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Abstract— The work in this paper describes a distributed
layered architecture for resource-constrained multi-robot coop-
eration, which is utilized in autonomic mobile sensor network
coverage. In the upper layer, a dynamic task allocation scheme
self-organizes the robot coalitions to track efficiently across re-
gions. It uses concepts of ant behavior to self-regulate theregional
distributions of robots in proportion to that of the moving
targets to be tracked in a non-stationary environment. As a
result, the adverse effects of task interference between robots are
minimized and network coverage is improved. In the lower task
execution layer, the robots use self-organizing neural networks
to coordinate their target tracking within a region. Both layers
employ self-organization techniques, which exhibit autonomic
properties such as self-configuring, self-optimizing, self-healing,
and self-protecting. Quantitative comparisons with othertracking
strategies such as static sensor placements, potential fields, and
auction-based negotiation show that our layered approach can
provide better coverage, greater robustness to sensor failures,
and greater flexibility to respond to environmental changes.

Index Terms— task allocation, motion control, multi-robot
architecture, swarm intelligence, self-organizing neural networks

I. I NTRODUCTION

SENSOR networks have recently received significant at-
tention in the areas of networking, embedded systems,

pervasive computing, and multi-agent systems [1] due to its
wide array of real-world applications (e.g., disaster relief,
environment monitoring). In these applications, the distributed
sensing task is achieved by the collaboration of a large
number of static sensors, each of which has limited sensing,
computational, and communication capabilities.

One of the fundamental issues that arises in a sensor
network is coverage. Traditionally, network coverage is maxi-
mized by determining the optimal placement of static sensors
in a centralized manner, which can be related to the class
of art gallery problems [2]. However, recent investigations
in sensor network mobility reveal that mobile sensors can
self-organize to provide better coverage than static sensors
([3], [4]). Existing applications have only utilized uninformed
mobility (i.e., random motion or patrol) [1]. In contrast, our
work focuses on informed, intelligent mobility to further
improve coverage.
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Our network coverage problem is motivated by the fol-
lowing constraints that discourage static sensor placement
or uninformed mobility: a) unknown target distributions or
motion patterns, b) limited sensing range, and c) large area
to be observed. All these conditions may cause the sensors to
be unable to cover the entire region of interest. Hence, fixed
sensor locations or uninformed mobility will not be adequate
in general. Rather, the sensors have to move dynamically in
response to the motion and distribution of targets and other
sensors to maximize coverage.

Inspired by robotics, the above problem may be regarded
as that of low-level motion control to coordinate the sensors’
target tracking movements in continuous workspace. Alterna-
tively, it can be cast as a high-level task allocation problem by
segmenting the workspace into discrete regions (Fig. 1a) such
that each region is assigned a group orcoalition of sensors
to track the targets within. This paper presents a distributed
architecture that integrates low-level motion control with high-
level task allocation for autonomic mobile sensor network
coverage in complex, dynamic environments (Section III). We
will now refer to mobile sensors as robots since they are the
same in this paper’s context.

II. RELATED WORK ON COVERAGE

Existing sensor network coverage applications can be clas-
sified under the following characteristics: a) network mobility
(static vs. mobile), b) network density (dense vs. sparse),c)
target distributions (known vs. unknown), and d) target motion
patterns (e.g., static, random, evasive). Static sensor networks
[5] are often densely deployed for complete coverage of the
area to be observed. Such networks typically require manual
positioning of the sensors and cannot be easily deployed in
contaminated or hostile regions. Mobile sensors, on the other
hand, can be used for this purpose. Current implementations
of mobile sensor networks have focused on evenly dispersing
the sensors from a source point throughout the observed region
[6] without considering the target distributions. Recent efforts
have attempted to self-organize the mobile sensors to that
of the target distributions, which can potentially decrease the
number of deployed sensors (Section VI-B.1). However, the
target distributions are either static [3] or known beforehand
[7]. Our work in this paper differs from all these by deploying
a sparse network of mobile sensors to track unknown, time-
varying target distributions.

III. OVERVIEW OF MOBILE SENSORARCHITECTURE

Our mobile sensor architecture consists of two layers of
coordination (Fig. 1b): (1) lower task execution layer, and(2)



2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS–PART C: APPLICATIONS AND REVIEWS, VOL. XX, NO. Y, AUGUST 2005

-2 0 2

-1.5

0

1.5

1

2

3

4

5

6 self−coordinated

task allocation

self−coordinated

task execution

degree of comms.

no comms.

time scale

slower

faster

inter−regional

task granularity

asynchronous

local messaging

intra−regional

sensor network

coverage

sensor network

coverage

EKMs

cooperative

MRTA

ant−based

status

Robot i

task

EKMs

cooperative

MRTA

ant−based

status

Robot j

task

(a) (b)
Fig. 1. (a) A 4 m× 3 m environment that is divided into 6 regions. The circle at the bottom right represents the robot’s sensing radius of 0.3m (drawn
to scale). The environment is 42.44 times as large as the robot’s sensing area. (b) Distributed layered architecture formulti-robot cooperation (MRTA =
Multi-Robot Task Allocation, EKM = Extended Kohonen Map).

higher task allocation layer. It differs from existing layered ar-
chitectures for multi-robot coordination ([8], [9]) by adopting
a reactive method, rather than deliberative planning, for task
allocation. Both layers employ concepts of self-organization
that exhibit the following characteristics of autonomic systems:

1) Self-Configuring:Both the task allocation and execution
schemes enable the sensor network to adapt to dynami-
cally changing environments;

2) Self-Optimizing:Both schemes aim to maximize cover-
age and minimize robot interference;

3) Self-Healing:The task allocation scheme is robust to
robot failures while the task execution scheme is able to
self-repair unexpected damages to the robot formation;

4) Self-Protecting:The task execution scheme enables the
robot to negotiate unforeseen complex obstacles.

These autonomic properties will be demonstrated in Sec-
tion VI.

In the lower task execution layer, the robots use a reactive
motion control strategy based on self-organizing neural net-
works [10] to coordinate their target trackingwithin a region
without the need of communication (Section IV). This strategy
is also responsible for their navigation between regions via
beacons or checkpoints identified by a motion planner [11].
To perform these tasks, it has to coordinate multiple concurrent
behaviors, which include target reaching, obstacle avoidance,
and robot separation to minimize task interference. It differs
from other Behavior Coordination Mechanisms (BCMs) ([12])
in the following ways:

Self-Organization of Continuous State and Motor Control
Spaces:A high degree of smoothness and precision in motion
control is essential for efficiently executing sophisticated tasks.
This can only be achieved withcontinuous response encoding
(i.e., infinite set of responses) of very low-level velocity/torque
control of motor/joint actuators. Our proposed BCM uses self-
organizing neural networks to map continuous state space to
continuous motor control space. We have shown in ([11],
[13]) via quantitative evaluation that such neural networks can
produce fine, smooth, and efficient motion control. In contrast,
BCMs that employdiscrete response encoding(i.e., finite,
enumerated set of responses) ([12], [14]) produce high-level
motion commands (e.g., forward, left, right) that are usually
too coarse for fine, smooth robot control. Consequently, the
robot may fail to negotiate unforeseen complex obstacles.

Complexity of Robot Motion Tasks:Existing BCMs tend to
under-utilize the sensory inputs that can potentially yield
useful information for coordinating behaviors and choosing
the most appropriate action. As a result, the robot is less
capable of performing complex motion tasks such as ne-
gotiating unforeseen concave and closely spaced obstacles,
and tracking multiple moving targets. Three classes of BCMs
face this problem: behavior arbitration, action voting, and
action superposition. Arbitration strategies ([14]) allow only
one winning behavior among a group of competing ones to
produce the action. This precludes the execution of several,
possibly conflicting behaviors in parallel. In action voting
schemes ([12]), each behavior can vote for various pre-defined
discrete actions to different degrees and the action with the
highest vote is performed. Both behavior arbitration and action
voting methods suffer from the drawbacks of discrete response
encoding discussed in the previous paragraph. Action super-
position techniques (e.g., potential fields) ([11], [15]) combine
all the potential actions, each generated by a behavior, using
vector sum to produce a single action. They may cause the
robot to fail in complex motion tasks [16] even though they
utilize continuous response encoding. On the other hand, a
robot endowed with our proposed BCM can achieve these
tasks (Section VI-A).

In the higher task allocation layer, the robots use a dynamic
ant-based scheme [17] to cooperatively self-organize their
coalitions in a decentralized manner according to the target
distributionsacrossthe regions (Section V). It contrasts with
the other works of biologically-inspired robot swarms [15]that
emphasize control- rather than task-level cooperation.

Our ant-based scheme addresses the following issues, which
distinguish it from the other task allocation mechanisms:

Task Allocation for Multi-Robot Tasks:Existing Multi-Robot
Task Allocation (MRTA) algorithms (i.e., auction- and utility-
based) ([18], [19]) generally assume that a multi-robot task
can be partitioned into several single-robot tasks. But this may
not be always possible, or the multi-robot task can be more
efficiently performed by coalitions of robots. Furthermore, the
partitioned single-robot tasks are sometimes assumed to be
independent, i.e., no interference would occur. However, the
robots are bound to interfere with each other’s ongoing activity
either physically (e.g., space competition) or non-physically
(e.g, shared radio bandwidth, conflicting goals). In the extreme
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case, when too many robots are involved, little or no work
gets done as they totally restrict each other’s movement.
Hence, task interference has an adverse effect on the overall
system performance. Knowing that physical interference can
be implied from robot density, our task allocation scheme
dynamically distributes robots in real-time by estimatingrobot
densities in different regions to minimize interference.

Coalition Formation for Minimalist Robots:Existing multi-
agent coalition formation schemes [20] require complex plan-
ning, explicit negotiation, and precise estimation of coalitional
cost. Hence, they may not be able to operate in real-time
in a large-scale sensor network. Our task allocation method
via self-organizing swarm coalitions is reactive, dynamic,
and can operate with uncertain coalitional cost and resource-
constrained robots.

Cooperation of Resource-Constrained Robots:Robots with
limited communication and sensing capabilities can only ex-
tract local, uncertain information of the environment. As such,
distributed methodologies are required to process and integrate
the noisy, heterogeneous information to improve its quality so
that it can be effectively utilized to estimate the coalitional
cost and boost the task performance. Furthermore, if the
robots have limited computational power, their cooperative
strategies cannot involve complex planning or negotiation. Ex-
isting task allocation mechanisms ([18], [19], [21]) have either
assumed perfect communications, high computational power,
centralized coordination or global knowledge of the task and
robots. For example, recent applications of sensor network
coverage ([4]) and multi-robot systems [22] employ coalition
leaders, one in each region, to negotiate with each other. This
negotiation is conducted iteratively using an auction-based
mechanism and attempts to balance the proportion of robots to
that of the targets across all regions. To do so, each coalition
leader must be able to obtain the exact number of robots
and targets in its region as well as the task performance of
these robots. Furthermore, it has to synchronize its negotiation
with the coalition leaders in other regions via long-range
communication. Note that this negotiation can be conducted
entirely by a central coordinator running a centralized coalition
formation scheme but it requires even more resources. In
contrast, our proposed method does not require such expen-
sive resources, thus catering to resource-constrained robots.
The robots endowed with our ant-based scheme require only
local sensing information and short-range communication.The
robot coalitions can also be self-organized asynchronously
without negotiation.

IV. SELF-COORDINATED TASK EXECUTION

A. Overview

Our proposed BCM, calledcooperative Extended Kohonen
Maps (EKMs), is implemented by connecting an ensemble
of EKMs ([11], [13]), each of which is a neural network
that extends the Kohonen Self-Organizing Map [23]. Its self-
organization of the input space is similar to Voronoi tessella-
tion such that each tessellated region is encoded by the input
weights of an EKM neuron. In addition to encoding a set
of input weights that self-organize the sensory input space,

... .
.

.

.

.

. ... .

.
.
.

.

.

.

.

... .
.

.

.

1robot
kins

localization
robot

EKM

mr

a1
localization

target

EKM

localization
target

EKM

module
target reaching

na

targets

control

motor

EKM

module
neural integration

local
obstacles

localization
obstacle

EKM

localization
obstacle

EKM

c

time scale

slower

faster

localization
robot

EKM

module
robot separation

hb

module
obstacle avoidance

b1

actuators

r

Fig. 2. A behavioral coordination mechanism that is implemented by an
ensemble of Extended Kohonen Maps (EKMs).

the EKM neurons also produce outputs that vary with the
incoming sensed inputs.

Our cooperative EKMs framework consists of four mod-
ules: target reaching, obstacle avoidance, robot separation,
and neural integration (Fig. 2). Thetarget localizationEKMs
in the target reachingmodule (Section IV-B) are activated
by the presence of targets within the robot’s target sensing
range. Each EKM receives a sensed target location and outputs
corresponding excitatory signals to the motor control EKM in
the neural integration module at and around the locations of
the sensed targets.

The obstacle localizationEKMs in theobstacle avoidance
module (Section IV-C) are activated by the presence of ob-
stacles within the robot’s obstacle sensing range. Each EKM
receives a sensed obstacle location and outputs corresponding
inhibitory signals to the motor control EKM in the neural
integration module at and around the locations of the sensed
obstacles. Therobot localizationEKMs in therobot separation
module work in a similar fashion as the obstacle localization
EKMs except that they process the sensed robot locations.

The motor controlEKM in the neural integrationmodule
(Section IV-D) serves as the sensorimotor interface, which
integrates the activity signals from the EKMs for cooperation
and competition to produce an appropriate motor signal to the
actuators.

The cooperative EKMs framework allows the modules to
operate asynchronously at different rates, which is the keyto
preserving reactive capabilities. This contrasts with action vot-
ing and superposition BCMs, which require synchronization.
For example, the target reaching and robot separation modules
operate at about 256 ms between servo ticks while the obstacle
avoidance module can typically operate faster at intervalsof
128 ms. The neural integration module is activated as and
when neural activities are received. One noteworthy aspectof
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our framework is that no communication between robots is
needed for the robots to cooperate in the tracking of multiple
moving targets. In this paper, we demonstrate that robots,
which are able to discriminate between targets, obstacles and
robot kins, are adequate for achieving the cooperative task.

B. Target Reaching

The target reaching module adopts an egocentric represen-
tation of the sensory input vectorup = (α, d)T whereα andd
are the direction and distance of a target relative to the robot’s
current location and heading. It uses the target localization
EKM to self-organize the sensory input spaceU . Each neuron
i in the EKM has a sensory weight vectorwi = (αi, di)

T

that encodes a region inU centered atwi. Each target that
appears within the robot’s sensory range activates a different
target localization EKM. That is,n target localization EKMs
will be activated forn targets. The same target can activate
a different EKM at a different time. Based on each incoming
sensory inputup of the target location, the target localization
EKM outputs excitatory signals to the motor control EKM
in the neural integration module (Section IV-D). The target
localization EKMs are activated as follows:

Target Localization

For each sensory inputup of a target,p = 1, . . . , n (i.e., n
targets),

1) Determine the winning neurons in the p-th target
localization EKM. Each winning neurons is the one
whose sensory weight vectorws = (αs, ds)

T is nearest
to the inputup = (α, d)T :

D(up,ws) = min
i∈A(α)

D(up,wi). (1)

The differenceD(up,wi) is a weighted difference be-
tweenup andwi:

D(up,wi) = βα(α − αi)
2 + βd(d − di)

2 (2)

whereβα andβd are constant parameters. The minimum
in Eq. 1 is taken over the setA(α) of neurons encoding
very similar angles asα:

|α − αi| ≤ |α − αj |,

for each pairi ∈ A(α), j /∈ A(α) .
(3)

In other words, direction has priority over distance in the
competition between EKM neurons. This method allows
the robot to quickly orientate itself to face the target
while moving towards it. An EKM contains a limited set
of neurons, each of which has a sensory weight vector
wi that encodes a point in the sensory input spaceU .
The region inU that encloses all the sensory weight
vectors of these neurons is called thelocal workspace
U ′. Even if the target falls outsideU ′, the nearest neuron
can still be activated (Fig. 3a).

2) Compute output activityapi of neuroni in thep-th target
localization EKM.

api = Ga(ws,wi) (4)

The functionGa is an elongated Gaussian:

Ga(ws,wi) = exp

(

−
(αs − αi)

2

2σ2
aα

−
(ds − di)

2

2σ2
ad

)

.

(5)
Parameterσad is much smaller thanσaα, making the
Gaussian distance-sensitive and angle-insensitive. These
parameter values elongate the Gaussian along the direc-
tion perpendicular to the target directionαs (Fig. 3b).
This elongated Gaussian is thetarget field, which plays
an important role in avoiding local minima during ob-
stacle avoidance.

The output activities of the neurons in then target localization
EKMs are aggregated in the motor control EKM to produce a
motion that moves the robot towards the targets. This will be
explained in Section IV-D. In the next section, we will present
the obstacle and robot localization EKMs, which are activated
in a similar manner as the target localization EKMs.

C. Obstacle Avoidance and Robot Separation

The obstacle avoidance module uses obstacle localization
EKMs. The robot hash directed distance sensors around its
body for detecting obstacles. Hence, each activated sensor
encodes a fixed directionαj and a variable distancedj of
the obstacle relative to the robot’s heading and location. Each
sensor’s inputuj = (αj , dj)

T induces an obstacle localization
EKM. Note that the distance sensors operate differently from
the target sensors. A target sensor (e.g., vision camera) can
sense multiple targets whereas each distance sensor (e.g.,laser)
can only reflect the nearest obstacle in its sensing direction.
Hence, unlike the target localization EKMs, the number of
obstacle localization EKMs that are activated does not depend
on the number of obstacles but rather, on the number of
distance sensors. The obstacle localization EKMs have the
same number of neurons and input weight values as the
target localization EKMs, i.e., each neuroni in the obstacle
localization EKM has the same input weight vectorwi as the
neuroni in the target localization EKM. The EKMs output
inhibitory signals to the motor control EKM in the neural
integration module (Section IV-D). The obstacle localization
EKMs are activated as follows:

Obstacle Localization

For each sensory inputuj , j = 1, . . . , h (i.e., h distance
sensors),

1) Determine the winning neurons in the j-th obstacle
localization EKM. The obstacle localization EKM is
activated in the same manner as Step 1 of Target
Localization (Section IV-B).

2) Compute output activitybji of neuron i in the j-th
obstacle localization EKM:

bji = Gb(ws,wi) (6)
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Fig. 3. Conceptual description of cooperative EKMs. (a) In response to the target⊕, the nearest neuron (black dot) in the target localization EKM (ellipse) of
the robot (gray circle) is activated. (b) The activated neuron produces a target field (dotted region) in the motor control EKM. (c) Three of the robot’s sensors
detect obstacles and activate three neurons (crosses) in the obstacle localization EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of
the obstacle fields from the target field results in the neuronat 4 to become the winner in the motor control EKM, which moves therobot away from the
obstacle.

where

Gb(ws,wi) = exp

(

−
(αs − αi)

2

2σ2
bα

−
(ds − di)

2

2σ2
bd(ds, di)

)

σbd(ds, di) =

{

2.475 if di ≥ ds

0.02475 otherwise.
(7)

The function Gb is a Gaussian stretched along the
obstacle directionαs so that motor control EKM neurons
beyond the obstacle locations are also inhibited to indi-
cate inaccessibility (Fig. 3c). If no obstacle is detected,
Gb = 0. In the presence of an obstacle, the neurons in
the obstacle localization EKMs at and near the obstacle
locations will be activated to produceobstacle fields
(Eq. 6). The neurons nearest to the obstacle locations
have the strongest activities.

The separation between a robot and its other kins is achieved
with robot localization EKMs. These EKMs work in the same
way as obstacle localization EKMs, i.e., each neuroni in the
q-th robot localization EKM outputs an inhibitory activityrqi

to the motor control EKM in the neural integration module
(Section IV-D). However, the robot localization EKMs produce
wider robot kin fields. This has the effect of keeping a robot
away from targets that are close to other robot kins. As a
result, the overlap in the coverage of targets between robots is
minimized. Unlike the distance sensors, a robot kin sensor
(e.g., communication) can sense multiple robots. Hence, if
there arem robots detected,m robot localization EKMs will
be activated. The robot localization EKMs have the same
number of neurons and input weight values as the target and
obstacle localization EKMs.

D. Neural Integration and Motor Control

The neural integration module uses a motor control EKM to
integrate the activities from the neurons in the target, obstacle
and robot localization EKMs. The motor control EKM has the
same number of neurons and input weight values as the target,
robot, and obstacle localization EKMs. The neural integration
is performed as follows:

Neural Integration

1) Compute activityei of neuroni in the motor control
EKM.

ei =

n
∑

p=1

api −
h

∑

j=1

bji −
m

∑

q=1

rqi (8)

C
M

U

M k

c

zk

Fig. 4. Motor control EKM. The neurons map the sensory input spaceU
indirectly to motor control spaceC through control parameter spaceM.

where api is the excitatory input from neuroni of
the p-th target localization EKM (Section IV-B),bji is
the inhibitory input from neuroni of the j-th obstacle
localization EKM, andrqi is the inhibitory input from
neuroni of theq-th robot localization EKM (Section IV-
C).

2) Determine the winning neuronk in the motor control
EKM. Neuronk is the one with the largest activity:

ek = max
i

ei . (9)

The motor control EKM also has a set of output weights,
which encode the outputs produced by the neuron. It is trained
to partition the sensory input spaceU into locally linear
regions. Unlike existing direct-mapping methods ([24]) that
perform discrete response encoding (Section I), the output
weightsMi of neuroni of the motor control EKM represent
control parameters in the parameter spaceM instead of the
actual motor control vector (Fig. 4). The control parameter
matrix Mi is mapped to the actual motor control vectorc by
a linear model (Eq. 10). Compared to direct-mapping EKM,
indirect-mapping EKM can provide finer and smoother robot
motion control. Detailed comparison and discussion have been
reported in ([11], [13]). With indirect-mapping EKM, motor
control is performed as follows:

Motor Control

Compute motor control vectorc:

c = Mkzk (10)

where

zk =

∑

i∈N (k)

G(|ei − ek|)wi

∑

i∈N (k)

G(|ei − ek|)
. (11)

G(|ei − ek|) is a Gaussian with its peak located at neuronk
andN (k) defines a small set of neurons in the neighborhood
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of neuronk. At the goal state at timeT , zk(T ) = (α, 0)T for
any α.

In activating the motor control EKM (Fig. 3d), the obstacle
fields are subtracted from the target field (Eq. 8). If the target
lies within the obstacle fields, the activation of the motor
control EKM neurons close to the target location will be
suppressed. Consequently, another neuron at a location that
is not inhibited by the obstacle fields becomes most highly
activated (Fig. 3d). This neuron produces a control parameter
that moves the robot away from the obstacle. While the robot
moves around the obstacle, the target and obstacle localization
EKMs are continuously updated with the current locations and
directions of the target and obstacles. Their interactionswith
the motor control EKM produce fine, smooth, and accurate
motion control of the robot to negotiate the obstacle and move
towards the target until it reaches the goal statezk(T ) at time
step T . In the case of multi-robot target tracking task, the
robots act like obstacles to other robots, thus separating them
from each other.

E. Self-Organization of EKMs

In contrast to offline learning methods, online training is
adopted for the EKMs. Initially, the EKMs have not been
trained and the motor control vectorsc generated are in-
accurate. Nevertheless, the EKMs self-organize, using these
control vectorsc and the corresponding robot displacements
v produced byc, to mapv to c indirectly. As the robot moves
around and learns the correct mapping, its sensorimotor control
becomes more accurate. At this stage, the online training
mainly fine tunes the indirect mapping. The self-organized
training algorithm (in obstacle-free environment) is as follows:

Self-Organized Training

Repeat

1) Get sensory inputup.
2) Execute target reaching procedure and move robot.
3) Get new sensory inputu′

p and compute actual displace-
mentv as a difference betweenu′

p andup.
4) Use v as the training input to determine the winning

neuronk (same as Step 1 of Target Reaching except
that up is replaced byv).

5) Adjust the input weightswi of neuronsi in the neigh-
borhood of the winning neuronk towardsv:

∆wi = η G(k, i)(v − wi) (12)

where G(k, i) is a Gaussian function of the distance
between the positions of neuronsk and i in the EKM,
andη is a constant learning rate.

6) Update the output weightsMi of neuronsi in the
neighborhood of the winning neuronk to minimize the
error e:

e =
1

2
G(k, i)‖c− Miv‖

2 . (13)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi

= η G(k, i)(c − Miv)vT . (14)

The target, obstacle, and robot localization EKMs self-
organize in the same manner as the motor control EKM except
that Step 6 is omitted. This will result in the same set of
input weight vectors for all the localization and motor control
EKMs after training. At each training cycle, the weights of the
winning neuronk and its neighboring neuronsi are modified.
The amount of modification is proportional to the distance
G(k, i) between the neurons in the EKM. The input weights
wi are updated towards the actual displacementv and the
control parametersMi are updated so that they map the
displacementv to the corresponding motor controlc. After
self-organization has converged, the neurons will stabilize in
a state such thatv = wi and c = Miv = Miwi. For
any winning neuronk, given thatzk = wk, the neuron will
produce a motor control outputc = Mkwk which yields a
desired displacement ofv = wk. If zk 6= wk but close to
wk, the motor outputc = Mkzk produced by neuronk will
still yield the correct displacement if linearity holds within
the input region that activates neuronk. Thus, given enough
neurons to produce an approximate linearization of the sensory
input spaceU , indirect-mapping EKM can produce finer and
smoother motion control than direct-mapping EKM.

V. SELF-COORDINATED TASK ALLOCATION

Many multi-robot tasks, e.g., foraging [21], transportation,
and exploration, have been inspired by social insects [25],
in particular, ants. Our MRTA scheme encapsulates three
concepts of ant behavior to self-organize the robot coalitions
according to the target distributions across regions: (a) en-
counter pattern based on waiting time, (b) self-organization of
social dominance, and (c) dynamic task allocation.

A. Encounter Pattern Based on Waiting Time

Encounter patterns provide a simple, local cue for ants with
sensory and cognitive limitations to assess regional densities
of ants and objects of interest, which are crucial to regulating
the division of labor [26]. Instead of relying on global commu-
nication to relay target positions and density estimation [27],
our scheme uses encounter patterns to predict target density via
local sensing. Regional robot density is captured in a similar
way using local communication.

An encounter pattern can be derived from a series of waiting
time or interval between successive encounters. This simple
form of information processing has accounted for the complex
adaptive process of task allocation in ant colonies [28]. Inour
coverage task, the waiting time of a robot is defined in terms
of its encounters with the other robots and targets. A robot
encounter is defined as a reception of a message from another
robot in the same region. A target encounter is defined as an
increase in the number of targets tracked between the previous
and the current time steps. For a roboti in regionr, the waiting
time for other robotswir(k) and targetsw′

ir(k) is the time
interval between the(k − 1)th andkth encounters. Note that
each waiting time is subject to stochastic variation. Hence,
multiple samplings of waiting time have to be integrated to
produce an accurate estimation of the regional density. The
average waiting timeWir(k) between the(k − 1)th andkth
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robot encounters for a roboti in regionr is computed as:

Wir(k) =
1

n
wir(k) +

n − 1

n
Wir(k − 1)

n = min(k, nmax)

(15)

where nmax is the maximum number of encounters that is
monitored. This limit allows the robot to forget the early
samplings of waiting time, which have become obsolete. The
average target waiting timeW ′

ir(k) is updated in the same
manner. Both waiting times are updated according to the
changing environment, and are inversely proportional to the
robot and target densities in regionr. The target density
directly reflects the task demand of the region. The robot
density reflects the amount of physical interference in the
region, which is inversely proportional to the task demand.
Therefore, the task demandSir(k) of a region r can be
determined by roboti as the ratio of the waiting times:

Sir(k) =
Wir(k)

W ′
ir(k)

. (16)

The task demandSir(k) will be used in the self-organization
of social dominance as well as in dynamic task allocation.

B. Self-Organization of Social Dominance

The division of labor in an ant colony is strongly influenced
by its social dominance order [29], which self-organizes to
match the task demands of the colony and the changing
environment. Our scheme is inspired by this concept to move
robots out of a region that has a lower target-to-robot density
ratio than the other regions. Instead of fixing the dominanceor-
der [30], the social dominance of the robots in each coalition is
self-organized according to their individual task performance.
Robots in the same coalition engage in dominance contests at
a regular intervalτ if they are within communication range.
The winner increases its tendency to stay in the current region
while the loser increases its tendency to leave the current
region and join another coalition in other regions. When robot
i encounters robotj in region r, the probability of roboti
winning a contest against robotj is defined as:

P (robot i winning) =
n2

i S
2
ir

n2
i S

2
ir + n2

jS
2
jr

(17)

whereSir andSjr are respectively the task demand of region
r determined by roboti and robotj, andni and nj are the
number of targets currently under observation by roboti and
robot j respectively. Equation 17 implies that roboti would
most likely win the contest if it observes more targets than
robot j. However, if both are tracking the same number of
targets, then their individual evaluation of the task demand can
be used to differentiate them. This will distinguish a robotthat
has been observing the targets for a long time from another
that just encounters the same number of targets.

To inject the influence of social dominance on the self-
organization of robot coalitions, each time a roboti wins a
contest (Eq. 17), it increases its tendency of staying in the
current region, which is represented by the response threshold
θi(t) to be used for dynamic task allocation:

θi(t) = θi(t − 1) + δ (18)

where δ is small constant. Conversely, each time the robot
loses, it decreases its tendency of staying in the region:

θi(t) = θi(t − 1) − δ . (19)

θi varies in the range [0,1] to prevent robots from being overly
submissive or dominating.

C. Dynamic Task Allocation

The distributed task allocation algorithm in ants can effi-
ciently arrange the ants in proportion to the amount of work
in the changing environment [31]. In a similar manner, our
scheme aims to self-organize the robot coalitions according to
the target distributions across the regions.

Our dynamic task allocation scheme is based on the notion
of response thresholds [25]. In a threshold model, robots
with low response thresholds respond more readily to lower
levels of task demand than do robots with high response
thresholds. Performing the task reduces the demand of the
task. If robots with low thresholds perform the required tasks,
the task demand will never reach the thresholds of the high-
threshold robots. However, if the task demand increases, high-
threshold robots will engage in performing the task.

MRTA strategies that utilize fixed response thresholds ([21],
[27]) are incapable of responding effectively to dynamic
environments [25]. In contrast, the thresholds in our scheme
are continuously updated by the self-organizing process of
social dominance.

To be effective in task allocation, a robot must at least
have some knowledge of the task demands in its neighboring
regions in order to make rational task decisions. To do so, robot
i maintains a memory of the task demandSir of each regionr
(initialized to 0) and the amount of timeTir that it previously
spent in regionr. Tir can be used as a certainty measure
of Sir . In addition to computingSir using Equation 16,Sir

can also be updated when roboti receives a message from a
neighboring robotj with Sjr less thanSir. ThenSir andTir

are updated to take the valuesSjr andTjr respectively. In this
manner, the task demands of the regions are kept in memory.
Robot i can then predict which region has the greatest task
demand and join that region. At every time interval ofτ , if
Sir receives no update, the certainty valueTir is decreased
by τ while the task demandSir is increased by a small
amount, such that its magnitude reflects the robot’s motivation
to explore.

Our distributed MRTA scheme uses a stochastic problem
solving methodology. It is performed at intervals ofτ to allow
for multiple samplings of waiting time during each interval.
The probability of a roboti to stay in its current regionc is
defined as:

P (stay) =
S2

ic

S2
ic + (1 − θi)2 + T−2

ic

. (20)

On the other hand, the probability of a roboti to leave region
c to go to regionr is defined as:

P (leave) =
S2

ir

S2
ir + θ2

i + T−2
ir + d2

cr

(21)

wheredcr is the pre-computed collision-free distance between
regionc and regionr, which can be viewed as the cost of task
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Fig. 5. (a–d) Motion of robot (gray) in an environment with two unforeseen obstacles (black) moving in anticlockwise circular paths. The robot successfully
negotiated past the extended walls and the dynamic obstacles to reach the goal (small black dot). (e) Motion of robot (dark gray) in an environment with an
unforeseen static obstacle (light gray). The robot successfully navigated through the checkpoints (small black dots)located at the doorways to reach the goal.

switching. Note that a robot that loses in the dominance contest
in a coalition does not always leave the region. If it experiences
a higher task demand in its region than in other regions, it will
have a high tendency of remaining in its coalition.

From Equations 20 and 21, if the robot does not respond
to any regions, it will not switch task and will remain in the
current coalition. The robot may also respond to more than
one region. This conflict is resolved with a method that is
similar to Equation 17. The probability of a roboti choosing
a regionr that it has responded to is:

P (choose) =
(Sir lnTir)

2

∑

r

(Sir lnTir)
2

. (22)

If the robot i chooses regionr that is not the current region
c, then it will employ cooperative EKMs to move through
the checkpoints plotted by the planner to regionr. The
generation of checkpoints is performed by the approximate
cell decomposition method for motion planning [11].

VI. EXPERIMENTS AND DISCUSSION

A. Qualitative Evaluation of Cooperative EKMs

1) Robot Motion in Complex, Unpredictable Environments:
This section presents a qualitative evaluation of the obstacle
negotiation capabilities (i.e., self-protecting property) of a non-
holonomic mobile robot endowed with cooperative EKMs in
complex, unpredictable environments. The experiments were
performed using Webots, a Khepera mobile robot simulator,
which incorporated 10% noise in its sensors and actuators.
12 directed long-range sensors were also modelled around its
body of radius 2.5 cm. Each sensor had a range of 17.5 cm,
enabling the detection of obstacles at 20 cm or nearer from the
robot’s center, and a resolution of 0.5 cm to simulate noise.

Two tests were conducted to demonstrate the capabilities of
cooperative EKMs in performing complex obstacle negotiation
tasks. The environment for the first test consisted of three
rooms connected by two doorways (Fig. 5(a)–(d)). The middle
room contained two obstacles moving in anticlockwise circular
paths. The robot began in the left-most room and was tasked
to move to the right-most room. Test results show that the
robot was able to negotiate past the extended walls and the
dynamic obstacles to reach the goal.

The environment for the second test consisted of three
rooms connected by two doorways and an unforeseen static
obstacle (Fig. 5(e)). The robot began in the top corner of
the left-most room and was tasked to move into the narrow
corner of the right-most room via checkpoints identified by a
motion planner [11]. The robot was able to move through the
checkpoints to the goal by traversing between narrowly spaced

convex obstacles in the first and the last room, and overcoming
an unforeseen concave obstacle in the middle room. This result
further confirms the effectiveness of cooperative EKMs in
handling complex, unpredictable environments.

Similar tests have also been performed on robots that use
potential fields. The robots were trapped by the extended walls
and narrowly spaced obstacles in the first and second test
respectively. This is because the obstacle avoidance behav-
ior counteracted the target reaching behavior to cancel each
other’s effort.

These two tests show that for potential fields, though each
behavior proposes an action that is optimal by itself, the
vector sum of these action commands produces a combined
action that may not satisfy the overall task. Cooperative
EKMs, however, considers the preferences of each behavior
and integrates them to determin an action that can satisfy each
behavior to a certain degree. Such tightly coupled interaction
between the behaviors and BCM enables the robot to achieve
more complex tasks.

2) Cooperative Multi-Robot Tracking of Moving Targets:
This section evaluates qualitatively the cooperative tracking
capability of a team of robots, each fitted with cooperative
EKMs, to maximize the coverage of multiple mobile targets
(i.e., self-optimizing property). Two tests were conducted
using Webots simulator with settings similar to those in
Section VI-A.1. The first test (Fig. 6) was performed to
highlight the advantages of cooperative EKMs over potential
fields utilized by ([3], [6]) for the same task. The robot using
potential fields got trapped by the static target while attempting
to track all four targets. Eventually, the three mobile targets
moved out of the robot’s sensing range, causing the robot to
observe only one out of four targets. In contrast, the robot
fitted with cooperative EKMs was able to negotiate past the
stationary target to track the three moving targets as well.All
four targets were thus observed by the robot. The results of this
test demonstrated that local minima situations could greatly
decrease the coverage of targets by robots using potential
fields. However, robots endowed with cooperative EKMs can
still provide maximum coverage under these situations.

The next test (Fig. 7) illustrates how two robots endowed
with cooperative EKMs cooperate to track four moving targets.
When the targets were moving out of the robots’ sensory
range, the robot below chose to track the two targets moving to
the bottom left while the robot above responded by tracking
the two targets moving to the top right. In this manner, all
targets could be observed by the robots. This test shows that
the two robots can cooperate to track multiple moving targets
without communicating with each other.
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Fig. 6. (Top row) Robot (gray) using action superposition ASM got stuck
at the stationary target. Eventually, the three mobile targets moved out of the
robot’s sensing range (circle). (Bottom row) Robot using cooperative EKMs
could negotiate past the stationary target to track all the targets.
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Fig. 7. Cooperative tracking of moving targets. When the targets were moving
out of the robots’ sensory range, the two robots moved in opposite directions
to track the targets. In this way, all targets could be observed by the robots.

3) Self-Healing of Multi-Robot Formation:This section
evaluates qualitatively the self-configuring capability of a
team of robots, each fitted with cooperative EKMs, to repair
unexpected damages to its formation. Fig. 8 shows the same
environment in Fig. 1a covered by a robot team. When the
robots in room 1 were removed (possibly due to bomb blast),
the remaining 60 robots in the other rooms were able to self-
configure and extend their coverage into this room. Hence, the
formation is self-healed.

B. Quantitative Evaluation of Ant-Based MRTA and Cooper-
ative EKMs

This section presents quantitative evaluations of the ant-
based MRTA and cooperative EKMs schemes for distributed
mobile sensor network coverage in a complex, unpredictable
environment. The experiments were performed using Webots
simulator with settings similar to those in Section VI-A.1.
Each robot could also sense targets and kin robots at 0.3 m
or nearer from its center and send messages to other robots
that were less than 1 m away via short-range communication.
A 4 m × 3 m environment (Fig. 1a) was used to house the
Khepera robots and targets, which were randomly scattered
initially. The number of robots varied from 5, 10 to 15, which
corresponded to total robot sensing area of 11.8%, 23.6%,
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1.5

Fig. 8. Self-healing of multi-robot formation. When the robots in room 1
were removed (left), the remaining 60 robots were able to self-configure and
extend their coverage into this room (right), thus repairing the damage.

and 35.3% of the environment size. The mobile targets were
forward-moving Braitenberg obstacle avoidance vehicles [32]
that changed their direction and speed with 5% probability.
The speed range of the robots and targets are 0-16 cm/s and
0-12 cm/s respectively.

1) Sensor Network Coverage:The first performance index
determines the overall sensor network coverage of the robots:

sensor network coverage=
T

∑

t=1

100
n(t)

NT
(23)

where N is the total number of targets,n is the number
of targets being tracked by the robots at timet, and the
experiment lastsT amount of time.N and T are fixed
respectively as 30 targets and 10000 time steps at intervals
of 128 ms.

Using this index, a quantitative test was conducted to
compare the network coverage of the robots adopting five dis-
tributed tracking strategies: (1) potential fields, (2) cooperative
EKMs, (3) static placement, (4) auction-based negotiation, and
(5) ant-based MRTA. Note that this index reflects the self-
optimizing capability of the robots’ tracking strategy. Unlike
the latter three strategies, potential fields and cooperative
EKMs are reactive motion control techniques that do not
involve explicit task allocation. With static placement, static
sensors are placed at least 0.6 m apart to ensure no overlap
in coverage. With auction-based negotiation and ant-based
MRTA, the robots are fitted with cooperative EKMs to co-
ordinate their target tracking within a region, avoid obstacles,
and navigate between regions.

Test results (Fig. 9a) show that ant-based MRTA provides
better coverage than the other strategies. The differencesin
coverage between any two strategies have been verified using
t-tests (α = 0.1) to be statistically significant. Notice that
5 mobile robots endowed with our method can track better
than 10 static sensors. Although auction-based negotiation uses
complex negotiation, longer communication range, and more
information about the robots and targets, it does not perform
better than our ant-based scheme. This will be explained in
the section of degree of specialization.

2) Total Coalitional Cost:The second performance index
determines the total coalitional cost of the robots, which is
inspired by the set partitioning problem [20]. Given a set of
connected regions where coverage tasks are to be performed,
and a setA of M robots, the task allocation algorithm assigns
a robot coalitionCr ⊆ A to the coverage task in regionr such
that (a)

⋃

r Cr = A, (b) ∀r 6= s, Cr

⋂

Cs = ∅, and (c) eachCr

has a positive cost|(nr/N)− (mr/M)| wheremr andnr are
the number of robots and targets in regionr respectively and
N is the total number of targets. The objective is to minimize
the total coalitional cost [20]:

total coalitional cost=
∑

r

∣

∣

∣

nr

N
−

mr

M

∣

∣

∣
. (24)

This index varies within the range [0,2]. A coalitional cost
of 0 implies that the robot distribution over all regions is
exactly proportional to the target distribution. In this manner,
interference between robots is at its minimum, which will
improve overall coverage. High costs imply the opposite. Note



10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS–PARTC: APPLICATIONS AND REVIEWS, VOL. XX, NO. Y, AUGUST 2005

0.1 0.15 0.2 0.25 0.3 0.35
5

10

15
20

25

30
35

40

45
50

55
sensor network coverage (%)

γ
0.1 0.15 0.2 0.25 0.3 0.35

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
coalitional costs

γ
0.1 0.15 0.2 0.25 0.3 0.35

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ABMRTA

ABN

PF

static

mean degree of specialization

CEKM

γ

(a) (b) (c)
Fig. 9. Comparison of performance using different motion control and task allocation strategies: (a) Sensor network coverage, (b) total coalitional cost, and
(c) mean degree of specialization. ABMRTA = Ant-Based MRTA,ABN = Auction-Based Negotiation, CEKM = Cooperative EKMs, PF = Potential Fields,
andγ = total robot sensing area to environment size ratio.

that this index reflects the self-configuring capability of the
robots’ tracking strategy.

Test results (Fig. 9b) show that auction-based negotiation
and ant-based MRTA have the lowest coalitional costs. Hence,
we can conclude from Figures 9a and 9b that, with a lower
cost, a higher coverage can be achieved. Although auction-
based negotiation achieves slightly lower coalitional cost than
ant-based MRTA, its coverage is lower. This will be explicated
in the next section. Coalitional cost has been validated using
t-tests (α = 0.1) to be significantly different for various
strategies except those without explicit task allocation (i.e.,
potential fields and cooperative EKMs). This is expected since
they do not perform coalition formation, which account for
their higher costs.

Coalitional cost is higher with fewer robots because with
less robots, it is more difficult to achieve the same proportion
of robots to that of the targets over all regions.

3) Degree of Specialization:To achieve low coalitional
cost, the robot coalitions must be highly responsive, i.e.,
they can self-configure rapidly according to the changing
distributions of targets across regions. In a temporally varying
environment, an ant colony has to increase its responsiveness
to cope with frequent changes in task demands by employing
more generalist ants, which perform a range of tasks [33]. Sim-
ilarly, we will like to examine the effect of our non-stationary
task environment, induced by moving robots and targets, on
the degree of specialization in the robots. Based on Shannon-
Wiener information variableH , the third performance index
quantifies the degree to which a robot specializes in a region:

degree of specialization= 1 − H

H = −
∑

r

pr logR pr
(25)

where pr is the proportion of time a robot stays in region
r for the task duration ofT , and R is the total number of
regions. This index varies within the range [0,1]. A degree
of 1 implies the robot specializes in tracking only one region
whereas a degree of 0 means the robot spends equal proportion
of time tracking in allR regions.

Figure 9c shows the mean degree of specialization of all the
robots, which is lower for auction-based negotiation and ant-
based MRTA. Hence, we can conclude from Figures 9b and 9c
that a larger number of generalist robots leads to a lower
coalitional cost. Although auction-based negotiation achieves
lower degree of specialization and coalitional cost than ant-
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Fig. 10. Comparison of proportions of time in (a) region switching, and
(b) target searching (i.e., not observing any targets) between explicit task
allocation schemes. ABMRTA = Ant-Based MRTA, ABN = Auction-Based
Negotiation, andγ = total robot sensing area to environment size ratio.

based MRTA, its coverage is lower. This is because reducing
the degree of specialization will incur more time in task
switching and consequently decrease the time for performing
the task [34]. In our test, this means that a robot endowed with
auction-based negotiation will switch between several regions,
thus incurring longer time in travelling between regions and
searching for targets (Fig. 10). As a result, it spends less time
in target tracking. This accounts for the poorer coverage of
auction-based negotiation than ant-based MRTA.

For ant-based MRTA, the mean degree of specialization
is slightly higher with a smaller number of robots (Fig. 9c)
because each robot receives fewer messages from the other
robots. As a result, the robots are less certain about the task
demands in other regions. This causes the robots to be more
specialized and less inclined to explore other regions. Hence,
they spend less time in region switching (Fig. 10a). On the
other hand, the mean degree of specialization for auction-
based negotiation is slightly lower with fewer robots because
fewer robots are available for switching regions to minimize
coalitional cost when the target distributions change. There-
fore, each robot switches region more often (Fig. 10a). For
explicit task allocation schemes, we can observe in Fig. 10b
that a larger number of robots incurs longer target searching
time. This is due to greater interference between robots. With
cooperative EKMs or potential fields, fewer robots result
in higher mean degree of specialization because the robots
interfere less with each other and stay longer in a particular
region.

The time spent in region switching and target searching
(Fig. 10) can also reflect the amount of energy expended
in robot motion that is not due to target tracking. As such,
they can be used as metrics of energy efficiency. Even though
ant-based MRTA provides better coverage than auction-based
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Fig. 11. Comparison of proportions of robots within different ranges of
degrees of specialization.

negotiation, we can observe that it is more energy efficient as
it spends less time in region switching and target searching.

Figure 11 shows the proportions of robots within different
ranges of degrees of specialization for the case of 10 robots.
Using ant-based MRTA and auction-based negotiation for
explicit task allocation, most of the robots have degrees of
specialization< 0.6. The other two methods without explicit
task allocation have comparatively larger number of robots
with degrees of specialization≥ 0.6. Hence, the methods with
explicit task allocation are less rigid to changes in regional task
demands and incur lower coalitional cost.

4) Summary of Test Results:Compared to the other
schemes, ant-based MRTA and auction-based negotiation have
lower degree of specialization, coalitional cost, and higher
coverage. But the degree of specialization cannot be too lowas
the cost of generalization (i.e., excessive time spent in region
switching and target searching) would then exceed its benefits.
This explains the higher coverage of ant-based MRTA over
auction-based negotiation.

In the next few subsections, we will show more quantitative
test results that address other important issues in a sensor
network and its task environment.

5) Coverage of Evasive Targets:Our approach has been
tested on the coverage of evasive targets that avoid the tracking
robots. Compared with the tests of 15 robots tracking ran-
domly moving targets (Fig. 9), our ant-based scheme can still
maintain a 53% coverage. On the other hand, the coverage of
static sensors dropped significantly from 34% to 10% whereas
the coverage of the other schemes dropped slightly.

6) Robustness to Sensor Failures:Our scheme is robust to
sensor failures (i.e., self-healing property), which is crucial for
operating in dynamic, uncertain environments. For example,
in the event that 5 mobile sensors fail completely, our scheme
can still outperform a fully operational static sensor network
(Fig. 9a).

Apart from sensor deaths, the sensors may also malfunction
partially by experiencing faulty on-board sensing hardware or
actuators. We have investigated the case of actuator failures in
one-third of a network of 15 mobile sensors. This is similar to
deploying a heterogeneous network of 10 mobile and 5 static
sensors except that in our test, the sensors are not able to detect
actuator malfunctions and be excluded from the task allocation
process. Table I shows that when 5 sensors fail to move,
the task allocation schemes achieve poorer coverage, higher
coalitional cost, and higher mean degree of specialization.
These 5 sensors that are unable to switch regions have degree
of specialization of 1, which result in an overall increase

TABLE I

PERFORMANCE COMPARISON OF EXPLICIT TASK ALLOCATION SCHEMES.

Ant-based Auction-based
MRTA negotiation

Performance indices FT AF ST FT AF ST
Sensor network coverage (%) 52.74 47.79 62.80 49.75 43.79 58.31

Total coalitional cost 0.392 0.415 0.346 0.370 0.396 0.326
Mean degree of specialization 0.349 0.562 0.526 0.323 0.5510.473
FT = Fast-moving Targets, AF = Actuator Failures, ST = Slow-moving Targets.

in the mean degree of specialization of the network. The
loss of mobility in these sensors reduces the network’s self-
configuring capability, thus increasing the coalitional cost
and consequently, decreasing the coverage (Section VI-B.2).
Our ant-based scheme can still achieve better coverage than
auction-based negotiation in the case of actuator failures. This
has been explained in Section VI-B.3.

7) Varying Dynamism of Task Environment:The self-
configuring capabilities of the explicit task allocation schemes
have been evaluated under varying degrees of dynamism of
the task environment. To do so, we vary the speed range at
which the targets move. Slower-moving targets will change
the regional target distributions less, thus making the task
environment less dynamic. The speed range of the targets
in the previous tests have been set to 0-12 cm/s. To com-
pare with the previous results, we test the schemes with a
reduced target speed range of 0-4 cm/s (i.e., less dynamic
environment). As shown in Table I, when the targets move
more slowly, the task allocation schemes achieve better cov-
erage and lower coalitional cost but higher mean degree of
specialization. Since the target distributions change slower,
the robots do not need to switch regions so often. Hence,
they tend to specialize in specific regions. The slow-changing
target distributions also give the robots greater amount of
time to self-configure their coalitions more proportionally, thus
achieving lower coalitional cost. When the robot distributions
are more proportional to that of the targets, a better coverage
can be achieved (Section VI-B.2). Under different degrees of
environmental dynamism, our ant-based scheme can provide
better coverage than auction-based negotiation even though it
has higher coalitional costs and mean degree of specialization
(Section VI-B.3).

VII. C ONCLUSION

The work in this paper describes a distributed layered
architecture for resource-constrained cooperation of mobile
sensors. This framework can be adapted to other autonomic
multi-agent systems for distributed problem solving. By identi-
fying the different granularities of coordination betweenagents
(namely, for task decomposition, allocation, and execution),
autonomic solutions can be devised for each of them. It has
been demonstrated in Section VI how our task allocation
and execution schemes employ self-organization techniques to
achieve self-configuration, self-optimization, self-healing, and
self-protection. Our ant-based scheme can be used to assign
tasks optimally in an autonomic system. It requires a task
demand/utility function to be specified (e.g., eq. 16), which can
be used by autonomic agents for self-configuration to optimize
task performance. Our cooperative EKMs strategy can be used
by autonomic mobile agents to move towards their assigned
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tasks, reduce interference, and maintain connectivity. Todo
so, the tasks and agents are modelled as targets or obstacles.
Both schemes are robust to sensor failures and varying task
dynamism. Automatic task decomposition will be considered
in our future work on autonomic multi-agent systems.
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