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Abstract
Gaussian processes (GP) are Bayesian non-
parametric models that are widely used for prob-
abilistic regression. Unfortunately, it cannot
scale well with large data nor perform real-time
predictions due to its cubic time cost in the data
size. This paper presents two parallel GP re-
gression methods that exploit low-rank covari-
ance matrix approximations for distributing the
computational load among parallel machines to
achieve time efficiency and scalability. We the-
oretically guarantee the predictive performances
of our proposed parallel GPs to be equivalent to
that of some centralized approximate GP regres-
sion methods: The computation of their central-
ized counterparts can be distributed among par-
allel machines, hence achieving greater time effi-
ciency and scalability. We analytically compare
the properties of our parallel GPs such as time,
space, and communication complexity. Empir-
ical evaluation on two real-world datasets in a
cluster of 20 computing nodes shows that our
parallel GPs are significantly more time-efficient
and scalable than their centralized counterparts
and exact/full GP while achieving predictive per-
formances comparable to full GP.

1 Introduction
Gaussian processes (GP) are Bayesian non-parametric
models for performing nonlinear regression, which offer an
important advantage of providing fully probabilistic predic-
tive distributions with formal measures of the uncertainty
of the predictions. The key limitation hindering the prac-
tical use of GP for large data is the high computational
cost: It incurs cubic time and quadratic memory in the
size of the data. To reduce the computational cost, two
classes of approximate GP regression methods have been
proposed: (a) Low-rank covariance matrix approximation
methods (Quiñonero-Candela and Rasmussen, 2005; Snel-
son and Ghahramani, 2005; Williams and Seeger, 2000) are
especially suitable for modeling smoothly-varying func-

tions with high correlation (i.e., long length-scales) and
they utilize all the data for predictions like the exact/full
GP; and (b) localized regression methods (e.g., local GPs
(Das and Srivastava, 2010; Choudhury et al., 2002; Park
et al., 2011) and compactly supported covariance func-
tions (Furrer et al., 2006)) are capable of modeling highly-
varying functions with low correlation (i.e., short length-
scales) but they use only local data for predictions, hence
predicting poorly in input regions with sparse data. Recent
approximate GP regression methods of Snelson (2007) and
Vanhatalo and Vehtari (2008) have attempted to combine
the best of both worlds.

Despite these various efforts to scale up GP, it remains
computationally impractical for performing real-time pre-
dictions necessary in many time-critical applications and
decision support systems (e.g., ocean sensing (Cao et al.,
2013; Dolan et al., 2009; Low et al., 2007, 2011, 2012;
Podnar et al., 2010), traffic monitoring (Chen et al., 2012;
Yu et al., 2012), geographical information systems) that
need to process and analyze huge quantities of data col-
lected over short time durations (e.g., in astronomy, inter-
net traffic, meteorology, surveillance). To resolve this, the
work in this paper considers exploiting clusters of paral-
lel machines to achieve efficient and scalable predictions
in real time. Such an idea of scaling up machine learn-
ing techniques (e.g., clustering, support vector machines,
graphical models) has recently attracted widespread inter-
est in the machine learning community (Bekkerman et al.,
2011). For the case of Gaussian process regression, the
local GPs method (Das and Srivastava, 2010; Choudhury
et al., 2002) appears most straightforward to be “embar-
rassingly” parallelized but they suffer from discontinuities
in predictions on the boundaries of different local GPs. The
work of Park et al. (2011) rectifies this problem by impos-
ing continuity constraints along the boundaries in a central-
ized manner. But, its use is restricted strictly to data with
1- and 2-dimensional input features.

This paper presents two parallel GP regression methods
(Sections 3 and 4) that, in particular, exploit low-rank co-
variance matrix approximations for distributing the compu-



tational load among parallel machines to achieve time effi-
ciency and scalability. Different from the above-mentioned
parallel local GPs method, our proposed parallel GPs
do not suffer from boundary effects, work with multi-
dimensional input features, and exploit all the data for pre-
dictions but do not incur the cubic time cost of the full/exact
GP. The specific contributions of our work include:

• Theoretically guaranteeing the predictive performances
of our parallel GPs (i.e., parallel partially independent
conditional (pPIC) and parallel incomplete Cholesky
factorization (pICF)-based approximations of GP re-
gression model) to be equivalent to that of some cen-
tralized approaches to approximate GP regression (Sec-
tions 3 and 4). An important practical implication of
these results is that the computation of their centralized
counterparts can be distributed among a cluster of par-
allel machines, hence achieving greater time efficiency
and scalability. Furthermore, our parallel GPs inherit an
advantage of their centralized counterparts in providing a
parameter (i.e., size of support set for pPIC and reduced
rank for pICF-based GP) to be adjusted in order to trade
off between predictive performance and time efficiency;

• Analytically comparing the properties of our parallel
GPs such as time, space, and communication complex-
ity, capability of online learning, and practical implica-
tions of the structural assumptions (Section 5);

• Implementing our parallel GPs using the message pass-
ing interface (MPI) framework to run in a cluster of 20
computing nodes and empirically evaluating their pre-
dictive performances, time efficiency, scalability, and
speedups on two real-world datasets (Section 6).

2 Gaussian Process Regression
The Gaussian process (GP) can be used to perform proba-
bilistic regression as follows: Let X be a set representing
the input domain such that each input x ∈ X denotes a
d-dimensional feature vector and is associated with a re-
alized output value yx (random output variable Yx) if it is
observed (unobserved). Let {Yx}x∈X denote a GP, that is,
every finite subset of {Yx}x∈X follows a multivariate Gaus-
sian distribution (Rasmussen and Williams, 2006). Then,
the GP is fully specified by its prior mean µx , E[Yx] and
covariance σxx′ , cov[Yx, Yx′ ] for all x, x′ ∈ X .

Given that a column vector yD of realized outputs is ob-
served for some set D ⊂ X of inputs, the GP can ex-
ploit this data (D, yD) to provide predictions of the unob-
served outputs for any set U ⊆ X \ D of inputs and their
corresponding predictive uncertainties using the following
Gaussian posterior mean vector and covariance matrix, re-
spectively:

µU|D , µU + ΣUDΣ−1DD(yD − µD) (1)

ΣUU|D , ΣUU − ΣUDΣ−1DDΣDU (2)

where µU (µD) is a column vector with mean components
µx for all x ∈ U (x ∈ D), ΣUD (ΣDD) is a covariance ma-

trix with covariance components σxx′ for all x ∈ U , x′ ∈ D
(x, x′ ∈ D), and ΣDU is the transpose of ΣUD. The un-
certainty of predicting the unobserved outputs can be mea-
sured using the trace of ΣUU|D (2) (i.e., sum of posterior
variances Σxx|D over all x ∈ U), which is independent of
the realized outputs yD.

3 Parallel Gaussian Process Regression
using Support Set

The centralized approach to exact/full GP regression de-
scribed in Section 2, which we call the full Gaussian pro-
cess (FGP), unfortunately cannot scale well and be per-
formed in real time due to its cubic time complexity in the
size |D| of the data. In this section, we will present a class
of parallel Gaussian processes (pPITC and pPIC) that dis-
tributes the computational load among parallel machines to
achieve efficient and scalable approximate GP regression
by exploiting the notion of a support set.

The parallel partially independent training conditional
(pPITC) approximation of FGP model is adapted from our
previous work on decentralized data fusion (Chen et al.,
2012) for sampling environmental phenomena with mobile
sensors. But, the latter does not address the practical imple-
mentation issues of parallelization on a cluster of machines
nor demonstrate scalability with large data. So, we present
pPITC here under the setting of parallel machines and then
show how its shortcomings can be overcome by extend-
ing it to pPIC. The key idea of pPITC is as follows: After
distributing the data evenly among M machines (Step 1),
each machine encapsulates its local data, based on a com-
mon prior support set S ⊂ X where |S| � |D|, into a local
summary that is communicated to the master1 (Step 2). The
master assimilates the local summaries into a global sum-
mary (Step 3), which is then sent back to the M machines
to be used for predictions distributed among them (Step 4).
These steps are detailed below:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

The data (D, yD) is partitioned evenly into M blocks, each
of which is assigned to a machine, as defined below:

Definition 1 (Local Data) The local data of machine m is
defined as a tuple (Dm, yDm) whereDm ⊆ D,Dm

⋂
Di =

∅ and |Dm| = |Di| = |D|/M for i 6= m.

STEP 2: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 2 (Local Summary) Given a common support
set S ⊂ X known to all M machines and the local data
(Dm, yDm

), the local summary of machine m is defined as
a tuple (ẏmS , Σ̇

m
SS) where

ẏmB , ΣBDmΣ−1DmDm|S (yDm − µDm) (3)

1One of the M machines can be assigned to be the master.



Σ̇m
BB′ , ΣBDmΣ−1DmDm|SΣDmB′ (4)

such that ΣDmDm|S is defined in a similar manner as (2)
and B,B′ ⊂ X .

Remark. Since the local summary is independent of the
outputs yS , they need not be observed. So, the support set
S does not have to be a subset of D and can be selected
prior to data collection. Predictive performances of pPITC
and pPIC are sensitive to the selection of S. An informa-
tive support set S can be selected from domain X using an
iterative greedy active selection procedure (Krause et al.,
2008; Lawrence et al., 2003; Seeger and Williams, 2003)
prior to observing data. For example, the differential en-
tropy score criterion (Lawrence et al., 2003) can be used to
greedily select an input x ∈ X \S with the largest posterior
variance Σxx|S (2) to be included in S in each iteration.

STEP 3: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 3 (Global Summary) Given a common sup-
port set S ⊂ X known to all M machines and the local
summary (ẏmS , Σ̇

m
SS) of every machine m = 1, . . . ,M , the

global summary is defined as a tuple (ÿS , Σ̈SS) where

ÿS ,
M∑

m=1

ẏmS (5)

Σ̈SS , ΣSS +

M∑
m=1

Σ̇m
SS . (6)

STEP 4: DISTRIBUTE PREDICTIONS AMONG M MA-
CHINES.

To predict the unobserved outputs for any set U of inputs, U
is partitioned evenly into disjoint subsets U1, . . . ,UM to be
assigned to the respective machines 1, . . . ,M . So, |Um| =
|U|/M for m = 1, . . . ,M .

Definition 4 (pPITC) Given a common support set S ⊂
X known to all M machines and the global summary
(ÿS , Σ̈SS), each machine m computes a predictive Gaus-
sian distribution N (µ̂Um , Σ̂UmUm) of the unobserved out-
puts for the set Um of inputs where

µ̂Um , µUm + ΣUmSΣ̈−1SS ÿS (7)

Σ̂UmUm , ΣUmUm − ΣUmS

(
Σ−1SS − Σ̈−1SS

)
ΣSUm . (8)

Theorem 1 [Chen et al. (2012)] Let a common sup-
port set S ⊂ X be known to all M machines. Let
N (µPITC

U|D,Σ
PITC
UU|D) be the predictive Gaussian distribu-

tion computed by the centralized partially independent
training conditional (PITC) approximation of FGP model
(Quiñonero-Candela and Rasmussen, 2005) where

µPITC
U|D , µU + ΓUD (ΓDD + Λ)

−1
(yD − µD) (9)

ΣPITC
UU|D , ΣUU − ΓUD (ΓDD + Λ)

−1
ΓDU (10)

such that
ΓBB′ , ΣBSΣ−1SSΣSB′ (11)

and Λ is a block-diagonal matrix constructed from the
M diagonal blocks of ΣDD|S , each of which is a matrix
ΣDmDm|S for m = 1, . . . ,M where D =

⋃M
m=1Dm.

Then, µ̂U = µPITC
U|D and Σ̂UU = ΣPITC

UU|D.

The proof of Theorem 1 is previously reported in (Chen
et al., 2012) and reproduced in Appendix A of Chen et al.
(2013) to reflect our notations.

Remark. Since PITC generalizes the Bayesian Commit-
tee Machine (BCM) of Schwaighofer and Tresp (2002),
pPITC generalizes parallel BCM (Ingram and Cornford,
2010), the latter of which assumes the support set S to be
U (Quiñonero-Candela and Rasmussen, 2005). As a result,
parallel BCM does not scale well with large U .

Though pPITC scales very well with large data (Table 1),
it can predict poorly due to (a) loss of information caused
by summarizing the realized outputs and correlation struc-
ture of the original data; and (b) sparse coverage of U by
the support set. We propose a novel parallel Gaussian pro-
cess regression method called pPIC that combines the best
of both worlds, that is, the predictive power of FGP and
time efficiency of pPITC. pPIC is based on the following
intuition: A machine can exploit its local data to improve
the predictions of the unobserved outputs that are highly
correlated with its data. At the same time, pPIC can pre-
serve the time efficiency of pPITC by exploiting its idea of
encapsulating information into local and global summaries.

Definition 5 (pPIC) Given a common support set S ⊂
X known to all M machines, the global summary
(ÿS , Σ̈SS), the local summary (ẏmS , Σ̇

m
SS), and the local

data (Dm, yDm
), each machine m computes a predictive

Gaussian distribution N (µ̂+
Um , Σ̂

+
UmUm) of the unobserved

outputs for the set Um of inputs where

µ̂+
Um , µUm +

(
Φm
UmSΣ̈−1SS ÿS − ΣUmSΣ−1SS ẏ

m
S

)
+ ẏmUm

(12)
Σ̂+
UmUm,ΣUmUm −

(
Φm
UmSΣ−1SSΣSUm − ΣUmSΣ−1SSΣ̇m

SUm

− Φm
UmSΣ̈−1SSΦm

SUm

)
− Σ̇m

UmUm
(13)

such that

Φm
UmS , ΣUmS + ΣUmSΣ−1SSΣ̇m

SS − Σ̇m
UmS (14)

and Φm
SUm is the transpose of Φm

UmS .

Remark 1. The predictive Gaussian mean µ̂+
Um (12) and

covariance Σ̂+
UmUm (13) of pPIC exploit both summary in-

formation (i.e., bracketed term) and local information (i.e.,
last term). In contrast, pPITC only exploits the global sum-
mary (see (7) and (8)).



Remark 2. To improve the predictive performance of
pPIC, D and U should be partitioned into tuples of
(D1,U1), . . . , (DM ,UM ) such that the outputs yDm

and
YUm are as highly correlated as possible form = 1, . . . ,M .
To achieve this, we employ a simple parallelized clustering
scheme in our experiments: Each machine m randomly se-
lects a cluster center from its local data Dm and informs
the other machines about its chosen cluster center. Then,
each input in Dm and Um is simply assigned to the “near-
est” cluster center i and sent to the corresponding machine
i while being subject to the constraints of the new Di and
Ui not exceeding |D|/M and |U|/M , respectively. More
sophisticated clustering schemes can be utilized at the ex-
pense of greater time and communication complexity.

Remark 3. Predictive performances of pPITC and pPIC are
improved by increasing size of S at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 2 Let a common support set S ⊂ X be known
to all M machines. Let N (µPIC

U|D,Σ
PIC
UU|D) be the predic-

tive Gaussian distribution computed by the centralized par-
tially independent conditional (PIC) approximation of FGP
model (Snelson, 2007) where

µPIC
U|D , µU + Γ̃UD (ΓDD + Λ)

−1
(yD − µD) (15)

ΣPIC
UU|D , ΣUU − Γ̃UD (ΓDD + Λ)

−1
Γ̃DU (16)

and Γ̃DU is the transpose of Γ̃UD such that

Γ̃UD ,
(

Γ̃UiDm

)
i,m=1,...,M

(17)

Γ̃UiDm ,

{
ΣUiDm

if i = m,
ΓUiDm otherwise. (18)

Then, µ̂+
U = µPIC

U|D and Σ̂+
UU = ΣPIC

UU|D.

Its proof is given in Appendix B of Chen et al. (2013).

Remark 1. The equivalence results of Theorems 1 and 2
imply that the computational load of the centralized PITC
and PIC approximations of FGP can be distributed among
M parallel machines, hence improving the time efficiency
and scalability of approximate GP regression (Table 1).

Remark 2. The equivalence results also shed some light
on the underlying properties of pPITC and pPIC based on
the structural assumptions of PITC and PIC, respectively:
pPITC assumes that YD1

, . . . , YDM
, YU1 , . . . , YUM are con-

ditionally independent given YS . In contrast, pPIC can pre-
dict the unobserved outputs YU better since it imposes a
less restrictive assumption of conditional independence be-
tween YD1

⋃
U1 , . . . , YDM

⋃
UM given YS . This assumption

further supports an earlier remark just before Theorem 2 on
clustering inputsDm and Um whose corresponding outputs
are highly correlated for improving predictive performance
of pPIC. Experimental results on two real-world datasets

(Section 6) show that pPIC achieves predictive accuracy
comparable to FGP and significantly better than pPITC,
thus justifying the practicality of such an assumption.

4 Parallel Gaussian Process Regression
using Incomplete Cholesky Factorization

In this section, we will present another parallel Gaussian
process called pICF-based GP that distributes the compu-
tational load among parallel machines to achieve efficient
and scalable approximate GP regression by exploiting in-
complete Cholesky factorization (ICF). A fundamental step
of pICF-based GP is to use ICF to approximate the covari-
ance matrix ΣDD in (1) and (2) of FGP by a low-rank sym-
metric positive semidefinite matrix: ΣDD ≈ F>F + σ2

nI
where F ∈ RR×|D| denotes the upper triangular incom-
plete Cholesky factor and R � |D| is the reduced rank.
The steps of performing pICF-based GP are as follows:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

This step is the same as that of pPITC and pPIC in Sec-
tion 3.

STEP 2: RUN PARALLEL ICF TO PRODUCE INCOMPLETE
CHOLESKY FACTOR AND DISTRIBUTE ITS STORAGE.

ICF can in fact be parallelized: Instead of using a column-
based parallel ICF (Golub and Van Loan, 1996), our pro-
posed pICF-based GP employs a row-based parallel ICF,
the latter of which incurs lower time, space, and com-
munication complexity. Interested readers are referred to
(Chang et al., 2007) for a detailed implementation of the
row-based parallel ICF, which is beyond the scope of this
paper. More importantly, it produces an upper triangular in-
complete Cholesky factor F , (F1 · · ·FM ) and each sub-
matrix Fm ∈ RR×|Dm| is stored distributedly on machine
m for m = 1, . . . ,M .

STEP 3: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 6 (Local Summary) Given the local data
(Dm, yDm) and incomplete Cholesky factor Fm, the local
summary of machinem is defined as a tuple (ẏm, Σ̇m,Φm)
where

ẏm , Fm(yDm
− µDm

) (19)

Σ̇m , FmΣDmU (20)

Φm , FmF
>
m . (21)

STEP 4: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 7 (Global Summary) Given the local sum-
mary (ẏm, Σ̇m,Φm) of every machine m = 1, . . . ,M , the



global summary is defined as a tuple (ÿ, Σ̈) where

ÿ , Φ−1
M∑

m=1

ẏm (22)

Σ̈ , Φ−1
M∑

m=1

Σ̇m (23)

such that Φ , I + σ−2n

∑M
m=1 Φm.

Remark. If |U| is large, the computation of (23) can be par-
allelized by partitioning U : Let Σ̇m , (Σ̇1

m · · · Σ̇M
m ) where

Σ̇i
m , FmΣDmUi is defined in a similar way as (20) and
|U|i = |U|/M . So, in Step 3, instead of sending Σ̇m to
the master, each machine m sends Σ̇i

m to machine i for
i = 1, . . . ,M . Then, each machine i computes and sends
Σ̈i , Φ−1

∑M
m=1 Σ̇i

m to every other machine to obtain
Σ̈ = (Σ̈1 · · · Σ̈M ).

STEP 5: EACH MACHINE CONSTRUCTS AND SENDS PRE-
DICTIVE COMPONENT TO MASTER.

Definition 8 (Predictive Component) Given the local
data (Dm, yDm), a component Σ̇m of the local summary,
and the global summary (ÿ, Σ̈), the predictive component
of machine m is defined as a tuple (µ̃m

U , Σ̃
m
UU ) where

µ̃m
U , σ−2n ΣUDm(yDm − µDm)− σ−4n Σ̇>mÿ (24)

Σ̃m
UU , σ−2n ΣUDm

ΣDmU − σ−4n Σ̇>mΣ̈ . (25)

STEP 6: MASTER PERFORMS PREDICTIONS.

Definition 9 (pICF-based GP) Given the predictive com-
ponent (µ̃m

U , Σ̃
m
UU ) of every machine m = 1, . . . ,M ,

the master computes a predictive Gaussian distribution
N (µ̃U , Σ̃UU ) of the unobserved outputs for any set U of
inputs where

µ̃U , µU +

M∑
m=1

µ̃m
U (26)

Σ̃UU , ΣUU −
M∑

m=1

Σ̃m
UU . (27)

Remark. Predictive performance of pICF-based GP can be
improved by increasing rank R at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 3 Let N (µICF
U|D,Σ

ICF
UU|D) be the predictive Gaus-

sian distribution computed by the centralized ICF approxi-
mation of FGP model where

µICF
U|D , µU + ΣUD(F>F + σ2

nI)−1(yD − µD) (28)

ΣICF
UU|D , ΣUU − ΣUD(F>F + σ2

nI)−1ΣDU . (29)

Then, µ̃U = µICF
U|D and Σ̃UU = ΣICF

UU|D.

Its proof is given in Appendix C of Chen et al. (2013).

Remark 1. The equivalence result of Theorem 3 implies
that the computational load of the centralized ICF approx-
imation of FGP can be distributed among the M parallel
machines, hence improving the time efficiency and scala-
bility of approximate GP regression (Table 1).

Remark 2. By approximating the covariance matrix ΣDD
in (1) and (2) of FGP with F>F + σ2

nI , Σ̃UU = ΣICF
UU|D is

not guaranteed to be positive semidefinite, hence rendering
such a measure of predictive uncertainty not very useful.
However, it is observed in our experiments (Section 6) that
this problem can be alleviated by choosing a sufficiently
large rank R.

5 Analytical Comparison

This section compares and contrasts the properties of the
proposed parallel GPs analytically.

5.1 Time, Space, and Communication Complexity

Table 1 analytically compares the time, space, and com-
munication complexity between pPITC, pPIC, pICF-based
GP, PITC, PIC, ICF-based GP, and FGP based on the fol-
lowing assumptions: (a) These respective methods com-
pute the predictive means (i.e., µ̂U (7), µ̂+

U (12), µ̃U (26),
µPITC
U|D (9), µPIC

U|D (15), µICF
U|D (28), and µU|D (1)) and their

corresponding predictive variances (i.e., Σ̂xx (8), Σ̂+
xx (13),

Σ̃xx (27), ΣPITC
xx|D (10), ΣPIC

xx|D (16), ΣICF
xx|D (29), and Σxx|D

(2) for all x ∈ U); (b) |U| < |D| and recall |S|, R �
|D|; (c) the data is already distributed among M parallel
machines for pPITC, pPIC, and pICF-based GP; and (d)
for MPI, a broadcast operation in the communication net-
work ofM machines incursO(logM) messages (Pjesivac-
Grbovic et al., 2007). The observations are as follows:

(a) Our pPITC, pPIC, and pICF-based GP improve the
scalability of their centralized counterparts (respec-
tively, PITC, PIC, and ICF-based GP) in the size |D| of
data by distributing their computational loads among
the M parallel machines.

(b) The speedups of pPITC, pPIC, and pICF-based GP
over their centralized counterparts deviate further from
ideal speedup with increasing number M of machines
due to their additional O(|S|2M) or O(R2M) time.

(c) The speedups of pPITC and pPIC grow with in-
creasing size |D| of data because, unlike the addi-
tional O(|S|2|D|) time of PITC and PIC that in-
crease with more data, they do not have corresponding
O(|S|2|D|/M) terms.

(d) Our pPIC incurs additional O(|D|) time and
O((|D|/M) logM)-sized messages over pPITC



Table 1: Comparison of time, space, and communication complexity between pPITC, pPIC, pICF-based GP, PITC, PIC,
ICF-based GP, and FGP. Note that PITC, PIC, and ICF-based GP are, respectively, the centralized counterparts of pPITC,
pPIC, and pICF-based GP, as proven in Theorems 1, 2, and 3.

GP Time complexity Space complexity Communication complexity

pPITC O

(
|S|2

(
|S|+M +

|U|
M

)
+

(
|D|
M

)3
)

O

(
|S|2 +

(
|D|
M

)2
)

O
(
|S|2 logM

)
pPIC O

(
|S|2

(
|S|+M +

|U|
M

)
+

(
|D|
M

)3

+ |D|

)
O

(
|S|2 +

(
|D|
M

)2
)

O
((
|S|2 +

|D|
M

)
logM

)
pICF-based O

(
R2

(
R+M +

|D|
M

)
+R|U|

(
M +

|D|
M

))
O
(
R2 +R

|D|
M

)
O
((
R2 +R|U|

)
logM

)
PITC O

(
|S|2|D|+ |D|

(
|D|
M

)2
)

O

(
|S|2 +

(
|D|
M

)2
)

−

PIC O

(
|S|2|D|+ |D|

(
|D|
M

)2

+M |D|

)
O

(
|S|2 +

(
|D|
M

)2
)

−

ICF-based O
(
R2|D|+R|U||D|

)
O(R|D|) −

FGP O
(
|D|3

)
O
(
|D|2

)
−

due to its parallelized clustering (see Remark 2 after
Definition 5).

(e) Keeping the other variables fixed, an increasing num-
ber M of machines reduces the time and space com-
plexity of pPITC and pPIC at a faster rate than pICF-
based GP while increasing size |D| of data raises the
time and space complexity of pICF-based GP at a
slower rate than pPITC and pPIC.

(f) Our pICF-based GP distributes the memory require-
ment of ICF-based GP among the M parallel machines.

(g) The communication complexity of pICF-based GP de-
pends on the number |U| of predictions whereas that of
pPITC and pPIC are independent of it.

5.2 Online/Incremental Learning

Supposing new data (D′, yD′) becomes available, pPITC
and pPIC do not have to run Steps 1 to 4 (Section 3) on the
entire data (D

⋃
D′, yD⋃

D′). The local and global sum-
maries of the old data (D, yD) can in fact be reused and
assimilated with that of the new data, thus saving the need
of recomputing the computationally expensive matrix in-
verses in (3) and (4) for the old data. The exact mathemati-
cal details are omitted due to lack of space. As a result, the
time complexity of pPITC and pPIC can be greatly reduced
in situations where new data is expected to stream in at reg-
ular intervals. In contrast, pICF-based GP does not seem to
share this advantage.

5.3 Structural Assumptions

The above advantage of online learning for pPITC and
pPIC results from their assumptions of conditional inde-

pendence (see Remark 2 after Theorem 2) given the sup-
port set. With fewer machines, such an assumption is
violated less, thus potentially improving their predictive
performances. In contrast, the predictive performance of
pICF-based GP is not affected by varying the number of
machines. However, it suffers from a different problem:
Utilizing a reduced-rank matrix approximation of ΣDD, its
resulting predictive covariance matrix Σ̃UU is not guaran-
teed to be positive semidefinite (see Remark 2 after The-
orem 3), thus rendering such a measure of predictive un-
certainty not very useful. It is observed in our experiments
(Section 6) that this problem can be alleviated by choosing
a sufficiently large rank R.

6 Experiments and Discussion

This section empirically evaluates the predictive perfor-
mances, time efficiency, scalability, and speedups of our
proposed parallel GPs against their centralized counterparts
and FGP on two real-world datasets: (a) The AIMPEAK
dataset of size |D| = 41850 contains traffic speeds (km/h)
along 775 road segments of an urban road network (includ-
ing highways, arterials, slip roads, etc.) during the morning
peak hours (6-10:30 a.m.) on April 20, 2011. The traffic
speeds are the outputs. The mean speed is 49.5 km/h and
the standard deviation is 21.7 km/h. Each input (i.e., road
segment) is specified by a 5-dimensional vector of features:
length, number of lanes, speed limit, direction, and time.
The time dimension comprises 54 five-minute time slots.
This spatiotemporal traffic phenomenon is modeled using a
relational GP (previously developed in (Chen et al., 2012))
whose correlation structure can exploit both the road seg-
ment features and road network topology information; (b)
The SARCOS dataset (Vijayakumar et al., 2005) of size
|D| = 48933 pertains to an inverse dynamics problem for a



seven degrees-of-freedom SARCOS robot arm. Each input
denotes a 21-dimensional vector of features: 7 joint posi-
tions, 7 joint velocities, and 7 joint accelerations. Only one
of the 7 joint torques is used as the output. The mean torque
is 13.7 and the standard deviation is 20.5.

Both datasets are modeled using GPs whose prior covari-
ance σxx′ is defined by the squared exponential covariance
function2:

σxx′ , σ2
s exp

(
−1

2

d∑
i=1

(
xi − x′i
`i

)2
)

+ σ2
nδxx′

where xi (x′i) is the i-th component of the input feature
vector x (x′), the hyperparameters σ2

s , σ
2
n, `1, . . . , `d are,

respectively, signal variance, noise variance, and length-
scales; and δxx′ is a Kronecker delta that is 1 if x = x′ and
0 otherwise. The hyperparameters are learned using ran-
domly selected data of size 10000 via maximum likelihood
estimation (Rasmussen and Williams, 2006).

For each dataset, 10% of the data is randomly selected as
test data for predictions (i.e., as U). From the remaining
data, training data of varying sizes |D| = 8000, 16000,
24000, and 32000 are randomly selected. The training data
are distributed among M machines based on the simple
parallelized clustering scheme in Remark 2 after Defini-
tion 5. Our pPITC and pPIC are evaluated using support
sets of varying sizes |S| = 256, 512, 1024, and 2048 that
are selected using differential entropy score criterion (see
remark just after Definition 2). Our pICF-based GP is eval-
uated using varying reduced ranks R of the same values as
|S| in the AIMPEAK domain and twice the values of |S| in
the SARCOS domain.

Our experimental platform is a cluster of 20 computing
nodes connected via gigabit links: Each node runs a Linux
system with Intelr Xeonr CPU E5520 at 2.27 GHz and
20 GB memory. Our parallel GPs are tested with different
number M = 4, 8, 12, 16, and 20 of computing nodes.

6.1 Performance Metrics

The tested GP regression methods are evaluated with
four different performance metrics: (a) Root mean

square error (RMSE)
√
|U|−1

∑
x∈U

(
yx − µx|D

)2
;

(b) mean negative log probability (MNLP)
0.5|U|−1

∑
x∈U

(
(yx − µx|D)2/Σxx|D + log(2πΣxx|D)

)
(Rasmussen and Williams, 2006); (c) incurred time;
and (d) speedup is defined as the incurred time of a
sequential/centralized algorithm divided by that of its
corresponding parallel algorithm. For the first two metrics,
the tested methods have to plug their predictive mean and
variance into µu|D and Σuu|D, respectively.

2For the AIMPEAK dataset, the domain of road segments is
embedded into the Euclidean space using multi-dimensional scal-
ing (Chen et al., 2012) so that a squared exponential covariance
function can then be applied.

6.2 Results and Analysis

In this section, we analyze the results that are obtained by
averaging over 5 random instances.

6.2.1 Varying size |D| of data

Figs. 1a-b and 1e-f show that the predictive performances
of our parallel GPs improve with more data and are com-
parable to that of FGP, hence justifying the practicality of
their inherent structural assumptions.

From Figs. 1e-f, it can be observed that the predictive per-
formance of pICF-based GP is very close to that of FGP
when |D| is relatively small (i.e., |D| = 8000, 16000). But,
its performance approaches that of pPIC as |D| increases
further because the reduced rank R = 4096 of pICF-based
GP is not large enough (relative to |D|) to maintain its close
performance to FGP. In addition, pPIC achieves better pre-
dictive performance than pPITC since the former can ex-
ploit local information (see Remark 1 after Definition 5).

Figs. 1c and 1g indicate that our parallel GPs are signifi-
cantly more time-efficient and scalable than FGP (i.e., 1-
2 orders of magnitude faster) while achieving compara-
ble predictive performance. Among the three parallel GPs,
pPITC and pPIC are more time-efficient and thus more ca-
pable of meeting the real-time prediction requirement of a
time-critical application/system.

Figs. 1d and 1h show that the speedups of our parallel GPs
over their centralized counterparts increase with more data,
which agree with observation c in Section 5.1. pPITC and
pPIC achieve better speedups than pICF-based GP.

6.2.2 Varying number M of machines

Figs. 2a-b and 2e-f show that pPIC and pICF-based GP
achieve predictive performance comparable to that of FGP
with different number M of machines. pPIC achieves bet-
ter predictive performance than pPITC due to its use of lo-
cal information (see Remark 1 after Definition 5).

From Figs. 2e-f, it can be observed that as the number M
of machines increases, the predictive performance of pPIC
drops slightly due to smaller size of local dataDm assigned
to each machine. In contrast, the predictive performance of
pPITC improves: If the number M of machines is small as
compared to the actual number of clusters in the data, then
the clustering scheme (see Remark 2 after Definition 5)
may assign data from different clusters to the same ma-
chine or data from the same cluster to multiple machines.
Consequently, the conditional independence assumption is
violated. Such an issue is mitigated by increasing the num-
ber M of machines to achieve better clustering, hence re-
sulting in better predictive performance.

Figs. 2c and 2g show that pPIC and pICF-based GP are
significantly more time-efficient than FGP (i.e., 1-2 orders
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Figure 1: Performance of parallel GPs with varying data
sizes |D| = 8000, 16000, 24000, and 32000, number
M = 20 of machines, support set size |S| = 2048, and
reduced rank R = 2048 (4096) in the AIMPEAK (SAR-
COS) domain.

of magnitude faster) while achieving comparable predictive
performance. This is previously explained in the analysis
of their time complexity (Table 1).

Figs. 2c and 2g also reveal that as the number M of ma-
chines increases, the incurred time of pPITC and pPIC de-
creases at a faster rate than that of pICF-based GP, which
agree with observation e in Section 5.1. Hence, we expect
pPITC and pPIC to be more time-efficient than pICF-based
GP when the number M of machines increases beyond 20.

Figs. 2d and 2h show that the speedups of our parallel GPs
over their centralized counterparts deviate further from the
ideal speedup with a greater numberM of machines, which
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Figure 2: Performance of parallel GPs with varying number
M = 4, 8, 12, 16, 20 of machines, data size |D| = 32000,
support set size S = 2048, and reduced rank R = 2048
(4096) in the AIMPEAK (SARCOS) domain. The ideal
speedup of a parallel algorithm is defined to be the number
M of machines running it.

agree with observation b in Section 5.1. The speedups of
pPITC and pPIC are closer to the ideal speedup than that of
pICF-based GP.

6.2.3 Varying support set size |S| and reduced rank R
Figs. 3a and 3e show that the predictive performance of
pICF-based GP is extremely poor when the reduced rank
R is not large enough (relative to |D|), thus resulting in
a poor ICF approximation of the covariance matrix ΣDD.
In addition, it can be observed that the reduced rank R of
pICF-based GP needs to be much larger than the support set
size |S| of pPITC and pPIC in order to achieve comparable



predictive performance. These results also indicate that the
heuristic R =

√
|D|, which is used by Chang et al. (2007)

to determine the reduced rank R, fails to work well in both
our datasets (e.g., R = 1024 >

√
32000 ≈ 179).

From Figs. 3b and 3f, it can be observed that pICF-based
GP incurs negative MNLP for R ≤ 1024 (R ≤ 2048) in
the AIMPEAK (SARCOS) domain. This is because pICF-
based GP cannot guarantee positivity of predictive vari-
ance, as explained in Remark 2 after Theorem 3. But, it
appears that when R is sufficiently large (i.e., R = 2048
(R = 4096) in the AIMPEAK (SARCOS) domain), this
problem can be alleviated.

It can be observed in Figs. 3c and 3g that pPITC and pPIC
are significantly more time-efficient than FGP (i.e., 2-4
orders of magnitude faster) while achieving comparable
predictive performance. To ensure high predictive perfor-
mance, pICF-based GP has to select a large enough rank
R = 2048 (R = 4096) in the AIMPEAK (SARCOS)
domain, thus making it less time-efficient than pPITC
and pPIC. But, it can still incur 1-2 orders of magnitude
less time than FGP. These results indicate that pPITC and
pPIC are more capable than pICF-based GP of meeting the
real-time prediction requirement of a time-critical applica-
tion/system.

Figs. 3d and 3h show that pPITC and pPIC achieve better
speedups than pICF-based GP.

6.2.4 Summary of results
pPIC and pICF-based GP are significantly more time-
efficient and scalable than FGP (i.e., 1-4 orders of mag-
nitude faster) while achieving comparable predictive per-
formance, hence justifying the practicality of their struc-
tural assumptions. pPITC and pPIC are expected to be
more time-efficient than pICF-based GP with an increas-
ing number M of machines because their incurred time de-
creases at a faster rate than that of pICF-based GP. Since the
predictive performances of pPITC and pPIC drop slightly
(i.e., more stable) with smaller |S| as compared to that of
pICF-based GP dropping rapidly with smaller R, pPITC
and pPIC are more capable than pICF-based GP of meeting
the real-time prediction requirement of time-critical appli-
cations. The speedups of our parallel GPs over their cen-
tralized counterparts improve with more data but deviate
further from ideal speedup with larger number of machines.

7 Conclusion
This paper describes parallel GP regression methods called
pPIC and pICF-based GP that, respectively, distribute the
computational load of the centralized PIC and ICF-based
GP among parallel machines to achieve greater time ef-
ficiency and scalability. Analytical and empirical re-
sults have demonstrated that our parallel GPs are signifi-
cantly more time-efficient and scalable than their central-
ized counterparts and FGP while achieving predictive per-
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Figure 3: Performance of parallel GPs with data size |D| =
32000, number M = 20 of machines, and varying param-
eter P = 256, 512, 1024, 2048 where P = |S| = R
(P = |S| = R/2) in the AIMPEAK (SARCOS) domain.

formance comparable to FGP. As a result, by exploiting
large clusters of machines, our parallel GPs become sub-
stantially more capable of performing real-time predictions
necessary in many time-critical applications/systems. We
have also implemented pPITC and pPIC in the MapRe-
duce framework for running in a Linux server with 2
Intelr Xeonr CPU E5-2670 at 2.60 GHz and 96 GB
memory (i.e., 16 cores); due to shared memory, they in-
cur slightly longer time than that in a cluster of 16 com-
puting nodes. We plan to release the source code at
http://code.google.com/p/pgpr/.
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