm
UU) of

every machine m = 1, . . . ,M , the master computes a predictive Gaussian dis-

tribution N (µ̃U , ‹ΣUU) of the unobserved outputs for any set U of inputs where
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µ̃U , µU +
M∑
m=1

µ̃mU (4.25)

‹ΣUU , ΣUU −
M∑
m=1

‹Σm
UU . (4.26)

Remark. The predictive performance of pICF-based GP can be improved by
increasing the rank R at the expense of greater time, space, and communication
complexity (Table 4.1).

4.2.3 Performance Guarantee

Theorem 3. Let N (µICF
U|D,Σ

ICF
UU|D) be the predictive Gaussian distribution com-

puted by the centralized ICF approximation of FGP model where

µICF
U|D , µU + ΣUD(F>F + σ2

nI)−1(yD − µD) (4.27)

ΣICF
UU|D , ΣUU − ΣUD(F>F + σ2

nI)−1ΣDU . (4.28)

Then, µ̃U = µICF
U|D and ‹ΣUU = ΣICF

UU|D.

The proof of Theorem 3 is given in Appendix C.

Remark 1. The equivalence result of Theorem 3 implies that the computational
load of the centralized ICF approximation of FGP can be distributed among
the M parallel machines, hence improving the time efficiency and scalability of
approximate GP regression (Table 4.1).

Remark 2. By approximating the covariance matrix ΣDD in (3.1) and (3.2) of
FGP with F>F + σ2

nI , ‹ΣUU = ΣICF
UU|D is not guaranteed to be positive semidef-

inite, hence rendering such a measure of predictive uncertainty not very useful.
However, it is observed in our experiments (Section 4.5) that this problem can
be alleviated by choosing a sufficiently large rank R.
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4.3 Analytical Comparison

This section compares and contrasts the properties of the proposed parallel
GPs analytically (A summary of the empirical comparison is presented in Sec-
tion 4.5.4).

4.3.1 Time, Space, and Communication Complexity

Table 4.1 shows an analytical comparison of the time, space, and communi-
cation complexity between parallel partially independent training conditional

(pPITC), parallel partially independent conditional (pPIC), parallel incomplete

Cholesky factorization (pICF)-based GP, partially independent training condi-

tional (PITC), partially independent conditional (PIC), incomplete Cholesky

factorization (ICF)-based GP, and full Gaussian process (FGP) based on the fol-
lowing assumptions: (a)These respective methods compute the predictive means
(i.e., µ̂U (5.1), µ̂+

U (4.7), µ̃U (4.25), µPITC
U|D (4.10), µPIC

U|D (4.13), µICF
U|D (4.27), and

µU|D (3.1)) and their corresponding predictive variances (i.e., “Σxx (5.2), “Σ+
xx

(4.8), ‹Σxx (4.26), ΣPITC
xx|D (4.11), ΣPIC

xx|D (4.14), ΣICF
xx|D (4.28), and Σxx|D (3.2) for

all x ∈ U); (b) |U| < |D| and recall |S|, R � |D|; (c) the data is already
distributed among the M parallel machines for pPITC, pPIC, and pICF-based
GP; and (d) for MPI, a broadcast operation in the communication network of
M machines incurs O(logM) messages [Pjesivac-Grbovic et al., 2007]. The
observations are as follows:

(a) Our pPITC, pPIC, and pICF-based GP improve the scalability of their cen-
tralized counterparts (respectively, PITC, PIC, and ICF-based GP) in the
size |D| of data by distributing their computational loads among the M par-
allel machines.

(b) The speedups of pPITC, pPIC, and pICF-based GP over their centralized
counterparts deviate further from the ideal speedup with an increasing num-
ber M of machines due to their additional O(|S|2M) or O(R2M) time.

(c) The speedups of pPITC and pPIC grow with increasing size |D| of data be-
cause, unlike the additional O(|S|2|D|) time of PITC and PIC that increase
with more data, they do not have corresponding O(|S|2|D|/M) terms.
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(d) pPIC incurs additionalO(|D|) time andO((|D|/M) logM)-sized messages
over pPITC due to its parallelized clustering (see Remark 2 after Defini-
tion 6).

(e) Keeping the other variables fixed, an increasing number M of machines
reduces the time and space complexity of pPITC and pPIC at a faster rate
than pICF-based GP while increasing size |D| of data raises the time and
space complexity of pICF-based GP at a slower rate than pPITC and pPIC.

(f) pICF-based GP distributes the memory requirement of ICF-based GP among
the M parallel machines.

(g) The communication complexity of pICF-based GP depends on the number
|U| of predictions whereas that of pPITC and pPIC are independent of it.

Table 4.1: Comparison of time & space complexity between pPITC, pPIC,
pICF-based GP, PITC, PIC, ICF, and FGP. (Note that PITC, PIC, and ICF-
based GP are, respectively, the centralized counterparts of pPITC, pPIC,
and pICF, as proven in Theorems 1, 2 and 3.)

GP Time complexity Space complexity

pPITC O
(
|S|2

Ç
|S|+M +

|U|
M

å
+

Ç
|D|
M

å3
)

O
(
|S|2 +

Ç
|D|
M

å2
)

pPIC O
(
|S|2

Ç
|S|+M +

|U|
M

å
+

Ç
|D|
M

å3

+ |D|
)

O
(
|S|2 +

Ç
|D|
M

å2
)

pICF O
Ç
R2

Ç
R+M +

|D|
M

å
+R|U|

Ç
M +

|D|
M

åå
O
Ç
R2 +R

|D|
M

å
PITC O

(
|S|2|D|+ |D|

Ç
|D|
M

å2
)

O
(
|S|2 +

Ç
|D|
M

å2
)

PIC O
(
|S|2|D|+ |D|

Ç
|D|
M

å2

+M |D|
)

O
(
|S|2 +

Ç
|D|
M

å2
)

ICF O
Ä
R2|D|+R|U||D|

ä
O(R|D|)

FGP O
Ä
|D|3
ä

O
Ä
|D|2
ä

4.3.2 Online/Incremental Learning

Supposing new data (D′, yD′) becomes available, pPITC and pPIC do not have
to run Steps 1 to 4 (Section 4.1) on the entire data (D⋃D′, yD⋃D′). The lo-
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Table 4.2: Comparison of communication complexity between parallel
GP algorithms: pPITC, pPIC, pICF-based GP

GP Communication complexity

pPITC O
Ä
|S|2 logM

ä
pPIC O

ÇÇ
|S|2 +

|D|
M

å
logM

å
pICF O

ÄÄ
R2 +R|U|

ä
logM

ä
cal and global summaries of the old data (D, yD) can in fact be reused and
assimilated with that of the new data, thus saving the need of recomputing the
computationally expensive matrix inverses in (4.1) and (4.2) for the old data.
The exact mathematical details are omitted due to lack of space. As a result, the
time complexity of pPITC and pPIC can be greatly reduced in situations where
new data is expected to stream in at regular intervals. In contrast, pICF-based
GP does not seem to share this advantage.

4.3.3 Structural Assumptions

The above advantage of online learning for pPITC and pPIC results from their
assumptions of conditional independence given the support set. With fewer ma-
chines, such an assumption is violated less, thus potentially improving their
predictive performances. In contrast, the predictive performance of pICF-based
GP is not affected by varying the number of machines. However, it suffers from
a different problem: Utilizing a reduced-rank matrix approximation of ΣDD,
its resulting predictive covariance matrix ‹ΣUU is not guaranteed to be positive
semidefinite (see Remark 2 after Theorem 3), thus being problematic in mea-
suring predictive uncertainty. However, as our experiments (Section 4.5) show,
this problem can be alleviated by choosing a sufficiently large rank R.

4.4 Experimental Setup

This section empirically evaluates the predictive performances, time efficiency,
scalability, and speedups of our proposed parallel GPs against their centralized
counterparts and FGP.
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4.4.1 Settings

The experiments are performed on two real-world datasets: (a) The AIMPEAK
dataset of size |D| = 41850 contains traffic speeds (km/h) along 775 road seg-
ments of an urban road network (including highways, arterials, slip roads, etc.)
during the morning peak hours (6-10:30 a.m.) on April 20, 2011. The traffic
speeds are the outputs. The mean speed is 49.5 km/h and the standard deviation
is 21.7 km/h. Each input (i.e., road segment) is specified by a 5-dimensional
vector of features: length, number of lanes, speed limit, direction, and time.
The time dimension comprises 54 five-minute time slots. This spatiotemporal
traffic phenomenon is modeled using a relational GP (Section 3.3) whose cor-
relation structure can exploit both the road segment features and road network
topology information; (b) The SARCOS dataset [Vijayakumar et al., 2005] of
size |D| = 48933 pertains to an inverse dynamics problem for a seven degrees-
of-freedom SARCOS robot arm. Each input denotes a 21-dimensional vector
of features: 7 joint positions, 7 joint velocities, and 7 joint accelerations. Only
one of the 7 joint torques is used as the output. The mean torque is 13.7 and the
standard deviation is 20.5.

In our setting, both datasets are modeled as GP specified by a squared expo-
nential covariance function2:

σxx′ , σ2
s exp

(
−1

2

d∑
i=1

Ç
xi − x′i
`i

å2)
+ σ2

nδxx′

where xi (x′i) is the i-th component of the input feature vector x (x′), the hyper-
parameters σ2

s , σ
2
n, `1, . . . , `d are, respectively, signal variance, noise variance,

and length-scales; and δxx′ is a Kronecker delta that is 1 if x = x′ and 0 oth-
erwise. The hyperparameters are learned using randomly selected data of size
10000 via maximum likelihood estimation [Rasmussen and Williams, 2006].

For each dataset, 10% of the data is randomly selected as test data for pre-
dictions (i.e., as U). From the remaining data, training data of varying sizes
|D| = 8000, 16000, 24000, and 32000 are randomly selected. The training data
are distributed into M machines according to the simple parallelized clustering
scheme (see in Remark 2 after Definition (5) ). In addition, pPITC and pPIC are

2In AIMPEAK dataset, the domain of road segments is embedded into the Euclidean space
using multi-dimensional scaling [Borg and Groenen, 2005] so that a squared exponential co-
variance function can be applied.
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evaluated using support sets of varying sizes |S| = 256, 512, 1024, and 2048.
These support sets are selected via differential entropy score criterion (see in
Remark after Definition (3) ). pICF-based GP is evaluated using varying re-
duced ranks R of the same values as |S| in the AIMPEAK domain and twice the
values of |S| in the SARCOS domain.

Our experimental platform is a cluster of 20 computing nodes connected via
gigabit links: Each node runs a Linux system with Intelr Xeonr CPU E5520

at 2.27 GHz and 20 GB memory. Our parallel GPs are tested with different
number M = 4, 8, 12, 16, and 20 of computing nodes.

4.4.2 Performance Metrics

The tested GP regression methods are evaluated with four different performance
metrics: (a) Root mean square error (RMSE)

√
|U|−1∑x∈U

Ä
yx − µx|D

ä2
; (b)

mean negative log probability (MNLP)3 0.5|U|−1∑x∈U
Ä
(yx − µx|D)2/Σxx|D+

log(2πΣxx|D)
ä

[Rasmussen and Williams, 2006]; (c) incurred time; and (d)
speedup is defined as the incurred time of a sequential/centralized algorithm
divided by that of its corresponding parallel algorithm. For the first two metrics,
the tested methods have to plug their predictive mean and variance into µx|D and
Σxx|D, respectively.

4.5 Results and Analysis

In this section, we analyze the results that are obtained by averaging over 5

random instances.

4.5.1 Varying Size of Data

Figure 4.1 demonstrates the results obtained from experiments by varying size
of training data |D| = 8000, 16000, 24000, and 32000.

Figures 4.1a-b and 4.1e-f show that the predictive performances of our par-
allel GPs improve with more data and are comparable to that of FGP, hence
justifying the practicality of their inherent structural assumptions.

3MNLP and RMSE are both commonly used as metrics to evaluate the predictive accuracy.
Unlike RMSE that uses squared residual to evaluate predictive mean at test points, MNLP ex-
ploits negative log probability to evaluate both predictive variance and predictive mean.
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From Figures 4.1e-f, it can be observed that the predictive performance of
pICF-based GP is very close to that of FGP when |D| is relatively small (i.e.,
|D| = 8000, 16000). But, its performance approaches that of pPIC as |D| in-
creases further because the reduced rank R = 4096 of pICF-based GP is not
large enough (relative to |D|) to maintain its close performance to FGP. In addi-
tion, pPIC achieves better predictive performance than pPITC since the former
can exploit local information (see Remark 1 after Definition 6).

Figures 4.1c and 4.1g indicate that our parallel GPs are significantly more
time-efficient and scalable than FGP (i.e., 1-2 orders of magnitude faster) while
achieving comparable predictive performance. Among the three parallel GPs,
pPITC and pPIC are more time-efficient and thus more capable of meeting the
real-time prediction requirement of a time-critical application/system.

Figures 4.1d and 4.1h show that the speedups of our parallel GPs over their
centralized counterparts increase with more data, which agree with observation
c in Section 4.3.1. pPITC and pPIC achieve better speedups than pICF-based
GP.

4.5.2 Varying Number of Machines

Figure 4.2 demonstrates the results obtained from experiments by varying num-
ber M = 4, 8, 12, 16, and 20 of computing nodes.

Figures 4.2a-b and 4.2e-f show that pPIC and pICF-based GP achieve pre-
dictive performance comparable to that of FGP with different number M of
machines. pPIC achieves better predictive performance than pPITC due to its
use of local information (see Remark 1 after Definition 6).

From Figures 4.2e-f, it can be observed that as the number M of machines
increases, the predictive performance of pPIC drops slightly due to smaller size
of local data Dm assigned to each machine. In contrast, the predictive perfor-
mance of pPITC improves: If the number M of machines is small as compared
to the actual number of clusters in the data, then the clustering scheme (see Re-
mark 2 after Definition 6) may assign data from different clusters to the same
machine or data from the same cluster to multiple machines. Consequently, the
conditional independence assumption is violated. Such an issue is mitigated
by increasing the number M of machines to achieve better clustering, hence
resulting in better predictive performance.
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Figure 4.1: Performance of parallel GPs with varying data sizes |D| =
8000, 16000, 24000, and 32000, number M = 20 of machines, support
set size |S| = 2048, and reduced rank R = 2048 (4096) in the AIMPEAK
(SARCOS) domain.
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Figure 4.2: Performance of parallel GPs with varying number M = 4, 8,
12, 16, 20 of machines, data size |D| = 32000, support set size S = 2048,
and reduced rank R = 2048 (4096) in the AIMPEAK (SARCOS) domain.
The ideal speedup of a parallel algorithm equals to the number M of
machines running the algorithm.
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Figures 4.2c and 4.2g show that pPIC and pICF-based GP are significantly
more time-efficient than FGP (i.e., 1-2 orders of magnitude faster) while achiev-
ing comparable predictive performance. This is previously explained in the anal-
ysis of their time complexity (Table 4.1).

Figures 4.2c and 4.2g also reveal that as the number M of machines in-
creases, the incurred time of pPITC and pPIC decreases at a faster rate than that
of pICF-based GP, which agree with observation e in Section 4.3.1. Hence, we
expect pPITC and pPIC to be more time-efficient than pICF-based GP when the
number M of machines increases beyond 20.

Figures 4.2d and 4.2h show that the speedups of our parallel GPs over their
centralized counterparts deviate further from the ideal speedup with a greater
number M of machines, which agree with observation b in Section 4.3.1. The
speedups of pPITC and pPIC are closer to the ideal speedup than that of pICF-
based GP.

4.5.3 Varying Size of Support Set/Reduced Rank

Figure 4.3 demonstrates the results obtained from experiments by varying size
of support set (reduced rank) of pPITC/pPIC (pICF-based GP) algorithms.

Figures 4.3a and 4.3e show that the predictive performance of pICF-based
GP is extremely poor when the reduced rank R is not large enough (relative to
|D|), thus resulting in a poor ICF approximation of the covariance matrix ΣDD.
In addition, it can be observed that the reduced rank R of pICF-based GP needs
to be much larger than the support set size |S| of pPITC and pPIC in order to
achieve comparable predictive performance. These results also indicate that the
heuristic R =

»
|D|, which is used by [Chang et al., 2007] to determine the

reduced rank R, fails to work well in both our datasets (e.g., R = 1024 >√
32000 ≈ 179).

From Figures 4.3b and 4.3f, it can be observed that pICF-based GP incurs
negative MNLP for R ≤ 1024 (R ≤ 2048) in the AIMPEAK (SARCOS) do-
main. This is because pICF-based GP cannot guarantee positivity of predictive
variance, as explained in Remark 2 after Theorem 3. But, it appears that when
R is sufficiently large (i.e., R = 2048 (R = 4096) in the AIMPEAK (SARCOS)
domain), this problem can be alleviated.

It can be observed in Figures 4.3c and 4.3g that pPITC and pPIC are sig-
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nificantly more time-efficient than FGP (i.e., 2-4 orders of magnitude faster)
while achieving comparable predictive performance. To ensure high predic-
tive performance, pICF-based GP has to select a large enough rank R = 2048

(R = 4096) in the AIMPEAK (SARCOS) domain, thus making it less time-
efficient than pPITC and pPIC. But, it can still incur 1-2 orders of magnitude
less time than FGP. These results indicate that pPITC and pPIC are more ca-
pable than pICF-based GP of meeting the real-time prediction requirement of a
time-critical application/system.

Figures 4.3d and 4.3h show that pPITC and pPIC achieve better speedups
than pICF-based GP.

4.5.4 Summary of Results

pPIC and pICF-based GP are significantly more time-efficient and scalable than
FGP (i.e., 1-4 orders of magnitude faster) while achieving comparable predic-
tive performance, hence justifying the practicality of their structural assump-
tions. pPITC and pPIC are expected to be more time-efficient than pICF-based
GP with an increasing number M of machines because their incurred time de-
creases at a faster rate than that of pICF-based GP. Since the predictive perfor-
mances of pPITC and pPIC drop slightly (i.e., more stable) with smaller |S| as
compared to that of pICF-based GP dropping rapidly with smallerR, pPITC and
pPIC are more capable than pICF-based GP of meeting the real-time prediction
requirement of a time-critical application/system. The speedups of our paral-
lel GPs over their centralized counterparts improve with more data but deviate
further from the ideal speedup with a larger number of machines.
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Figure 4.3: Performance of parallel GPs with data size |D| = 32000,
number M = 20 of machines, and varying parameter P = 256, 512, 1024,
2048 where P = |S| = R (P = |S| = R/2) in the AIMPEAK (SARCOS)
domain.
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Chapter 5

Decentralized Data Fusion &
Active Sensing

Towards understanding the large-scale spatiotemporal traffic phenomenon with
active mobile sensors, this chapter aims to address the question: how do the
mobile sensors actively explore an urban network to gather and assimilate the
most informative phenomenon data for predicting a spatiotemporal traffic phe-
nomena? To achieve this goal, first, we can represent the spatiotemporal traffic
phenomena with Gaussian Process models (Chapter 3); then, the mobile sen-
sors can distributedly gather and assimilate the traffic data to model and pre-
dict the traffic phenomena. However, the full Gaussian process model suffers
from cubic time complexity in the size of data. To alleviate this limitation,
we adapt the parallel GP techniques (Chapter 4) into decentralized data fusion

(DDF) algorithms (Section 5.1) that can distribute computational load among
mobile sensors; thereby achieving better efficiency and scalability in assimilat-
ing distributed traffic data into a globally consistent model. Furthermore, a set
of decentralized active sensing (DAS) algorithms (Section 5.2) are developed to
guild mobile sensors to cooperatively collect the most informative traffic data;
thereby reducing the size of data required to achieve comparable predictive ac-
curacy. The DDF algorithms coupled with DAS algorithms form our decentral-
ized algorithm framework: Gaussian process-based decentralized data fusion

and active sensing (D2FAS) [Chen et al., 2012; Chen et al., 2013b].
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5.1 Decentralized Data Fusion

Since the gathered traffic phenomenon data (e.g., traffic speeds on road seg-
ments, urban mobility demand data) are distributed among the mobile sensors,
data fusion techniques are required to assimilate these distributed phenomenon
data into a global predictive model. A straightforward approach to data fusion
is to fully communicate all the data to every vehicle, each of which then per-
forms the same exact GP prediction (3.1) separately. These approaches, which
we call full Gaussian process (FGP) [Low et al., 2008b; Low et al., 2009b],
unfortunately cannot scale well and be performed in real time due to its cubic
time complexity in the size of the data. To alleviate this issue, the parallel GP
techniques (Chapter 4) provide a valuable perspective that the computational
load can be distributed to each mobile sensor; thereby achieving better effi-
ciency and scalability than that of the centralized GP models. Therefore, we
adapt pPITC (Section 4.1.1) and pPIC (Section 4.1.2) into two decentralized
data fusion algorithms that can be applied in mobile sensor network; they are
Gaussian process-based decentralized data fusion (GP-DDF) algorithm [Chen
et al., 2012] (Section 5.1.1) and Gaussian Process-based Decentralized Data

Fusion with Local Augmentation (GP-DDF+) algorithm [Chen et al., 2013b]

(Section 5.1.2).

5.1.1 Gaussian Process-based Decentralized Data Fu-
sion

The intuition to our GP-DDF algorithm is as follows: Each of the K mobile
sensors constructs a local summary of the observations taken along its own path
in an environmental field and communicates its local summary to every other
sensor. Then, it assimilates the local summaries received from the other sensors
into a globally consistent summary, which is exploited for predicting the traffic
phenomenon as well as active sensing. This intuition will be formally realized
and described in subsequent sections.

5.1.1.1 Local & Global Summary

While exploring the field, each mobile sensor summarizes its local observations
taken along its path based on a common support set S ⊂ V known to all the
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other sensors. Its local summary is defined as follows:

Definition 11 (Local Summary). Given a common support set S ⊂ V known to

all K mobile sensors, a setDk ⊂ V of observed inputs and a column vector yDk

of corresponding measurements local to mobile sensor k, its local summary is

defined as a tuple (ẏkS , Σ̇
k
SS) where ẏkS and Σ̇k

SS are defined in the same manner

to (4.1) & (4.2).

Remark. Unlike SoD (Section 3.2), the support set S of inputs does not have
to be observed since the local summary (i.e., (4.1) and (4.2)) is independent
of the corresponding measurements yS . So, S does not need to be a subset of
D =

⋃K
k=1Dk, while the support set of SoD has to be selected fromD. To select

an informative support set S from the set V of all possible segments in the road
network, an offline active selection procedure similar to that in Section 3.2 can
be performed just once prior to observing data to determine S. In contrast, SoD
has to perform online active selection every time when new observations are
being gathered.

By communicating its local summary to every other sensor, each mobile
sensor can then construct a globally consistent summary from the received local
summaries:

Definition 12 (Global Summary). Given a common support set S ⊂ V known

to allK mobile sensors and the local summary (ẏkS , Σ̇
k
SS) of every mobile sensor

k = 1, . . . , K, the global summary is defined as a tuple (ÿS , Σ̈SS) where ÿS and

Σ̈SS are defined in the same manner to (4.3) & (4.4).

Remark. This thesis assumes all-to-all communication between the K mobile
sensors. Supposing this is not possible and each sensor can only communi-
cate locally with its neighbors, the summation structure of the global summary
(specifically, (4.3) and (4.4)) makes it amenable to be constructed using dis-
tributed consensus filters [Olfati-Saber and Shamma, 2005]. We omit these de-
tails since they are beyond the scope of this thesis.

5.1.1.2 Global Predictive Model

GP-DDF algorithm can exploit the global summary to compute a globally con-
sistent predictive Gaussian distribution detailed as below:
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Definition 13 (GP-DDF). Given a common support set S ⊂ V known to all K

mobile sensors, the global summary (ÿS , Σ̈SS), each mobile sensor computes

a globally consistent predictive Gaussian distribution N (µ̂U , “ΣUU) of the mea-

surements at any set U of unobserved inputs where

µ̂U , µU + ΣUSΣ̈−1SS ÿS (5.1)“ΣUU , ΣUU − ΣUS(Σ−1SS − Σ̈−1SS)ΣSU . (5.2)

According to Appendix A, the predictive distribution N (µ̂U , “ΣUU) com-
puted by GP-DDF is proved to be equivalent to the predictive Gaussian dis-
tribution N (µPITC

U|D,Σ
PITC
UU|D) computed by the centralized partially independent

training conditional (PITC) approximation of GP model [Quiñonero-Candela
and Rasmussen, 2005] where µPITC

U|D and ΣPITC
UU|D are defined in (4.10) and (4.11),

respectively. The equivalence result bears two implications:
First, the computational load of the centralized PITC approximation of GP

model can be distributed among K mobile sensors, thereby improving the time
efficiency of prediction. Specifically, supposing |U| ≤ |S| for simplicity, the
O
Ä
|D|((|D|/K)2 + |S|2)

ä
time incurred by PITC can be reduced to

O
Ä
(|D|/K)3 + |S|3 + |S|2K

ä
time of running our decentralized algorithm on

each of the K sensors, the latter of which scales better with increasing number
|D| of observations.

Second, we can draw insights from PITC to elucidate an underlying property
of our decentralized algorithm: It is assumed that YD1 , . . . , YDK

, YU are condi-
tionally independent given the measurements at the support set S. To potentially
reduce the degree of violation of this assumption, an informative support set S
is actively selected, as described earlier in this section. Furthermore, the exper-
imental results on real-world urban road network data1 (Section 6.4) show that
GP-DDF can achieve predictive performance comparable to that of the full GP
model while enjoying significant computational gain over it, thus demonstrat-
ing the practicality of such an assumption for predicting traffic phenomena. The
predictive performance of GP-DDF can be improved by increasing the size of S
at the expense of greater time and communication overhead.

1[Quiñonero-Candela and Rasmussen, 2005] only illustrated the predictive performance of
PITC on a simulated toy example.
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5.1.2 Gaussian Process-based Decentralized Data Fu-
sion with Local Augmentation

Though GP-DDF scales very well with large data, it can predict poorly due to (a)
loss of information caused by summarizing the measurements and correlation
structure of the original data; and (b) sparse coverage of the hotspots (i.e., with
higher spatiotemporal variability) by the support set.

To address this issue, this section proposes a novel DDF algorithm called
Gaussian process-based decentralized data fusion with local augmentation (GP-
DDF+) that can achieve better predictive accuracy while preserving the effi-
ciency of GP-DDF; GP-DDF+ is based on the intuition that a mobile sensor can
exploit its local data to improve the predictions for unobserved inputs “close” to
its data (in the correlation sense).

5.1.2.1 Local Predictive Model

Using GP-DDF (Section 5.1.1), each mobile sensor exploits the global sum-
mary to compute a globally consistent predictive Gaussian distribution of the
measurements of any set of unobserved inputs. To improve the predictive power
of GP-DDF, we develop the following GP-DDF+

k algorithm that is further aug-
mented by local information of mobile sensor k.

Definition 14 (GP-DDF+
k ). Given a common support set U ⊂ V known to all

K mobile sensors, the global summary (ÿS , Σ̈SS), the local summary (ẏkS , Σ̇
k
SS),

a set Dk ⊂ V of observed inputs and a column vector yDk
of corresponding

measurements local to mobile sensor k, its GP-DDF+
k algorithm computes a

predictive Gaussian distribution N (µ̂kU ,
“Σk
UU) of the measurements of any set

U ⊂ V of unobserved inputs where µ̂kU ,
Ä
µ̂ks
ä
s∈U and “Σk

UU ,
Ä
σ̂kss′
ä
s,s′∈U such

that

µ̂ks , µs +
Ä
Φk
sSΣ̈−1SS ÿS − ΣsSΣ−1SS ẏ

k
S
ä

+ ẏks (5.3)

σ̂kss′ , σss′ −
Ä
Φk
sSΣ−1SSΣSs′ − ΣsSΣ−1SSΣ̇k

Ss′

− Φk
sSΣ̈−1SSΦk

Ss′
ä
− Σ̇k

ss′

(5.4)

and

Φk
sS , ΣsS + ΣsSΣ−1SSΣ̇k

SS − Σ̇k
sS . (5.5)
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Remark 1. Both the predictive Gaussian mean µ̂ks (5.3) and covariance σ̂kss′(5.4)
of GP-DDF+

k exploit summary information (i.e., bracketed term) contributed
from exchanged summaries among mobile sensors and local information (i.e.,
last term) contributed from local data.
Remark 2. Since different mobile sensors exploit different local data, their GP-
DDF+

k algorithms provide inconsistent predictions of the measurements.

5.1.2.2 Assignment Function

It is often desirable to achieve a globally consistent prediction of measurements
among all mobile sensors. To do this, each unobserved input is simply assigned
to the mobile sensor that predicts its measurement best, which can be performed
in a decentralized way:

Definition 15 (Assignment Function). An assignment function τ : V 7→ {1 . . . K}
is defined as

τ(s) , arg min
k∈{1...K}

σ̂kss (5.6)

for all s ∈ U where the predictive variance σ̂kss is defined in (5.4). From now

on, let τs , τ(s) for notational simplicity.

5.1.2.3 Global Predictive Model

Using the assignment function τ , each mobile sensor can now compute a glob-
ally consistent predictive Gaussian distribution, as detailed in Definition 16 be-
low:

Definition 16 (GP-DDF+). Given a common support set S ⊂ V and a common

assignment function τ be known to all K mobile sensors. The GP-DDF+ algo-

rithm of each mobile sensor computes a globally consistent predictive Gaussian

distribution N (µ̂+
U ,
“Σ+
UU) of the measurements of any set U ⊂ V of unobserved

inputs where µ̂+
U , (µ̂τss )s∈U (5.3) and “Σ+

UU ,
Ä
σ̂+
ss′

ä
s,s′∈U such that

σ̂+
ss′ ,

 σ̂τsss′ if τs = τs′ ,

Σss′|S + Φτs
sSΣ̈−1SSΦ

τs′
Ss′ otherwise ,

(5.7)

and Φ
τs′
Ss′ is the transpose of Φ

τs′
s′S(5.5).
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Remark 1. In Definition 16, if τs = τs′ = k, then mobile sensor k can compute
µ̂τss (5.3) and σ̂kss′ (5.4) locally and send them to the other mobile sensors that
request them. Otherwise, τs 6= τs′ and mobile sensor k has to request |S|-sized
vectors Φτs

sS and Φ
τs′
s′S from the respective mobile sensors τs and τs′ to compute

σ̂+
ss′ (5.7).

According Appendix B, the predicitve distribution N (µ̂+
U ,
“Σ+
UU) computed

by GP-DDF+ is proved to be equivalent to the predictive Gaussian distribution
N (µPIC

U|D,Σ
PIC
UU|D) computed by the centralized partially independent conditional

(PIC) approximation of GP model [Snelson, 2007] where µPIC
U|D and ΣPIC

UU|D are
defined in (4.13) and (4.14), respectively. The equivalence result bears two
implications:

First, the equivalence result implies that the computational load of the cen-
tralized PIC approximation of GP can be distributed among K mobile sensors,
hence improving the time efficiency of demand prediction. Supposing |U| ≤ |S|
and |U| ≤ |D|/K for simplicity, theO

Ä
|D|((|D|/K)2 + |S|2)

ä
time incurred by

PIC can be reduced toO
Ä
(|D|/K)3 + |S|3 + |S|2K

ä
time of running GP-DDF+

on each of the K mobile sensors. Hence, GP-DDF+ scales better with increas-
ing size |D| of data.

Second, the equivalence result also sheds some light on an important prop-
erty of GP-DDF+ based on the structure of PIC: It is assumed that YD1

⋃
U1 , . . . ,

YDK

⋃
UK are conditionally independent given the support set S. As compared to

GP-DDF that assumes conditional independence of YD1 , . . . , YDK
, YU1 , . . . , YUK ,

GP-DDF+ can predict YU better since it imposes a weaker conditional indepen-
dence assumption. Experimental results on real-world mobility demand data
(Section 7.4) also show that GP-DDF+ achieves predictive accuracy compara-
ble to FGP and significantly better than GP-DDF, thus justifying the practicality
of such an assumption for predicting a mobility demand pattern.

5.2 Decentralized Active Sensing

This chapter aims to develop techniques for decentralized active sensing com-
ponent of Gaussian process-based decentralized data fusion and active sensing

(D2FAS) framework. First, Section 5.2.1 formulate the active sensing problem
with mobile sensors; It is showed that deriving the most informative (maxi-
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mum posterior Gaussian entropy) joint walk is not scalable in the size of phe-
nomenon data and in the number of mobile sensors. To address former scalabil-
ity issue due to a big phenomenon data, Section 5.2.2 exploits the decentralized
data fusion algorithms(Section 5.1) to provide efficient and scalable compu-
tation of a posterior Gaussian entropy / a posterior log-Gaussian entropy. To
overcome the latter scalability issue due to a large number of mobile sensors,
Section 5.2.3 presents a novel partially decentralized active sensing (PDAS)
strategy [Chen et al., 2012] whose performance can be theoretically guaranteed,
and Section 5.2.4 presents a fully decentralized active sensing (FDAS) strat-
egy [Chen et al., 2013b] to alleviate situation in which PDAS strategy perform
poorly when its partitioning heuristic tends to form large subsets of agents.

5.2.1 Problem Formulation

The problem of active sensing with K mobile sensors is formulated as follows:
Given the set Dk ⊂ V of observed inputs (e.g., road segments/regions) and the
currently observed inputs sk ∈ V of every mobile sensor k = 1, . . . , K, the mo-
bile sensors have to coordinate to select the most informative walks w∗1, . . . , w

∗
K

of length H each and with respective origins s1, . . . , sK in the environmental
field:

(w∗1, . . . , w
∗
K)= arg max

(w1,...,wK)
H
ï
Y⋃K

k=1
Uwk

∣∣∣∣Y⋃K
k=1
Dk

ò
(5.8)

where Uwk
denotes the set of unobserved inputs induced by the walk wk. To

ease notations, let a joint walk be denoted by w , (w1, . . . , wK) (similarly,
for w∗) and its induced set of unobserved inputs be Uw ,

⋃K
k=1 Uwk

from
now on. Interestingly, it can be shown using the chain rule for entropy that
these maximum-entropy walks w∗ minimize the posterior joint entropy (i.e.,
H[YV \(D

⋃
Uw∗ )|YD

⋃
Uw∗ ]) of the measurements at the remaining unobserved in-

puts (i.e., V \ (D⋃Uw∗)) in the field. After executing the walk w∗k, each mobile
sensor k observes the set Uw∗

k
of the field and updates its local information:

Dk ← Dk
⋃
Uw∗

k
, yDk

← yDk

⋃
Uw∗

k

, sk ← terminus of w∗k . (5.9)

To derive the most informative joint walk w∗, the posterior entropy (5.8) of
every possible joint walk w has to be evaluated2. Such a centralized strategy

2Solving (5.8) is an NP-hard problem.
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cannot be performed in real time due to the following two issues: (a) It relies
on all the phenomenon data that are gathered distributedly by the mobile sen-
sors, thus incurring huge time and communication overheads with large data,
and (b) it involves evaluating a prohibitively large number of joint walks (i.e.,
exponential in the number of mobile sensors).

5.2.2 Decentralized Posterior Gaussian Entropy Strat-
egy

Evaluating the Gaussian posterior entropy term in (5.8) involves computing a
posterior covariance matrix (3.3) using one of the data fusion methods described
earlier: If (3.2) of full GP (FGP) model (Section 3.1) or (3.5) of SoD (Sec-
tion 3.2) is to be used, then the observations that are gathered distributedly by
the sensors have to be fully communicated to a central data fusion center. In
contrast, GP-DDF algorithm (Section 5.1.1) only requires communicating lo-
cal summaries (Definition 11) to compute (4.11) for solving the active sensing
problem (5.8):

w∗ = arg max
w

H[YUw ] , (5.10)

H[YUw ] ,
1

2
log(2πe)|Uw|

∣∣∣“ΣUwUw ∣∣∣ . (5.11)

In (5.11), “ΣUwUw is defined by (5.2). To exploit GP-DDF+ model (Section 5.1.2),“ΣUwUw can be replaced by “Σ+
UwUw defined in Definition 16.

If a `GP model (Section 3.4) is exploited to model an environmental phe-
nomeon, then the active sensing problem (5.8) can be approximated by

w∗ = arg max
w

‹H[YUw ] , (5.12)

‹H [YUw ] ,
1

2
log(2πe)|Uw|

∣∣∣“ΣUwUw ∣∣∣+ µ̂Uw · 1 . (5.13)

To obtain ‹H [YUw ] (5.13) using GP-DDF (Section 5.1.1), ΣUwUw|D and µUw|D

in H[YUw |YD] ((3.7) & (5.8)) can be replaced by “ΣUwUw (5.2) and µ̂Uw (5.1),
respectively. To exploit GP-DDF+ model (Section 5.1.2) instead, “ΣUwUw and
µ̂Uw have to be replaced by “Σ+

UwUw and µ̂+
Uw (Definition 16).
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5.2.3 Partially Decentralized Active Sensing

Without imposing any structural assumption, solving the active sensing prob-
lem (5.10) will be prohibitively expensive due to the space of possible joint
walks w that grows exponentially in the number K of mobile sensors. To over-
come this scalability issue for decentralized active sensing with mobile sen-
sors, our key idea is to construct a block-diagonal matrix whose log-determinant
closely approximates that of “ΣUwUw (5.2) and exploit the property that the log-
determinant of such a block-diagonal matrix can be decomposed into a sum
of log-determinants of its diagonal blocks, each of which depends only on the
walks of a disjoint subset of the K mobile sensors. Consequently, the active
sensing problem can be partially decentralized leading to a reduced space of
possible joint walks to be searched, as detailed in the rest of this section.

Firstly, we extend an earlier assumption in Section 5.1.1: YD1 , . . . , YDK
,

YUw1
, . . . , YUwK

are conditionally independent given the measurements at the
support set S. Then, it can be shown via the equivalence to PITC (Theo-
rem 1) that “ΣUwUw (5.2) comprises diagonal blocks of the form “ΣUwk

Uwk
for

k = 1, . . . , K and off-diagonal blocks of the form ΣUwk
SΣ̈−1SSΣSUwk′

for k, k′ =

1, . . . , K and k 6= k′. In particular, each off-diagonal block of “ΣUwUw represents
the correlation of measurements between the unobserved inputs Uwk

and Uwk′

along the respective walks wk of sensor k and wk′ of sensor k′. If the correlation
between some pair of their possible walks is high enough, then their walks have
to be coordinated. This is formally realized by the following coordination graph
over the K sensors:

Definition 17 (Coordination Graph). Define the coordination graph to be an

undirected graph G , (V , E) that comprises

• a set V of vertices denoting the K mobile sensors, and

• a set E of edges denoting coordination dependencies between sensors such

that there exists an edge {k, k′} incident with sensors k ∈ V and k′ ∈ V \{k}
iff

max
s∈UWk

,s′∈UWk′

∣∣∣ΣsSΣ̈−1SSΣSs′
∣∣∣ > ε (5.14)

for a predefined constant ε > 0 where Wk denotes the set of possible walks

of length H of mobile sensor k from origin sk in the environmental field and

UWk
,
⋃
wk∈Wk

Uwk
.

52



Chapter 5. Decentralized Data Fusion & Active Sensing

Remark. The construction of G can be decentralized as follows: Since Σ̈SS is
symmetric and positive definite, it can be decomposed by Cholesky factorization
into Σ̈SS = ΨΨ> where Ψ is a lower triangular matrix and Ψ> is the transpose
of Ψ. Then, ΣsSΣ̈−1SSΣSs′ = (Ψ\ΣSs)>Ψ\ΣSs′ where Ψ\B denotes the column
vector φ solving Ψφ = B. That is, ΣsSΣ̈−1SSΣSs′ (5.14) can be expressed as
a dot product of two vectors Ψ\ΣSs and Ψ\ΣSs′; this property is exploited to
determine adjacency between sensors in a decentralized manner:

Definition 18 (Adjacency). Let

Jk , {Ψ\ΣSs}s∈UWk
(5.15)

for k = 1, . . . , K. A sensor k ∈ V is adjacent to sensor k′ ∈ V \ {k} in

coordination graph G iff

max
φ∈Jk,φ′∈Jk′

∣∣∣φ>φ′∣∣∣ > ε . (5.16)

It follows from the above definition that if each sensor k constructs Jk and
exchanges it with every other sensor, then it can determine its adjacency to all
the other sensors and store this information in a column vector ak of length K
with its k′-th component being defined as follows:

[ak]k′ =

 1 if sensor k is adjacent to sensor k′,
0 otherwise.

(5.17)

By exchanging its adjacency vector ak with every other sensor, each sen-
sor can construct a globally consistent adjacency matrix AG , (a1 . . . aK) to
represent coordination graph G.

Next, by computing the connected components (say, K of them) of coordi-
nation graph G, their resulting vertex sets partition the set V of K sensors into
K disjoint subsets V1, . . . ,VK such that the sensors within each subset have to
coordinate their walks. Each sensor can determine its residing connected com-
ponent in a decentralized way by performing a depth-first search in G starting
from it as root.

Finally, construct a block-diagonal matrix ΣUwUw to comprise diagonal blocks
of the form “ΣUwVnUwVn for n = 1, . . . ,K where wVn , (wk)k∈Vn and UwVn ,
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⋃
k∈Vn Uwk

. The active sensing problem (5.10) is then approximated by

max
w

1

2
log(2πe)|Uw|

∣∣∣ΣUwUw ∣∣∣
≡ max

(wV1 ,...,wVK )

K∑
n=1

log(2πe)|UwVn |
∣∣∣“ΣUwVnUwVn ∣∣∣

=
K∑
n=1

max
wVn

log(2πe)|UwVn |
∣∣∣“ΣUwVnUwVn ∣∣∣ , (5.18)

which can be solved in a partially decentralized manner by each disjoint
subset Vn of mobile sensors:“wVn = arg max

wVn

log(2πe)|UwVn |
∣∣∣“ΣUwVnUwVn ∣∣∣ . (5.19)

Our active sensing algorithm becomes fully decentralized if ε is set to be
sufficiently large: more sensors become isolated in G, consequently decreasing
the size κ , max

n
|Vn| of its largest connected component to 1. As shown in

Section 6.2.1, decreasing κ improves its time efficiency. On the other hand,
it tends to a centralized behavior (5.10) by setting ε → 0+: G becomes near-
complete, thus resulting in κ→ K.

5.2.3.1 Performance Guarantee

This section theoretically guarantees performance of the proposed PDAS algo-
rithm. Let

ξ , max
n,wVn ,i,i

′

∣∣∣∣ï(“ΣUwVnUwVn )−1òii′ ∣∣∣∣ (5.20)

and ε , 0.5 log 1
¡(

1−
Ä
K1.5H2.5κξε

ä2)
. In the result below, we prove that

the joint walk “w , (“wV1 , . . . , “wVK) partially decentralized active sensing prob-
lem (5.19) is guaranteed to achieve an entropy H

[
YU

ŵ

]
(i.e., by plugging “w into

(5.11)) that is not more than ε from the maximum entropy H[YUw∗ ] achieved by
joint walk w∗ (5.10):

Theorem 4 (Performance Guarantee).

If K1.5H2.5κξε < 1, then H[YUw∗ ]−H
[
YU

ŵ

]
≤ ε .
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The proof of Theorem 4 is given in Appendix D. The implication of The-
orem 4 is that our partially decentralized active sensing algorithm can perform
comparatively well (i.e., small ε) under the following favorable environmental
conditions: (a) the network of K sensors is not large, (b) length H of each sen-
sor’s walk to be optimized is not long, (c) the largest subset of κ sensors being
formed to coordinate their walks (i.e., largest connected component in G) is rea-
sonably small, and (d) the minimum required correlation ε between walks of
adjacent sensors is kept low.

5.2.4 Fully Decentralized Active Sensing

The PDAS algorithm proposed in Section 5.2.3 partitions the vehicles into sev-
eral small groups such that each group of vehicles selects its joint walk inde-
pendently. This partitioning heuristic performs poorly when the largest group
formed still contains many vehicles. This is indeed the case if the posterior
log-Gaussian entropy (3.7) or its approximation (5.13) is exploited as active
sensing strategy, because many vehicles tend to cluster within hotspots due to
the µU|D · 1 term. To scale well in the fleet size, we therefore adopt a fully
decentralized active sensing (FDAS) strategy by assuming that the joint walk
w∗1 . . . w

∗
K is derived by selecting the locally optimal walk of each vehicle k:

w∗k = arg max
wk

‹H îYUwk

ó
(5.21)

where ‹H îYUwk

ó
is defined in the same way as (5.13). Then, each vehicle

can select its locally optimal walk independently of the other vehicles, thus sig-
nificantly reducing the search space of joint walks. A consequence of such an
assumption is that, without coordinating their walks, the vehicles may select
suboptimal joint walks (e.g., two vehicles’ locally optimal walks are highly cor-
related). In practice, this assumption becomes less restrictive when the size |D|
of data increases to potentially reduce the degree of violation of conditional
independence of YUw1

, . . . , YUwK
.
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Chapter 6

Decentralized Solution to Traffic
Condition Monitoring

Up to this point, it has been shown that the spatiotemporal urban traffic phe-
nomena can be modeled based on Gaussian process-based models (Chapter 3);
To work with active mobile sensors, a class of efficient and scalable techniques
have been proposed for data fusion (Section 5.1) and active sensing (Section 5.2)
in decentralized manner.

This chapter demonstrates that how such techniques can be exploited to ad-
dress a real-world traffic condition monitoring problem [Chen et al., 2012]. Sec-
tion 6.1 discusses the practical importance of monitoring traffic conditions over
road network . To address this problem, Section 6.2 presents a novel Gaus-

sian process-based decentralized data fusion and active sensing (D2FAS) algo-
rithm which is a Gaussian process-based decentralized data fusion (GP-DDF)
algorithm (Section 5.1.1) coupled with a partially decentralized active sensing

(PDAS) algorithm (Section 5.2.3); Then, the time and communication com-
plexity of this D2FAS algorithm are analysed in Sections 6.2.1 & 6.2.2. Subse-
quently, The performance of our D2FAS algorithm are empirically evaluated in
a real-world traffic phenomenon over an urban road network (Section 6.3). The
results in Section 6.4 show that our D2FAS algorithm is significantly more time
efficient and scalable than state-of-the-art centralized approaches and achieves
comparable predictive performance.
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6.1 Motivation

Knowing and understanding the traffic conditions and phenomena over road
networks has become increasingly important to the goal of achieving smooth-
flowing, congestion-free traffic, especially in densely-populated urban cities. To
achieve this goal, this thesis exploits a fleet of mobile sensors operating over
road network to actively collect and assimilate traffic phenomena data (e.g.,
traffic speeds). Briefly, each mobile sensor runs a Gaussian process-based de-

centralized data fusion and active sensing (D2FAS) algorithm which is com-
prised of two components: decentralized data fusion (see Section 5.1) and de-
centralized active sensing (see Section 5.2). In the following, we present a novel
D2FAS algorithm to address the specific problem of monitoring traffic condition
over road networks.

6.2 D2FAS Algorithm

The key operations of our D2FAS algorithm that is run on each mobile sensor
k are presented in Algorithm 1. In this algorithm, the data fusion component
implements the Gaussian process-based decentralized data fusion (GP-DDF)
(Sections 5.1.1), and the active sensing component employs partially decentral-

ized actively sensing (PDAS) (Section 5.2.3).
In the next, the time and communication complexity of our D2FAS algo-

rithm are analyzed and compared to that of centralized active sensing (5.10)
coupled with the data fusion methods: Full GP (FGP) (Section 3.1) and SoD
(Section 3.2).

6.2.1 Time Complexity

The GP-DDF (Section 5.1.1) involves computing the local and global sum-
maries and the predictive Gaussian distribution.

To construct the local summary using (4.1) and (4.2), each sensor has to eval-
uate ΣDkDk|S inO

Ä
|S|3 + |S|(|D|/K)2

ä
time and invert it inO((|D|/K)3) time,

after which the local summary is obtained in O
Ä
|S|2|D|/K + |S|(|D|/K)2

ä
time.

The global summary is computed in O
Ä
|S|2K

ä
by (4.3) and (4.4).
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Algorithm 1: PDAS+GP-DDF(S, K,H, k,Dk, yDk
, sk)

/* S: support set */
/* K: number of mobile sensors */
/* H: length of planned steps of a walk */
/* k: index of the mobile sensor */
/* (Dk, yDk

): data gathered by sensor k */
/* sk: initial location of mobile sensor k */

1 while true do
/* Data fusion (Section 5.1.1) */

2 Construct local summary by (4.1) & (4.2)
3 Exchange local summary with every sensor i 6= k
4 Construct global summary by (4.3) & (4.4)
5 Predict measurements at unobserved road segments by (5.1) & (5.2)

/* Active Sensing (Section 5.2.3) */
6 Construct Jk by (5.15)
7 Exchange Jk with every sensor i 6= k
8 Compute adjacency vector ak by (5.16) & (5.17)
9 Exchange adjacency vector with every sensor i 6= k

10 Construct adjacency matrix of coordination graph
11 Find vertex set Vn of its residing connected component
12 Compute maximum-entropy joint walk “wVn by (5.19)
13 Execute walk “wk and observe its road segments Uŵk

14 Update local information Dk, yDk
, and sk by (5.9)

58



Chapter 6. Decentralized Solution to Traffic Condition Monitoring

Finally, the predictive Gaussian distribution is derived in O
Ä
|S|3 + |S||U|2

ä
time using (5.1) and (5.2).

Supposing |U| ≤ |S| for simplicity, the time complexity of data fusion is
then O

Ä
(|D|/K)3 + |S|3 +|S|2K

ä
.

Let the maximum out-degree of road network G (Definition 1) be denoted
by δ. Then, each sensor has to consider ∆ , δH possible walks of length
H . The PDAS algorithm involves computing Jk in O

Ä
∆H|S|2

ä
time, ak in

O(∆2H2|S|K) time, its residing connected component in O(κ2) time, and the
maximum-entropy joint walk by (5.2) and (5.19) with the following incurred
time: The largest connected component of κ sensors in G has to consider ∆κ

possible joint walks.

Note that “ΣUwVnUwVn = diag
Ä
(ΣUwk

Uwk
|S)k∈Vn

ä
+ ΣUwVnSΣ̈−1SSΣSUwVn where

diag(B) constructs a diagonal matrix by placing vector B on its diagonal.

By exploiting Jk, the diagonal and latter matrix terms for all possible joint
walks can be computed in O

Ä
κ∆(H|S|2 +H2|S|)

ä
and O(κ2∆2H2|S|) time,

respectively.

For each joint walk wVn , evaluating the determinant of “ΣUwVnUwVn incurs
O((κH)3) time.

Therefore, the time complexity of active sensing is O
Ä
κ∆H|S|2+

∆2H2|S|(K + κ2) + ∆κ(κH)3).

Hence, the time complexity of our D2FAS algorithm isO((|D|/K)3+|S|2(|S|
+K + κ∆H) + ∆2H2|S|(K + κ2) + ∆κ(κH)3). In contrast, the time incurred
by centralized active sensing coupled with FGP and SoD are, respectively,
O
Ä
|D|3 + ∆KKH(|D|2 + (KH)2)

ä
andO

Ä
|S|3|D|+ ∆KKH(|S|2 + (KH)2)

ä
.

It can be observed that D2FAS can scale better with large |D| (i.e., number of
observations) and K (i.e., number of sensors). The scalability of D2FAS vs.
FGP and SoD will be further evaluated empirically in Section 6.3.

6.2.2 Communication Complexity

Let the communication overhead be defined as the size of each broadcast mes-
sage. Recall the GP-DDF in Algorithm 1 that, in each iteration, each sensor
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broadcasts aO
Ä
|S|2
ä
-sized summary encapsulating its local observations, which

is robust against communication failure. In contrast, FGP and SoD require each
sensor to broadcast, in each iteration, a O(|D|/K)-sized message comprising
exactly its local observations to handle communication failure. If the number of
local observations grows to be larger in size than a local summary of predefined
size, then the GP-DDF of D2FAS is more scalable than FGP and SoD in terms
of communication overhead. For the PDAS of D2FAS, each sensor broadcasts
O(∆H|S|)-sized Jk and O(K)-sized ak messages.

6.2.3 Summary of Theoretical Results

The time overheads show that both data fusion component (GP-DDF) and ac-
tive sensing component (PDAS) of the proposed D2FAS algorithm scale better
than that of the centralized GP models (i.e., FGP and SoD) in size of data when
number of agents is large. The communication overheads indicate that the pro-
posed D2FAS algorithm is more scalable than that of the centralized algorithms,
because the broadcast messages of D2FAS are independent of the size of data
while the centralized models have to broadcast all the data.

6.3 Experimental Setup

In this section, we evaluate the predictive performance, time efficiency, and scal-
ability of our D2FAS algorithm.

6.3.1 Settings

We introduce a real-world traffic phenomenon1 (i.e., speeds (km/h) of road seg-
ments) over an urban road network (Figure 6.1) in Tampines area, Singapore
during evening peak hours on April 20, 2011. It comprises 775 road segments
including highways, arterials, slip roads, etc. The mean speed is 48.8 km/h and
the standard deviation is 20.5 km/h.

The performance of D2FAS is compared to that of centralized active sensing
(5.10) coupled with the state-of-the-art data fusion methods: full GP (FGP)

1 The traffic flow dataset over Singapore road network is provided by Land Transport Au-
thority (LTA) of Singapore and future urban mobility (FM) research group of Singapore-MIT
Alliance for Research and Technology (SMART).
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Figure 6.1: A real-world traffic phenomenon (speeds) over an urban road
network
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(Section 3.1) and SoD (Section 3.2). A network ofK mobile sensors is deployed
with the initial location of each mobile sensor is randomly distributed; then, it
is tasked to explore the road network to gather a total of up to 960 observations.
To reduce computational time, each sensor repeatedly computes and executes
maximum-entropy walks of length H = 2 (instead of computing a very long
walk), unless otherwise stated. For D2FAS and SoD, S is set to 64 . For the
active sensing component of D2FAS, ε is set to 0.1, unless otherwise stated.
The experiments are run on a Linux PC with Intelr CoreTM2 Quad CPU Q9550

at 2.83 GHz.

6.3.2 Performance Metrics

The first metric evaluates the predictive performance of a tested algorithm: It
measures the root mean squared error (RMSE)

√
|V |−1∑s∈V

Ä
ys − µs|D

ä2
over

the entire domain V of the road network that is incurred by the predictive mean
µs|D of the tested algorithm, specifically, plugging in (3.1) of FGP, (3.4) of SoD,
or (5.1) of D2FAS. The second metric evaluates the time efficiency and scal-
ability of a tested algorithm by measuring its incurred time; for D2FAS, the
maximum of the time incurred by all subsets V1, . . . ,VK of sensors is recorded.

6.4 Results and Analysis

This section demonstrates and analyzes the results which are averaged over 40

randomly generated starting sensor locations.

6.4.1 Predictive Performance & Time Efficiency

Figure 6.2 shows results of the performance of the tested algorithms with vary-
ing number K = 4, 6, 8 of sensors. It can be observed that D2FAS is signifi-
cantly more time-efficient and scales better with increasing number |D| of ob-
servations (Figures 6.2d to 6.2f) while achieving predictive performance close
to that of centralized active sensing coupled with FGP and SoD (Figures 6.2a
to 6.2c). Specifically, D2FAS is about 1, 2, 4 orders of magnitude faster than
centralized active sensing coupled with FGP and SoD for K = 4, 6, 8 sensors,
respectively.

62



Chapter 6. Decentralized Solution to Traffic Condition Monitoring

0 200 400 600 800 1000

8

10

12

14

16

18

20

Total no. |D| of observations

R
M

S
E

 (
k

m
/h

)

 

 

FGP

SoD

D
2
FAS

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

Total no. |D| of observations

In
c
u

rr
e
d

 t
im

e
 (

s)

 

 

FGP

SoD

D
2
FAS

(a) K = 4 (d) K = 4

0 200 400 600 800 1000

8

10

12

14

16

18

20

Total no. |D| of observations

R
M

S
E

 (
k

m
/h

)

 

 

FGP

SoD

D
2
FAS

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

Total no. |D| of observations

In
c
u
rr

e
d
 t

im
e
 (

s)

 

 

FGP

SoD

D
2
FAS

(b) K = 6 (e) K = 6

0 200 400 600 800 1000

8

10

12

14

16

18

20

Total no. |D| of observations

R
M

S
E

 (
k

m
/h

)

 

 

FGP

SoD

D
2
FAS

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

Total no. |D| of observations

In
c
u

rr
e
d

 t
im

e
 (

s)

 

 

FGP

SoD

D
2
FAS

(c) K = 8 (f) K = 8

Figure 6.2: Predictive performance (a-c) & time efficiency (d-f) vs. total
no. |D| of observations gathered by varying number K of mobile sen-
sors.
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Figure 6.3: Predictive performance (a-c) & time efficiency (d-f) vs. total
no. |D| of observations gathered by varying number K of mobile sen-
sors.
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6.4.2 Scalability

Scalability of D2FAS algorithm: Using the same results as that in Figure 6.2,
Figure 6.3 plots them differently to reveal the scalability of the tested algorithms
with increasing number K of sensors. Additionally, we provide results of the
performance of D2FAS for K = 10, 20, 30 sensors; such results are not avail-
able for centralized active sensing coupled with FGP and SoD due to extremely
long incurred time. It can be observed from Figures 6.3a to 6.3c that the pre-
dictive performance of all tested algorithms improve with a larger number of
sensors because each sensor needs to execute fewer number of walks and its
performance is therefore less adversely affected by its myopic selection (i.e.,
H = 2) of maximum-entropy walks. As a result, more informative unobserved
road segments are explored.

As shown in Figure 6.3d, when the randomly placed sensors gather their
initial observations (i.e., |D| < 400), the time incurred by D2FAS is higher for
greaterK due to larger subsets of sensors being formed to coordinate their walks
(i.e., larger κ). As more observations are gathered (i.e., |D| ≥ 400), the PDAS
algorithm directs the sensors to explore further apart from each other in order
to maximize the entropy of their walks. This consequently decreases κ leading
to a reduction in incurred time. Furthermore, as K increases from 4 to 20, the
incurred time decreases due to its decentralized data fusion component that can
distribute the computational load among a greater number of sensors. When the
road network becomes more crowded from K = 20 to K = 30 sensors, the in-
curred time increases slightly due to slightly larger κ. In contrast, Figures 6.3e
and 6.3f show that the time taken by FGP and SoD increase significantly pri-
marily due to their centralized active sensing incurring exponential time in K.
Hence, the scalability of our D2FAS algorithm in the number of sensors allows
the deployment of a larger-scale mobile sensor network (i.e.,K ≥ 10) to achieve
more accurate traffic modeling and prediction (Figures 6.3a to 6.3c).

Scalability of DDF Component: Figure 6.4 shows results of the scalability of
the tested data fusion methods with increasing number K of sensors. In order to
produce meaningful results for fair comparison, the same active sensing compo-
nent has to be coupled with the data fusion methods and its incurred time kept
to a minimum. As such, we impose the use of fully decentralized active sensing
to be performed by each mobile sensor k: w∗k = arg maxwk

H[YUwk
|YD]. For
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Figure 6.4: Time efficiency vs. total no. |D| of observations gathered by
varying number K of sensors.
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D2FAS, this corresponds exactly to (5.19) by setting a large enough ε (in our
experiments, ε = 2) to yield κ = 1; consequently, computational and commu-
nicational operations pertaining to the coordination graph can be omitted.

It can be seen from Figure 6.4a that the time incurred by the GP-DDF of
D2FAS decreases with increasing K, as explained previously. In contrast, the
time incurred by FGP and SoD increase (Figure 6.4b and 6.4c): As discussed
above, a larger number of sensors result in a greater quantity of more infor-
mative unique observations to be gathered (i.e., fewer repeated observations),
which increase the time needed for data fusion. When K ≥ 10, D2FAS is at
least 1 order of magnitude faster than FGP and SoD. It can also be observed
that D2FAS scales better with increasing number of observations. So, the real-
time performance and scalability of D2FAS’s decentralized data fusion enable
it to be used for persistent large-scale traffic modeling and prediction where a
large number of observations and sensors (including static and passive ones) are
expected to be available.

6.4.3 Varying length of walk

Figure 6.5 shows results of the performance of the tested algorithms with vary-
ing length H = 2, 4, 6, 8 of maximum-entropy joint walks; we choose to exper-
iment with just 2 sensors since Figures 6.3 and 6.4 reveal that a smaller number
of sensors produce poorer predictive performance and higher incurred time with
large number of observations for D2FAS. It can be observed that the predic-
tive performance of all tested algorithms improve with increasing walk length
H because the selection of maximum-entropy joint walks is less myopic. The
time incurred by D2FAS increases due to larger κ but grows more slowly and
is lower than that incurred by centralized active sensing coupled with FGP and
SoD. Specifically, when H = 8, D2FAS is at least 1 order of magnitude faster
(i.e., average of 60 s) than centralized active sensing coupled with SoD (i.e.,
average of > 732 s) and FGP (i.e., not available due to excessive incurred time).
Also, notice from Figures 6.3a and 6.3d that if a large number of sensors (i.e.,
K = 30) is available, D2FAS can select shorter walks of H = 2 to be signifi-
cantly more time-efficient (i.e., average of> 3 orders of magnitude faster) while
achieving predictive performance comparable to that of SoD with H = 8 and
FGP with H = 6.
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Figure 6.5: Predictive performance (a-c) & time efficiency (d-f) vs. total
no. |D| of observations gathered by 2 mobile sensors with varying length
H of maximum-entropy joint walks.
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6.4.4 Summary of Empirical Result

With a larger size of data, the proposed D2FAS algorithm is significantly more
time efficient (i.e., 1-4 orders of magnitude faster) and scales better than the
centralized FGP and SoD models, while its predictive performance is close to
that of the centralized models. Hence, a larger number of mobile sensors can
be deployed to achieve more accurate traffic modeling and prediction. With an
increasing number of agents, the incurred time of GP-DDF decreases while that
of FGP and SoD increase, since GP-DDF can distribute the computational load
among a larger number of agents. With a longer walk length, the time incurred
by D2FAS grows more slowly and is lower than that incurred by centralized
models. This indicates that D2FAS can exploit a longer walking length than the
centralized models in terms of reducing the effect caused by myopic selection.
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Decentralized Solution to
Mobility-on-Demand Systems

In previous chapter, we demonstrate that a network of mobile sensors can em-
ploy our D2FAS framework to model and predict traffic condition that is con-
strained by road network. This chapter [Chen et al., 2013b] will further show
that the D2FAS framework can be applied to a fleet of autonomous vehicles to
accurately model and predict spatiotemporally varying mobility demand pat-
terns in mobility-on-demand (MoD) systems (Section 7.1), meanwhile, redis-
tributing the fleet to achieve balance between mobility demand and supply. In
particular, the proposed D2FAS algorithm (Section 7.2) is designed as a Gaus-

sian process-based decentralized data fusion with local augmentation (GP-DDF+)
algorithm (Section 5.1.2) coupled with a fully decentralized active sensing (FDAS)
algorithm (Section 5.2.4). With theoretical evaluation of time & communication
complexity (Sections 7.2.1 & 7.2.2) and empirical justification in a real world
dataset (Section 7.3 & Section 7.4), the results show that our proposed D2FAS
algorithm (1) can achieve a better balance between predictive accuracy and time
efficiency in sensing and predicting mobility demand patterns; (2) can achieve a
better performance in servicing the mobility demands than the D2FAS algorithm
based on GP-DDF (Section 5.1.1).
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7.1 Motivation

Private automobiles are becoming unsustainable personal mobility solutions in
densely populated urban cities because the addition of parking and road spaces
cannot keep pace with their escalating numbers due to limited urban land. For
example, Hong Kong and Singapore have, respectively, experienced 27.6% and
37% increase in private vehicles from 2003 to 2011 [RPT, 2012]. However, their
road networks have only expanded less than 10% in size. Without implementing
sustainable measures, traffic congestions and delays will grow more severe and
frequent, especially during peak hours.
Mobility-on-demand (MoD) systems: [Mitchell et al., 2010] (e.g., Vélib sys-
tem of over 20000 shared bicycles in Paris, experimental car-sharing systems de-
scribed in [Pavone et al., 2012]) have recently emerged as a promising paradigm
of one-way vehicle sharing for sustainable personal urban mobility, specifically,
to tackle the problems of low vehicle utilization rate and parking space caused
by private automobiles. Conventionally, a MoD system provides stacks and
racks of light electric vehicles distributed throughout a city: When a user wants
to go somewhere, he simply walks to the nearest rack, swipes a card to pick up
a vehicle, drives it to the rack nearest to his destination, and drops it off. In this
thesis, we enhance the capability of a MoD system by deploying robotic shared
vehicles (e.g., General Motors Chevrolet EN-V 2.0 prototype [GM, 2012]) that
can autonomously drive and cruise the streets of a densely populated urban
city to be hailed by users (like taxis) instead of just waiting at the racks to be
picked up. Compared to the conventional MoD system, the fleet of autonomous
robotic vehicles provides greater accessibility to users who can be picked up
and dropped off at any location in the road network. As a result, it can service
regions of high mobility demand but with poor coverage of stacks and racks due
to limited space for their installation.

The key factors in the success of a MoD system are the costs to the users
and system latencies, which can be minimized by managing the MoD system
effectively. To achieve this, two main technical challenges need to be addressed
[Mitchell, 2008]: (a) Real-time, fine-grained mobility demand sensing and pre-
diction, and (b) real-time active fleet management to balance vehicle supply
and demand and satisfy latency requirements at sustainable operating costs.
Existing works on load balancing in MoD systems [Pavone et al., 2012], dy-
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namic traffic assignment problems [Peeta and Ziliaskopoulos, 2001], dynamic
one-to-one pickup and delivery problems [Berbeglia et al., 2010], and loca-
tion recommendation and dispatch for cruising taxis [Agussurja and Lau, 2012;
Chang et al., 2010; Ge et al., 2010; Li et al., 2012; Yuan et al., 2012] have tack-
led variants of the second challenge by assuming the necessary input of mobility
demand information to be perfectly or accurately known using prior knowledge
or offline processing of historic data. Such an assumption does not hold for
densely populated urban cities because their mobility demand patterns are of-
ten subject to short-term random fluctuations and perturbations, in particular,
due to frequent special events (e.g., storewide sales, exhibitions), unpredictable
weather conditions, or emergencies (e.g., breakdowns in public transport ser-
vices). So, in order for the active fleet management strategies to perform well,
they require accurate, fine-grained information of the spatiotemporally varying
mobility demand patterns in real time, which is the desired outcome of address-
ing the first challenge. To the best of our knowledge, there is little progress in
the algorithmic development of the first challenge, which will be the focus of
our work in this thesis.

7.2 D2FAS Algorithm

To address the above challenges, we propose a novel D2FAS algorithm (Algo-
rithm 2) that is run by each MoD vehicles k. In this algorithm, the data fusion
component employs the Gaussian process-based decentralized data fusion with

local augmentation (GP-DDF+) presented in Section 5.1.2, and the active sens-
ing component uses the fully decentralized active sensing (FDAS) algorithm
in Section 5.2.4. As we can observe from (5.13) and (5.21), FDAS exhibits
a cruising behavior trades off between exploring sparsely sampled regions with
high predictive uncertainty (i.e., by maximizing the log-determinant of Gaussian
posterior covariance matrix ΣUwk

Uwk
term) and hotspots (i.e., by maximizing the

Gaussian posterior mean vector µUwk
term). As a result, it redistributes vacant

MoD vehicles to regions with high likelihood of picking up users. Hence, be-
sides gathering the most informative data for predicting the mobility demand
pattern, FDAS is able to achieve a dual effect of fleet rebalancing to service
mobility demands.

In the subsequent sections, the time and communication overheads of the
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Algorithm 2: FDAS+GP-DDF+(S, K,H, k,Dk, yDk
, sk)

/* S: support set */
/* K: number of vehicles */
/* H: length of planned steps of a walk */
/* k: index of the vehicle */
/* (Dk, yDk

): data gathered by vehicle k */
/* sk: initial location of vehicle k */

1 while true do
/* Data fusion (Section 5.1.2) */

2 Construct local summary by (4.1) & (4.2)
3 Exchange local summary with every vehicle i 6= k
4 Construct global summary by (4.3) & (4.4)
5 Construct assignment function by (5.6)
6 Predict demand measurements of unobserved regions by (4.7) & (5.7)

/* Active Sensing (Section 5.2.4) */
7 Compute local maximum-entropy walk w∗k by (5.21) & (5.13)
8 Execute walk w∗k and observe its demand measurements Uw∗

k

9 Update local information Dk, yDk
and sk

propose D2FAS algorithm are analyzed, and in comparison with that of both full

Gaussian process (FGP) algorithm (Section 3.4) and Gaussian process-based

decentralized data fusion (GP-DDF) algorithm (Section 5.1.1) coupled with a
FDAS algorithm.

7.2.1 Time Complexity

Firstly, each vehicle k has to evaluate ΣDkDk|S in O
Ä
|S|3 + |S|(|D|/K)2

ä
time

and invert it in O((|D|/K)3) time.

After that, the GP-DDF+ constructs the local summary in O
Ä
|S|2|D|/K

+|S|(|D|/K)2) time by (4.1) and (4.2), and subsequently the global summary
in O

Ä
|S|2K

ä
time by (4.3) and (4.4).

To construct the assignment function for any unobserved set S ⊂ V , ve-
hicle k first computes |U| number of Φk

sS for all unobserved regions s ∈ U in
O
Ä
|U||S|2 + |U|(|D|/K)2

ä
time by (4.9).

Then, after inverting Σ̈SS inO(|S|3), the predictive means and variances for
all s ∈ S are computed in O

Ä
|U||S|2 + |U|(|D|/K)2

ä
time by (4.7) and (5.7),

respectively.
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Let ∆ , δH denote the number of possible walks of length H where δ
is the maximum out-degree of graph G. In the active sensing component, to
obtain the locally optimal walk, the log-Gaussian posterior entropies (5.21) of
all possible walks are derived from (4.7) and (5.7), respectively, in O

Ä
∆H|S|2

ä
and O(∆(H|S|)2) time.

In FDAS algorithm, we assume |U| < δ∆ where S denotes
⋃
wk
Uwk

the set
of regions covered by any vehicle k’s all possible walks of length H . Then, the
time complexity for our GP-DDF+ coupled with FDAS algorithm isO((|D|/K)3

+|S|3 + |S|2K + ∆(H3 + (H|S|)2 + (|D|/K)2)
ä
.

In contrast, the time incurred by FGP and GP-DDF coupled with FDAS al-
gorithms are, respectively, O

Ä
|D|3 + ∆(H3 + (H|D|)2)

ä
and O((|D|/K)3

+|S|3 + |S|2K + ∆(H3 + (H|S|)2)
ä
. It can be observed that our GP-DDF+

coupled with FDAS algorithm can scale better with large size |D| of data and
fleet size K than FGP coupled with FDAS algorithm, and its increased compu-
tational load, as compared to GP-DDF coupled with FDAS algorithm, is well
distributed among K vehicles.

7.2.2 Communication complexity

In each iteration, each vehicle of the system running our GP-DDF+ coupled with
FDAS algorithm has to broadcast a O(|S|2)-sized local summary for construct-
ing the global summary, exchange O(∆) scalar values for constructing the as-
signment function, and request O(∆) number of O(|S|)-sized Φk

sS components
for evaluating the entropies of all possible local walks. In contrast, FGP coupled
with FDAS algorithm needs to broadcast O(|D|/K)-sized message comprising
all its local data to handle communication failure, and GP-DDF coupled with
FDAS algorithm only needs to broadcast a O(|S|2)-sized local summary.

7.2.3 Summary of Theoretical Result

The time complexity of GP-DDF+ is the same as that of GP-DDF and the
communication overhead of GP-DDF+ is also independent of the size of data.
Hence, GP-DDF+ coupled with FDAS algorithm can scale better with large size
of data and fleet size than FGP coupled with FDAS algorithm.
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7.3 Experimental Setup

This section evaluates the performance of our proposed algorithm in terms of
sensing the mobility demand pattern, servicing the real world mobility demands,
time efficiency and scalability.

7.3.1 Settings

We use a real world taxi trajectory dataset1 taken from the central business dis-
trict of Singapore between 9:30 p.m. and 10 p.m. on August 2, 2010. The
service area is gridded into 50×100 regions such that 2506 regions are included
into the dataset as the remaining regions contain no road segment for cruising
vehicles to access. The maximum out-degree of graph imposed on these regions
is 8. In our experimental setting, the input feature of each region is specified
by its corresponding location. In any region, the demand (supply) measurement
is obtained by counting the number of pickups (taxis cruising by) from all his-
toric taxi trajectories generated by a major taxi company in a 30-minute time
slot. After processing the taxi trajectories, the historic demand and supply dis-
tributions are obtained, as shown in Figure 7.1. Then, a number C of users are
randomly distributed over the service area with their locations drawn from the
demand distribution (Figure 7.1a). Similarly, a fleet of K vacant MoD vehicles
are initialized at locations drawn from the supply distribution (Figure 7.1b).

In our simulation, when a vehicle enters a region with users, it picks up one
of them randomly. Then, the MoD system removes this vehicle from the fleet of
vacant cruising vehicles and introduce a new vacant vehicle drawn from the sup-
ply distribution. Similarly, a new customer appears at a random location drawn
from the demand distribution. The MoD system operates for L time steps and
each vehicle plans a walk of length 4 at each time step, with all vehicles running
a data fusion algorithm coupled with our FDAS strategy. We will compare the
performance of our GP-DDF+ algorithm with that of FGP and GP-DDF algo-
rithms when coupled with our FDAS strategy. The experiments are conducted
on a Linux system with Intelr Xeonr CPU E5520 at 2.27 GHz.

1The taxi trajectory dataset in Singapore is provided by Comfort Transportation Pte Ltd
(CTPL) and future urban mobility (FM) research group of Singapore-MIT Alliance for Research
and Technology (SMART).
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Figure 7.1: Historic demand and supply distributions obtained from a real
world taxi trajectory dataset in central business district of Singapore.
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7.3.2 Performance Metrics

The tested algorithms are evaluated with two sets of performance metrics. The
performance of sensing and predicting mobility demands is evaluated using (a)

root mean square error (RMSE)
…
|V |−1∑s∈V

Ä
ys − µ`GP

s|D

ä2
where ys is the de-

mand measurement and D is the set of regions observed by the MoD vehicles,
and (b) incurred time of the algorithms.

The performance of servicing mobility demands is evaluated by comparing
the Kullback-Leibler divergence (KLD)

∑
s∈V Pc(s) log (Pc(s)/Pd(s)) between

the fleet distribution Pc of vacant MoD vehicles controlled by the tested al-
gorithms and historic demand distribution Pd (i.e., lower KLD implies better
balance between fleet and demand), average cruising length of MoD vehicles,
average waiting time of users, and total number of pickups resulting from the
tested algorithms.

7.4 Results and Analysis

For notational simplicity, we will use GP-DDF+, FGP, and GP-DDF to repre-
sent the algorithms of their corresponding data fusion components coupled with
FDAS strategy in this section.

7.4.1 Performance

The MoD system comprises K = 20 vehicles running three tested algorithms
for L = 960 time steps in a service area with C = 200 users. All results are
taken from the average of 40 random instances.

The performance of MoD systems in sensing and predicting mobility de-
mands is illustrated in Figures 7.2a-7.2b. Figure 7.2a shows that the demand
data collected by MoD vehicles using GP-DDF+ can achieve predictive accu-
racy comparable to that of using FGP and significantly better than that of using
GP-DDF. This indicates that exploiting the local data of vehicles for predicting
demands of nearby unobserved regions can improve the prediction of the mobil-
ity demand pattern. Figure 7.2b shows the average incurred time of each vehicle
using three algorithms. GP-DDF+ is significantly more time-efficient (i.e., one
order of magnitude) than FGP, and only slightly less time-efficient than GP-
DDF. This can be explained by the time analysis in Section 7.2.1. The above
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results indicate that GP-DDF+ is more practical for real-world deployment due
to a better balance between predictive accuracy and time efficiency.

The performance of MoD systems in servicing the mobility demands is il-
lustrated in Figures 7.2c-7.2f. Figure 7.2c shows that a MoD system using GP-
DDF+ can achieve better fleet rebalancing of vehicles to service mobility de-
mands than GP-DDF, but worse rebalancing than FGP. This implies that a better
prediction of the underlying mobility demand pattern (Figure 7.2a) can lead to
better fleet rebalancing. Note that KLD (i.e., imbalance between mobility de-
mand and fleet) increases over time because we assume that when a vehicle
picks up a user, its local data is removed from the fleet of cruising vehicles,
and a new vehicle is introduced at a random location that may be distant from a
demand hotspot, hence worsening the imbalance between demand and fleet. It
can also be observed that an algorithm generating a better balance between fleet
and demand will also perform better in servicing the mobility demands, that is,
shorter average cruising trajectories of vehicles (Figure 7.2d), shorter average
waiting time of users (Figure 7.2e), and larger total number of pickups (Fig-
ure 7.2f). These observations imply that exploiting an active sensing strategy
to collect the most informative demand data for predicting the mobility pattern
achieves a dual effect of improving performance in servicing the mobility de-
mands since these vehicles have higher chance of picking up users in demand
hotspots or sparsely sampled regions (Section 5.2.4).

7.4.2 Scalability

We vary the number K = 10, 20, 30 of vehicles in the MoD system, and keep
the total length of walks of all the vehicles to be the same, that is, these vehicles
will walk for L = 960, 480, 320 steps, respectively. All three algorithms are
tested in a service area with C = 600 customers.

From Figures 7.3a-7.3c, it can be observed that all three algorithms can
improve their prediction accuracy with an increasing number of vehicles in the
MoD system because more vehicles indicate less walks when the total length
of walks are the same, thus suffering less from the myopic planning (H = 4)
and gathering more informative demand data. Figures 7.3d-7.3f show that, with
more MoD vehicles, GP-DDF+ and GP-DDF incur less time, while FGP incurs
more time. This is because the computational load in decentralized data fusion
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Figure 7.2: Performance of MoD systems in predicting and servicing
mobility demands.
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algorithms are distributed among all vehicles, thus reducing the incurred time
with more vehicles.

Figures 7.4a-7.4c show that all three algorithms can achieve better balance
between mobility demand and fleet with larger number of vehicles. It can also
be observed that all three algorithms can improve the performance of servicing
the mobility demand with more vehicles, that is, shorter average cruising tra-
jectories of vehicles (Figure 7.4d), shorter average waiting time of users (Fig-
ure 7.4e), and larger total number of pickups (Figure 7.4f). This is because
MoD vehicles can collect more informative demand data with larger number of
vehicles sampling demand hotspots or sparsely sampled regions, which are the
regions with higher chance of picking up users than the rest of the service area.

The above results indicate that more vehicles in MoD system result in better
accuracy in predicting the mobility demand pattern, and achieve a dual effect of
better performance in servicing mobility demands.

7.4.3 Summary of Empirical Result

GP-DDF+ can predict mobility demand pattern more accurate than GP-DDF
and closely to FGP. In addition, GP-DDF+ scales significantly better than FGP
in size of data with a large fleet size, and is close to GP-DDF. This indicates
that GP-DDF+ achieves a better balance between predictive accuracy and time
efficiency than GP-DDF and FGP. GP-DDF+ achieves a closer balance between
fleet and mobility demand to centralized FGP than GP-DDF; thus, GP-DDF+

achieves better performance in servicing mobility demand (i.e., shorter cruising
time, shorter waiting time, and more pickups) than GP-DDF. When fleet size
increases, GP-DDF+, GP-DDF and FGP all improve the performance in de-
mand sensing and servicing. However, GP-DDF+ becomes more time-efficient
while FGP is less time-efficient, since the computational load of GP-DDF+ is
distributed to a larger number of agents. To sum up, GP-DDF+ is more practical
for real-world deployment than GP-DDF and FGP.
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Figure 7.3: Scalability of MoD systems in sensing and predicting mobility
demands.

81



Chapter 7. Decentralized Solution to Mobility-on-Demand Systems

2000 4000 6000 8000 10000
0.6

0.8

1

1.2

1.4

1.6

Total length of walks of all vehicles

K
L

D

 

 

K=10

K=20

K=30

0

5

10

15

20

25

30

35

FGP
 

GP−DDF
 

GP−DDF
+

A
v

g
. 

cr
u
is

in
g

 l
en

g
th

 

 

K=10

K=20

K=30

(a) FGP (d) Vehicles

2000 4000 6000 8000 10000
0.6

0.8

1

1.2

1.4

1.6

Total length of walks of all vehicles

K
L

D

 

 

K=10

K=20

K=30

0

50

100

150

200

250

FGP
 

GP−DDF
 

GP−DDF
+

A
v
g

. 
w

ai
ti

n
g

 t
im

e

 

 

K=10

K=20

K=30

(b) GP-DDF (e) Customers

2000 4000 6000 8000 10000
0.6

0.8

1

1.2

1.4

1.6

Total length of walks of all vehicles

K
L

D

 

 

K=10

K=20

K=30

0

100

200

300

400

500

600

FGP
 

GP−DDF
 

GP−DDF
+

N
o

. 
o
f 

p
ic

k
u
p

s

 

 

K=10

K=20

K=30

(c) GP-DDF+ (f) Pickups

Figure 7.4: Scalability of MoD systems in servicing mobility demands.
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Chapter 8

Conclusion & Future Work

This thesis presents a set of novel techniques based on a class of Bayesian non-
parametric models: Gaussian processes (GP), which aim to 1) achieve accurate
traffic modeling and prediction in real world situation; 2) provide efficient and
scalable traffic prediction with a large phenomenon data; 3) and perform decen-
tralized perception of spatiotemporal traffic phenomenon with mobile sensors.
The proposed algorithms have been successfully applied in large-scale mod-
eling and prediction of spatiotemporal environmental phenomena (i.e., urban
traffic phenomena). In the following, Section 8.1 summarizes the particular
contributions of this thesis; Section 8.2 describes the limitations and presents
the directions for future research.

8.1 Contributions

First, we propose a novel relational GP to accurately model spatiotemporal traf-
fic phenomena in real world situation (i.e., a traffic condition over road network
and an urban mobility demand pattern containing skewness and extremity in
measurements).

Second, we present three novel parallel GPs: parallel partially independent

training conditional (pPITC), parallel partially independent conditional(pPIC)
and parallel incomplete Cholesky factorization (pICF)-based approximations of
GP model, which can distribute computational load into parallel/multi-core ma-
chines, thereby achieving real-time prediction given a large phenomenon data.
The predictive performances of such parallel GPs are theoretically guaranteed
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to be equivalent to that of some centralized approaches to approximate GP re-
gression. Furthermore, the proposed parallel GPs are implemented using the
message passing interface (MPI) framework to run in a cluster of 20 computing
nodes. Both theoretical and empirical results show that our parallel GPs achieve
significantly better time efficiency than that of full GP while achieving compa-
rable accuracy; the parallel GPs also achieve fine speedups to their centralized
counterparts.

Third, we propose a decentralized algorithm framework: Gaussian process-

based decentralized data fusion and active sensing (D2FAS) which is composed
of a decentralized data fusion (DDF) component that can cooperatively assimi-
late the distributed traffic phenomenon data into a globally consistent predictive
model and a decentralized active sensing (DAS) component that can guide mo-
bile sensors to cooperatively collect the most informative phenomenon data.
DDF component: We propose a novel Gaussian process-based decentralized

data fusion (GP-DDF) algorithm that can achieve remarkably efficient and scal-
able prediction of phenomenon and a novel Gaussian process-based decentral-

ized data fusion with local augmentation (GP-DDF+) algorithm that can achieve
better predictive accuracy while preserving time efficiency of GP-DDF; The
predictive performances of both GP-DDF and GP-DDF+ are theoretically guar-
anteed to be equivalent to that of some sophisticated centralized sparse approx-
imations of exact/full GP.
DAS component: We first propose a novel partially decentralized active sens-

ing (PDAS) algorithm which exploits property in correlation structure of GP-
DDF to enable mobile sensors cooperatively selecting a joint walk of approxi-
mated maximum posterior Gaussian entropy; The performance of PDAS is theo-
retically guaranteed, and various practical environment conditions can be estab-
lished to ensure it be comparably well. Then, in certain situation where PDAS
algorithm cannot perform or perform poorly, a fully decentralized active sensing

(FDAS) algorithm is proposed to make each mobile sensor gather phenomenon
data along its locally optimal walk.

Lastly, we propose D2FAS algorithms running with active mobile sensors
for monitoring traffic conditions and sensing/servicing urban mobility demands;
These algorithms are then simulated on two real-world datasets. The theoretical
and empirical results show that the proposed D2FAS algorithms are significantly
more time-efficient, more scalable in the size of data and number of sensors than
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the state-of-the-art centralized approaches, while achieving comparable predic-
tive accuracy. Therefore, the proposed D2FAS framework is of significant value
in practical deployment of active mobile sensors to monitor traffic conditions
over road networks and to sense/service urban mobility demands.

8.2 Future Directions

Our D2FAS framework opens many research avenues for future studies:
Firstly, current decentralized data fusion algorithms rely on a sufficiently

large common support set to compute accurate enough prediction of the field.
This size could be very large when the unknown environment phenomenon is on
a large scale and requires more points for summarizing data and predicting un-
observed locations. However, a larger size of support set will increase both the
time and communication overheads consequently hindering the mobile sensor
network from scaling up. However, it is not fully addressed in existing litera-
tures in terms of the optimal size and position of the support set. Therefore, one
corresponding direction to tackle is to reduce the impact caused by a large com-
mon support set on the performance of DDF algorithms via deciding an optimal
size and position of the common support.

Secondly, currently PDAS (Section 5.2.3) algorithm results in time spiking
(see Figure 6.3d) in the earlier stage when a large cluster of mobile sensors
is formed due to random positioning assumption. This problem is not serious
when mobile sensor have a tendency of spreading out in the long term. How-
ever, it will incur a large amount of time if mobile sensors tend to walk into
large clusters; Consequently, the sensor network cannot scale up stably. By ad-
dressing this unstableness, we can further increase the number of mobile sensors
performing environmental sensing tasks in D2FAS framework.

Finally, current D2FAS framework assume a fairly good communication
condition. However, the communication channels in practice can be occasion-
ally unavailable because of limited communication range and distorted wireless
signal; the limited mobility of mobile sensors and large-scale environmental
field cause the full communication network to break apart into sub-networks
which can split and merge dynamically. It is more challenging to relax the as-
sumption that mobile sensors collected the same environmental measurement
given the same inputs. For our future work, the D2FAS framework can be en-

85



Chapter 8. Conclusion & Future Work

hanced to work under these practical conditions.
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Appendix A

Proof of Theorem 1

We have to first simplify the ΓUD (ΓDD + Λ)−1 term in the expressions of µPITC
U|D

(4.10) and ΣPITC
UU|D (4.11).

(ΓDD + Λ)−1

=
Ä
ΣDSΣ−1SSΣSD + Λ

ä−1
= Λ−1 − Λ−1ΣDS

Ä
ΣSS + ΣSDΛ−1ΣDS

ä−1
ΣSDΛ−1

= Λ−1 − Λ−1ΣDSΣ̈−1SSΣSDΛ−1 .

(A.1)

The second equality follows from matrix inversion lemma. The last equality is
due to

ΣSS + ΣSDΛ−1ΣDS

= ΣSS +
M∑
m=1

ΣSDmΣ−1DmDm|SΣDmS

= ΣSS +
M∑
m=1

Σ̇m
SS = Σ̈SS .

(A.2)

Using (4.12) and (A.1),

ΓUmD (ΓDD + Λ)−1

= ΣUmSΣ−1SSΣSD
Ä
Λ−1 − Λ−1ΣDSΣ̈−1SSΣSDΛ−1

ä
= ΣUmSΣ−1SS

Ä
Σ̈SS − ΣSDΛ−1ΣDS

ä
Σ̈−1SSΣSDΛ−1

= ΣUmSΣ̈−1SSΣSDΛ−1

(A.3)

The third equality is due to (A.2).
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For each machine m = 1, . . . ,M , we can now prove that

µPITC
Um|D = µUm + ΓUmD (ΓDD + Λ)−1 (yD − µD)

= µUm + ΣUmSΣ̈−1SSΣSDΛ−1 (yD − µD)

= µUm + ΣUmSΣ̈−1SS ÿS

= µ̂Um .

The first equality is by definition (4.10). The second equality is due to (A.3).
The third equality follows from ΣSDΛ−1 (yD − µD) =

∑M
m=1 ΣSDmΣ−1DmDm|S (yDm − µDm) =∑M

m=1 ẏ
m
S = ÿS . Also,

ΣPITC
UmUm|D

= ΣUmUm − ΓUmD (ΓDD + Λ)−1 ΓDUm

= ΣUmUm − ΣUmSΣ̈−1SSΣSDΛ−1ΣDSΣ−1SSΣSUm

= ΣUmUm −
Å

ΣUmSΣ̈−1SSΣSDΛ−1ΣDSΣ−1SSΣSUm

− ΣUmSΣ−1SSΣSUm

ã
− ΣUmSΣ−1SSΣSUm

= ΣUmUm − ΣUmSΣ̈−1SS
Ä
ΣSDΛ−1ΣDS − Σ̈SS

ä
Σ−1SSΣSUm

− ΣUmSΣ−1SSΣSUm

= ΣUmUm −
Ä
ΣUmSΣ−1SSΣSUm − ΣUmSΣ̈−1SSΣSUm

ä
= ΣUmUm − ΣUmS

Ä
Σ−1SS − Σ̈−1SS

ä
ΣSUm

= “ΣUmUm .

(A.4)

The first equality is by definition (4.11). The second equality follows from
(4.12) and (A.3). The fifth equality is due to (A.2).

Since our primary interest in the work of this paper is to provide the predic-
tive means and their corresponding predictive variances, the above equivalence
results suffice. However, if the entire predictive covariance matrix “ΣUU for any
set U of inputs is desired (say, to calculate the joint entropy), then it is necessary
to compute “ΣUiUj for i, j = 1, . . . ,M such that i 6= j. Define“ΣUiUj , ΣUiUj − ΣUiS

Ä
Σ−1SS − Σ̈−1SS

ä
ΣSUj (A.5)

for i, j = 1, . . . ,M such that i 6= j. So, for a machine i to compute “ΣUiUj , it has
to receive Uj from machine j.

Similar to (A.4), we can prove the equivalence result “ΣUiUj = ΣPITC
UiUj |D for
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any two machines i, j = 1, . . . ,M such that i 6= j.
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Appendix B

Proof of Theorem 2

We will first derive the expressions of four components useful for completing
the proof later. For each machine m = 1, . . . ,M ,

Γ̃UmDΛ−1(yD − µD)

=
∑
i 6=m

ΓUmDi
Σ−1DiDi|S(yDi

− µDi
)

+ ΣUmDmΣ−1DmDm|S(yDm − µDm)

= ΣUmSΣ−1SS
∑
i 6=m

Ä
ΣSDi

Σ−1DiDi|S(yDi
− µDi

)
ä

+ ẏmUm

= ΣUmSΣ−1SS
∑
i 6=m

ẏiS + ẏmUm

= ΣUmSΣ−1SS(ÿS − ẏmS ) + ẏmUm .

(B.1)

The first two equalities expand the first component using the definition of Λ

(Theorem 1), (4.1), (4.12), (4.15), and (4.16). The last two equalities exploit
(4.1) and (4.3).

Γ̃UmDΛ−1ΣDS

=
∑
i 6=m

ΓUmDi
Σ−1DiDi|SΣDiS + ΣUmDmΣ−1DmDm|SΣDmS

= ΣUmSΣ−1SS
∑
i 6=m

Ä
ΣSDi

Σ−1DiDi|SΣDiS

ä
+ ΣUmDmΣ−1DmDm|SΣDmS

= ΣUmSΣ−1SS
∑
i 6=m

Σ̇i
SS + Σ̇m

UmS

= ΣUmSΣ−1SS
Ä
Σ̈SS − Σ̇m

SS − ΣSS
ä

+ Σ̇m
UmS

= ΣUmSΣ−1SSΣ̈SS − Φm
UmS .

(B.2)
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The first two equalities expand the second component by the same trick as that
in (B.1). The third and fourth equalities exploit (4.2) and (4.4), respectively.
The last equality is due to (4.9).

Let αUmS , ΣUmSΣ−1SS and its transpose is αSUm . By using similar tricks in
(B.1) and (B.2), we can derive the expressions of the remaining two components.

Γ̃UmDΛ−1Γ̃DUm

=
∑
i 6=m

ΓUmDi
Σ−1DiDi|SΓDiUm + ΣUmDmΣ−1DmDm|SΣDmUm

= ΣUmSΣ−1SS
∑
i 6=m

Ä
ΣSDi

Σ−1DiDi|SΣDiS

ä
Σ−1SSΣSUm + Σ̇m

UmUm

= αUmS
∑
i 6=m

Ä
Σ̇i
SS
ä
αSUm + Σ̇m

UmUm

= αUmS
Ä
Σ̈SS − Σ̇m

SS − ΣSS
ä
αSUm + Σ̇m

UmUm

= αUmSΣ̈SSαSUm − αUmSΦm
SUm − αUmSΣ̇m

SUm + Σ̇m
UmUm .

(B.3)

For any two machines i, j = 1, . . . ,M such that i 6= j,

Γ̃UiDΛ−1Γ̃DUj
=

∑
m6=i,j

ΓUiDmΣ−1DmDm|SΓDmUj

+ ΣUiDi
Σ−1DiDi|SΓDiUj + ΓUiDj

Σ−1DjDj |SΣDjUj

= ΣUiSΣ−1SS
∑
m6=i,j

Ä
ΣSDmΣ−1DmDm|SΣDmS

ä
Σ−1SSΣSUj

+ ΣUiDi
Σ−1DiDi|SΣDiSΣ−1SSΣSUj

+ ΣUiSΣ−1SSΣSDj
Σ−1DjDj |SΣDjUj

= αUiS
Ä
Σ̈SS − Σ̇i

SS − Σ̇j
SS − ΣSS

ä
αSUj

+ Σ̇i
UiSαSUj + αUiSΣ̇j

SUj

= αUiS
Ä
Σ̈SS + ΣSS

ä
αSUj − αUiS

Ä
Σ̇i
SS + ΣSS

ä
αSUj

− αUiS
Ä
Σ̇j
SS + ΣSS

ä
αSUj + Σ̇i

UiSαSUj + αUiSΣ̇j
SUj

= αUiS
Ä
Σ̈SS + ΣSS

ä
αSUj −

Ä
αUiSΣ̇i

SS + αUiSΣSS

− Σ̇i
UiS
ä
αSUj − αUiS

Ä
Σ̇j
SSαSUj + ΣSSαSUj − Σ̇j

SUj

ä
= αUiS

Ä
Σ̈SS + ΣSS

ä
αSUj − Φi

UiSαSUj − αUiSΦj
SUj

= αUiSΣ̈SSαSUj + ΣUiSΣ−1SSΣSUj − Φi
UiSαSUj − αUiSΦj

SUj

(B.4)
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For each machine m = 1, . . . ,M , we can now prove that

µPIC
Um|D

= µUm + Γ̃UmD (ΓDD + Λ)−1 (yD − µD)

= µUm + Γ̃UmDΛ−1(yD − µD)

− Γ̃UmDΛ−1ΣDSΣ̈−1SSΣSDΛ−1(yD − µD)

= µUm + Γ̃UmDΛ−1(yD − µD)− Γ̃UmDΛ−1ΣDSΣ̈−1SS ÿS

= µUm + ΣUmSΣ−1SS(ÿS − ẏmS ) + ẏmUm
− Γ̃UmDΛ−1ΣDSΣ̈−1SS ÿS

= µUm + ΣUmSΣ−1SS(ÿS − ẏmS ) + ẏmUm
−
Ä
ΣUmSΣ−1SSΣ̈SS − Φm

UmS
ä

Σ̈−1SS ÿS

= µUm +
Ä
Φm
UmSΣ̈−1SS ÿS − ΣUmSΣ−1SS ẏ

m
S
ä

+ ẏmUm
= µ̂+

Um .

The first equality is by definition (4.13). The second equality is due to (A.1).
The third equality is due to the definition of global summary (4.3). The fourth
and fifth equalities are due to (B.1) and (B.2), respectively. Also,

ΣPIC
UmUm|D

= ΣUmUm − Γ̃UmD (ΓDD + Λ)−1 Γ̃DUm

= ΣUmUm − Γ̃UmDΛ−1Γ̃DUm + Γ̃UmDΛ−1ΣDSΣ̈−1SSΣSDΛ−1Γ̃DUm

= ΣUmUm − Γ̃UmDΛ−1Γ̃DUm

+
Ä
αUmSΣ̈SS − Φm

UmS
ä

Σ̈−1SS
Ä
Σ̈SSαSUm − Φm

SUm

ä
= ΣUmUm − αUmSΣ̈SSαSUm + αUmSΦm

SUm + αUmSΣ̇m
SUm

− Σ̇m
UmUm + αUmSΣ̈SSαSUm − αUmSΦm

SUm − Φm
UmSαSUm

+ Φm
UmSΣ̈−1SSΦm

SUm

= ΣUmUm −
Ä
Φm
UmSαSUm − αUmSΣ̇m

SUm − Φm
UmSΣ̈−1SSΦm

SUm

ä
− Σ̇m

UmUm

= “Σ+
UmUm .

The first equality is by definition (4.14). The second equality is due to (A.1).
The third equality is due to (B.2). The fourth equality is due to (B.3). The last
two equalities are by definition (4.8).

Since our primary interest in the work of this paper is to provide the predic-
tive means and their corresponding predictive variances, the above equivalence
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results suffice. However, if the entire predictive covariance matrix “Σ+
UU for any

set U of inputs is desired (say, to calculate the joint entropy), then it is necessary
to compute “Σ+

UiUj for i, j = 1, . . . ,M such that i 6= j. Define“Σ+
UiUj , ΣUiUj |S + Φi

UiSΣ̈−1SSΦj
SUj (B.5)

for i, j = 1, . . . ,M such that i 6= j. So, for a machine i to compute “Σ+
UiUj , it has

to receive Uj and Φj
SUj from machine j.

We can now prove the equivalence result “Σ+
UiUj = ΣPIC

UiUj |D for any two ma-
chines i, j = 1, . . . ,M such that i 6= j:

ΣPIC
UiUj |D

= ΣUiUj − Γ̃UiDΛ−1Γ̃DUj + αUiSΣ̈SSαSUj
−αUiSΦj

SUj − Φi
UiSαSUj + Φi

UiSΣ̈−1SSΦj
SUj

= ΣUiUj −
Ä
αUiSΣ̈SSαSUj + ΣUiSΣ−1SSΣSUj − Φi

UiSαSUj
− αUiSΦj

SUj

ä
+ αUiSΣ̈SSαSUj − αUiSΦj

SUj − Φi
UiSαSUj

+ Φi
UiSΣ̈−1SSΦj

SUj

= ΣUiUj − ΣUiSΣ−1SSΣSUj + Φi
UiSΣ̈−1SSΦj

SUj

= ΣUiUj |S + Φi
UiSΣ̈−1SSΦj

SUj

= “Σ+
UiUj .

The first equality is obtained using a similar trick as the previous derivation. The
second equality is due to (B.4). The second last equality is by the definition of
posterior covariance in GP model (3.2). The last equality is by definition (B.5).
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Proof of Theorem 3

µICF
U|D

= µU + ΣUD(F>F + σ2
nI)−1(yD − µD)

= µU + ΣUD

Å
σ−2n (yD − µD)

−σ−4n F>(I + σ−2n FF>)−1F (yD − µD)
ã

= µU + ΣUD

(
σ−2n (yD − µD)− σ−4n F>Φ−1

M∑
m=1

ẏm

)
= µU + ΣUD

Ä
σ−2n (yD − µD)− σ−4n F>ÿ

ä
= µU +

M∑
m=1

ΣUDm

Ä
σ−2n (yDm − µDm)− σ−4n F>m ÿ

ä
= µU +

M∑
m=1

σ−2n ΣUDm(yDm − µDm)− σ−4n Σ̇>mÿ

= µU +
M∑
m=1

µ̃mU

= µ̃U .

The first equality is by definition (4.27). The second equality is due to ma-
trix inversion lemma. The third equality follows from I + σ−2n FF> = I +

σ−2n
∑M
m=1 FmF

>
m = I+σ−2n

∑M
m=1 Φm = Φ andF (yD−µD) =

∑M
m=1 Fm(yDm−

µDm) =
∑M
m=1 ẏm. The fourth equality is due to (4.21). The second last equality

follows from (4.23). The last equality is by definition (4.25).
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Similarly,

ΣICF
UU|D

= ΣUU − ΣUD(F>F + σ2
nI)−1ΣDU

= ΣUU − ΣUD

Å
σ−2n ΣDU

−σ−4n F>(I + σ−2n FF>)−1FΣDU

ã
= ΣUU − ΣUD

(
σ−2n ΣDU − σ−4n F>Φ−1

M∑
m=1

Σ̇m

)
= ΣUU − ΣUD

Ä
σ−2n ΣDU − σ−4n F>Σ̈

ä
= ΣUU −

M∑
m=1

ΣUDm

Ä
σ−2n ΣDmU − σ−4n F>mΣ̈

ä
= ΣUU −

M∑
m=1

σ−2n ΣUDmΣDmU − σ−4n Σ̇>mΣ̈

= ΣUU −
M∑
m=1

‹Σm
UU

= ‹ΣUU .
The first equality is by definition (4.28). The second equality is due to ma-
trix inversion lemma. The third equality follows from I + σ−2n FF> = Φ and
FΣDU =

∑M
m=1 FmΣDmU =

∑M
m=1 Σ̇m. The fourth equality is due to (4.22).

The second last equality follows from (4.24). The last equality is by definition
(4.26).
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Proof of Theorem 4

Let ΣUwUw , “ΣUwUw−ΣUwUw and ρw be the spectral radius of
Ä
ΣUwUw

ä−1
ΣUwUw .

We have to first bound ρw from above.
For any joint walk w,

Ä
ΣUwUw

ä−1
ΣUwUw comprises diagonal blocks of size∣∣∣UwVn ∣∣∣× ∣∣∣UwVn ∣∣∣ with components of value 0 for n = 1, . . . ,K and off-diagonal

blocks of the form
(“ΣUwVnUwVn )−1“ΣUwVnUwVn′ for n, n′ = 1, . . . ,K and n 6= n′.

We know that any pair of sensors k ∈ Vn and k′ ∈ Vn′ reside in different
connected components of coordination graph G and are therefore not adjacent.
So, by Definition 18,

max
i,i′

∣∣∣∣ï“ΣUwVnUwVn′ òii′∣∣∣∣ ≤ ε (D.1)

for n, n′ = 1, . . . ,K and n 6= n′. Using (5.20) and (D.1), each component in
any off-diagonal block of

Ä
ΣUwUw

ä−1
ΣUwUw can be bounded as follows:

max
i,i′

∣∣∣∣ï(“ΣUwVnUwVn )−1“ΣUwVnUwVn′ òii′∣∣∣∣ ≤ ∣∣∣UwVn ∣∣∣ ξε (D.2)

for n, n′ = 1, . . . ,K and n 6= n′. It follows from (D.2) that

max
i,i′

∣∣∣[ÄΣUwUwä−1 ΣUwUw

]
ii′

∣∣∣ ≤ max
n

∣∣∣UwVn ∣∣∣ ξε ≤ Hκξε . (D.3)

The last inequality is due to max
n

∣∣∣UwVn ∣∣∣ ≤ H max
n
|Vn| ≤ Hκ. Then,

ρw ≤
∣∣∣∣∣∣ÄΣUwUwä−1 ΣUwUw

∣∣∣∣∣∣
2

≤ |Uw|max
i,i′

∣∣∣[ÄΣUwUwä−1 ΣUwUw

]
ii′

∣∣∣
≤ KH2κξε .

(D.4)
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The first two inequalities follow from standard properties of matrix norm [Golub
and Van Loan, 1996; Stewart and Sun, 1990]. The last inequality is due to (D.3).

The rest of this proof utilizes the following result of [Ipsen and Lee, 2003]

that is revised to reflect our notations:

Theorem 5. If |Uw|ρ2w < 1, then log
∣∣∣“ΣUwUw ∣∣∣ ≤ log

∣∣∣ΣUwUw ∣∣∣ ≤ log
∣∣∣“ΣUwUw ∣∣∣ −

log(1− |Uw|ρ2w) for any joint walk w.

Using Theorem 5 followed by (D.4),

log
∣∣∣ΣUwUw ∣∣∣− log

∣∣∣“ΣUwUw ∣∣∣ ≤ log
1

1− |Uw|ρ2w
≤ log

1

1−(K1.5H2.5κξε)2

(D.5)

for any joint walk w.“H[ZUw∗ ]− “H[ZUŵ]
=

1

2

(
(|Uw∗| − |Uŵ|) log(2πe) + log

∣∣∣“ΣUw∗Uw∗ ∣∣∣− log
∣∣∣“ΣU

ŵ
U
ŵ

∣∣∣)
≤ 1

2

(
(|Uw∗ | − |Uŵ|) log(2πe) + log

∣∣∣ΣUw∗Uw∗ ∣∣∣− log
∣∣∣“ΣU

ŵ
U
ŵ

∣∣∣)
≤ 1

2

(
(|Uŵ| − |Uŵ|) log(2πe) + log

∣∣∣ΣU
ŵ
U
ŵ

∣∣∣− log
∣∣∣“ΣU

ŵ
U
ŵ

∣∣∣)
≤ 1

2
log

1

1− (K1.5H2.5κξε)2
.

The first equality is due to (5.11). The first, second, and last inequalities follow
from Theorem 5, (5.18), and (D.5), respectively.
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