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Abstract

Aligning image pairs with significant appearance
change is a long standing computer vision challenge. Much
of this problem stems from the local patch descriptors’ in-
stability to appearance variation. In this paper we sug-
gest this instability is due less to descriptor corruption and
more the difficulty in utilizing local information to canoni-
cally define the orientation (scale and rotation) at which a
patch’s descriptor should be computed. We address this is-
sue by jointly estimating correspondence and relative patch
orientation, within a hierarchical algorithm that utilizes a
smoothly varying parameterization of geometric transfor-
mations. By collectively estimating the correspondence and
orientation of all the features, we can align and orient fea-
tures that cannot be stably matched with only local informa-
tion. At the price of smoothing over motion discontinuities
(due to independent motion or parallax), this approach can
align image pairs that display significant inter-image ap-
pearance variations.

1. Introduction
Obtaining point-to-point correspondence across image

pairs is a fundamental problem for various vision tasks,
such as structure-from-motion, image super-resolution and
high-dynamic-range imaging. However, even for images
of the same scene, correspondence computation becomes
challenging when they exhibit large inter-image appearance
variations. Unfortunately, a myriad of factors affect the fi-
nal appearance of an image. These include (1) illumination,
that varies shading and atmospheric absorption caused by
rain/ haze, (2) view point change, (3) camera settings, such
as camera response function and aperture as well as intrin-
sics, (4) occlusion and background changes in the tempo-
ral interval between photographs, and (5) post processing,
when images are enhanced using photo editing software.
These factors make the problem of computing correspon-
dence very difficult. In particular, aligning images taken

under uncontrolled conditions is even harder.
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Figure 1. Two images of Machu Picchu taken under different
imaging conditions. It illustrates the difficulty in of obtaining full
frame warping by interpolating even fairly dense correspondence
of NRDC [9]. Alignment quality is displayed by overlaying the
warp’s green channel with the underlying image.

Most previous attempts at aligning images taken under
different conditions focus on modeling appearance varia-
tion, with Andrews et al. [3], Weijer et al. [23] and Ha-
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Cohen et al. [9] utilizing color transforms or photometric-
invariant image representations. However, modeling every
eventuality is difficult. When image sections violate the
model, correspondences become undefined, or large errors
are incurred if a matching result is forced. Hence, problems
like good quality, full frame Internet image alignment, are
yet unsolved.

This paper discusses how varying imaging conditions af-
fect descriptor-based matching and proposes a purely geo-
metric solution. By not relying on appearance models to
validate matches or remove incorrect correspondence, we
generate dense, full frame warps for image pairs with large
appearance variations. This is illustrated in Figure 1.

Algorithms like SIFT [13], SURF [5] and A-SIFT [16]
agglomerate a patch’s gradient information into a local de-
scriptor. As noted by Lowe [13], descriptors combine in-
variance to affine lighting changes with robustness to non-
linear lighting variation. This can be considered a weak
form of photometric invariance. Descriptor-based nearest-
neighbor matching is remarkably resistant to minor vari-
ations in imaging conditions. However, the number and
accuracy of matches decrease sharply with increased ap-
pearance variation. Even for more sophisticated group-wise
descriptor alignment techniques such as those by Shum et
al. [20], Liu et al. [12], Lin et al. [11], attaining good qual-
ity alignment under varying imaging conditions remains a
challenge. We suggest that much of this performance de-
cline is not due to irretrievable descriptor corruption and can
be alleviated by a carefully designed matching algorithm.

The key of our solution lies in the descriptor orienta-
tion. As a region quantity, a descriptor value depends on
the orientation at which it encodes a patch. Hence, descrip-
tor comparisons are only meaningful if the descriptors from
both images are computed at the correct relative orientation.
Usually, local image information is used to canonically ori-
ent descriptors to ensure comparability [13]. However, at
increased appearance variation, local information may be
insufficient to canonically orient image descriptors.

This problem’s effects are subtle, as the result of de-
scriptor mis-orientation resembles that of descriptor corrup-
tion. However, for images taken under similar conditions,
works like Fan et al. [8] have reported significant improve-
ments in matching performance through better orientation
handling. Further more, by assuming image pairs are pre-
oriented (feature orientation is not allowed to change), SIFT
flow [12] allows meaningful alignment of different objects.
These results lead us to posit that as imaging conditions
change, descriptors remain discriminative, long after we
lose the ability to canonically orient them with local infor-
mation. If true, descriptors can still be utilized for matching
by coupling correspondence and relative feature orientation
estimation within a group-wise matching framework.

To achieve this coupling, we formulate the non-linear re-

lationship between feature orientation and descriptors into
a more manipulatable linear orientation choice. We jointly
compute feature correspondence and orientation using a hi-
erarchical series of models that progressively relax group-
wise constraints. At the price of smoothing over motion dis-
continuities, we can use sparsely distributed feature descrip-
tors to interpolate dense warps across image pairs taken at
very different imaging conditions. This is surprising given
our purely geometric approach and indicates the potential
for better results by fusing both lighting and geometric cues.

Our contributions are summarized as follows

• We posit that as imaging conditions change, descrip-
tors remain discriminative, despite loss of ability to
canonically orient them with local information;

• We demonstrate this using a smoothly varying orienta-
tion and correspondence estimation algorithm to esti-
mate full frame warps between two images of a scene
taken under different imaging conditions;

• We demonstrate camera pose recovery and high-
dynamic-range imaging as applications of our method.

1.1. Related Works

There is a considerable body of prior work on simulta-
neous region growing and orientation including works by
HaCohen et al. [9], Barnes et al. [4] Vedaldi et al. [24] and
Cheng et al. [7]. However, many require specific color mod-
eling to handle illumination changes well. While more flex-
ible, growing algorithms do not work well when local in-
formation is unstable and under appearance variation, their
grown correspondence can be erroneous. Although corre-
spondence errors can be rejected with a photometric-based
thresholding such as that employed by HaCohen et al. [9],
this results in sparse correspondences. Interpolation on such
correspondence is very vulnerable to correspondence errors.
In contrast, by evolving all the features together, we can in-
terpolate across weak textures and our dense warping results
can be used “as is” without further thresholding.

Our algorithm is more similar in spirit to descriptor
based SIFT flow [12]. While we cannot achieve warping
across images of different objects, our orientation varying
descriptors permit finer alignment and better handling of
orientation changes.

Our work is also an attempt at establishing relational
structure between images taken under uncontrolled condi-
tions. This motivation is shared by many works utilizing
Internet images, such as “Building Rome in a Day” [2]
that creates 3-D city models from community photo collec-
tions, Shrivastava et al.’s [19] cross-domain matching and
Kemelmacher-Shlizerman et al.’s [10] face reconstruction
from Internet images. However, these techniques are not
directly applicable to our problem as they achieve stability



by leveraging on dataset size, while our work takes a single
image pair as input.

Compared to sophisticated color modeling techniques
such as Color Eigenflows [15] and CSIFT [1], we utilize
the weaker invariance of generic SIFT features [13]. In-
stead, we handle differing imaging conditions by focusing
on geometric rather than photometric constraints.

Our formulation builds on point set registration works
such as thin plate spline [6], motion coherence [25], coher-
ent point drift [17] and smoothly varying affine [11]. Of
these, we are most closely related to Lin et al.’s [11] work.
We also utilize motion coherence [25] to parameterize our
variables as a smooth variation from approximate global
models. However, unlike [11] that depends on locally ori-
ented SIFT descriptors, our joint estimation of feature ori-
entation and correspondence handles appearance variations
much better as demonstrated in Figure 2.

2. Our Approach

Similarity Transform 
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Smoothly Varying Affine [11]
(using prev. affine as 
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Figure 2. Illustration of our hierarchical approach, results using a
naive smoothly varying affine [11] are shown at bottom right.

We use a smoothly varying field to warp and orient fea-
tures from one image to the other. Scaling or rotating an im-
age patch causes a permutation (with some re-sampling and
anti-aliasing) of image pixels. This results in a complex,
non-linear relationship between feature orientation and de-
scriptors. To side-step the problem of optimizing that rela-
tionship, we implement a linear orientation choice mecha-
nism. On one image, multiple differently oriented feature
descriptors are computed at each spatial location. Features
from the other image then choose the orientation best cor-
responding to their own. This “choosing” mechanism does
not increase the number of variables but comes at the cost
of a one-off descriptor comparison across many different

orientations. Apart from feature orientation, we employ
the same “choosing” mechanism to enable finer registration
through feature re-localization.

2.1. Formulation

We formulate the correspondence problem between base
and target images as a registration of two evolving feature
sets. The base feature set is B = {bi} and the target fea-
ture set T = {T j |T j = {tjθ}}. Here, the nested target
feature set is used to accommodate orientation choice.The
initial feature values are computed directly from the image.
These are denoted as B0 = {b0i} and T 0 = {T 0j}, with
subscript 0 representing initial values.

2.1.1 Feature Definitions

A base feature vector bi ∈ B takes the form

bi = [ bci bri bdi ],

with sub-vectors bci , b
r
i , and bdi denoting the feature’s spa-

tial coordinate, orientation, and descriptor, respectively.
Target feature definition is more complex. T j = {tjθ}

represents a set of target features, sharing the same image
coordinates but differing orientations, with θ ∈ {1, . . . ,Θ}
indexing feature orientations. This gives each bi feature a
choice of orientation. tjθ’s definition is similar to bi

tjθ = [ tcjθ trjθ tdjθ ],

with sub-vectors tcjθ, t
r
jθ, t

d
jθ denoting the feature’s spatial

coordinate, orientation and descriptor.
Practically, our initial feature sets {b0i} and {T 0j} arise

from regions of interest detected using Lowe’s [13] SIFT
algorithm, with i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} index-
ing regions of interest in the base and target image, respec-
tively. bc0i and tc0jθ are the image coordinates of the regions
of interest, given in the homogeneous form [x y 1]

T . Un-
like in a traditional feature detection, all feature descriptors
are computed at fixed orientations and scales. For the base
image, all features are computed at patch radius p0 and ro-
tation direction r0. For the target image, feature t0jθ is as-
signed a patch of radius pθ and rotation angle rθ relative
to r0. The initial target feature orientation is parameterized
with respect to the base orientation. Thus,

tr0jθ =
[
p0/pθ cos(rθ) sin(rθ)

]T
.

As only relative feature orientation is important, p0 and r0

are not actually assigned to br0i which is a dummy variable.
The SIFT features are computed at the appropriate image
coordinates and orientations to obtain the descriptors bd0i
and td0jθ.

We evolve the spatial and orientation components of fea-
ture sets B and T using a hierarchy of transformations from



initial B0 and T 0 values. These transformations are pro-
gressively relaxed to permit point-wise evolution and finer
image alignment. Feature descriptors serve as guides to the
evolution and remain invariant throughout, i.e., bdi = bd0i,
and tdi = td0i.

For notational simplicity, we also define Gaussian and
compound Gaussian functions:{

g(z, σ) = exp−(‖z‖2/2σ2)

φijθ(bi, tjθ) = g(tcjθ − bci , σc)g(trjθ − bri , σr)g(td0jθ − bd0i, σd)

Here φijθ(·) is defined with respect to td0jθ and bd0i rather
than tdjθ and bdi because of the descriptor invariance bdi =

bd0i and tdjθ = td0jθ.

2.1.2 Cost Function

To quantify alignment accuracy, we treat the base feature
vectors bi as generative Gaussian centroids. Thus,

P (tjθ|B) =

M∑
i=1

(φijθ(bi, tjθ) + κ) ,

where κ is a positive number included to handle features
appearing in only one image. For interest region T j , its
Θ orientation candidates are treated as mutually exclusive
choices. Hence,

P (T j |B) =

Θ∑
θ=1

M∑
i=1

(φijθ(bi, tjθ) + κ) . (1)

We seek to minimize the overall negative log likelihood

Q(α) = −
N∑
j=1

log (P (T j |B)) , (2)

where α represents the parameters of the transformations
applied to the initial base and target features b0i and t0jθ.

2.2. Hierarchy of Models

For robustness to local minima and efficiency, we do not
minimize alignment cost directly. Rather, we parameterize
the evolution of sets B and T using a hierarchical series
of models. The simpler, more robust models serve as ap-
proximate initializations for subsequent more refined mod-
els. The process is illustrated in Figure 2.

2.2.1 Similarity Transformation

The first level of our hierarchy is the similarity transforma-
tion:

tcjθ = Stc0jθ, bci = Rbc0i,

trjθ = tr0jθ, bri = [s u v]T ,
(3)

where S =
[
s 0 0
0 s 0
0 0 1

]
and R =

[
u −v t1
v u t2
0 0 1

]
. We solve for scale,

rotation and translation parameters, α = {s, u, v, t1, t2}, by
minimizing Eqn (2). The similarity transformation tightly
couples feature orientation and spatial coordinates, provid-
ing a good initialization for the next level.

2.2.2 Affine Transformation

For the second level, spatial coordinates are parameterized
with a global affine transformation:

tjθ = t0jθ, bci = Abc0i, bri = [s u v]T . (4)

We solve for parameters α = {A, s, u, v} by minimizing
Eqn (2). While orientation and spatial parameters are no
longer directly coupled, there remains an indirect coupling
effect due to their concatenation into one feature vector.

2.2.3 Smoothly Varying Orientation and Affine

Next we employ a smoothly varying orientation and affine
parameterization that allows bi coordinates to vary individ-
ually while robustly handling noise and missing entries:

tjθ = t0jθ, bci = (A + ∆Ai)b
c
0i,

bri =
[
∆si ∆ui ∆vi

]T (5)

with the smoothness being applied to the point-wise vary-
ing ∆i coordinates. The smoothness is computed with re-
spect to the global variables rather than to the original or
initialized positions. This allows for larger motion and less
vulnerability to initialization errors.

To enforce smoothness, we use the energy function

Q(α) = −
N∑
j=1

log (P (T j |B)) + λΨ(B), (6)

where α = {A,∆Ai,∆si,∆ui,∆vi} are the variable pa-
rameters. Note that while A and ∆Ai are 3 × 3 matrices,
only the entries of the first two rows are variables.

Smoothness function Ψ(·) takes the motion coherence
form employed in [11, 17]. This method ensures the warp-
ing field carrying the discrete points is smooth, permitting
dense warping of high dimensional sparse points.

Let v(z2×1) represent a 2-D smoothly varying field of
some parameter. The coherence term penalizes discontinu-
ities using ∫

R2

|v′(ω)|2

g′(ω)
dω, (7)

where v′(ω) is the Fourier transform of the velocity field,
while g′(ω) is the Fourier transform of a Gaussian with spa-
tial standard deviation γ.

2.2.4 Feature Re-localization

The above steps provide only approximate alignment as the
features may not be consistently localized across images.
For finer registration, we replace the orientation choice with
a localization choice. Target set T is replaced with a new
set T̃ = {T̃ j |T̃ j = {t̃jk}, j ∈ {1, . . . ,M}}. Each T̃ j

consists of Ki localization candidates. These are high gra-
dient regions (“Harris corners” without non-maxima sup-
pression or thresholding) within a 30-pixel neighborhood



of each evolved bci . Similar to Eqn (6), we allow base fea-
tures to choose more accurate localization. Feature vectors
in T̃ share the same format as T , except that all orientation
values are set to zero since we no longer choose orientation.

The transformation relating B and B0 is the same as that
used in Eqn (5). The spatial parameters α = {A,∆Ai} are
solved for by minimizing

Q(α) = −
M∑
j=1

log

Ki∑
k=1

M∑
i=1

(
φijk(bi, t̃jk) + κ

)
+ λΨ(B), (8)

whose derivation is similar to Eqn (2). Note that by zeroing
all orientation values, orientation variables do not affect the
minimization and can be ignored.

2.3. Minimization Technique

We minimize the cost defined in Eqns (2), (6), and
(8) using Expectation Maximization’s iterative refinement
procedure. At the m-th iteration, the alignment B{m}

and T {m} can be used to define a set of equations which
are linear in terms of the α{m+1} parameters of the new
alignment B{m+1},T {m+1}. Solving these equations
provides an improved alignment which is in turn used to
compute a new set of equations. The process is repeated
until convergence. Here, we simply state the linear update
equations, with detailed derivation in the appendix. In each
case, when solving for the {m + 1} parameters, the m-th
registration values are treated as constants.

Notations. To simplify the description of the minimization,
we define the followings:

φijθ(B ,T j) =
φijθ(bi,tjθ)∑

l

∑
h φhjl(bh,tjl)+κ

,

Dijθ = φijθ(B
m,Tm

j )

[
bc0i 03×1 03×1

03×1 bc0i 03×1

]
,

Fijθ = φijθ(B
m,Tm

j )

[
−t0jθ(1) b0i(1) −b0i(2)

−t0jθ(2) b0i(2) b0i(1)

]T
,

G(i,j) = g
(
bc0i − bc0j , γ

)
,

where Dijθ and Fijθ are 6× 3 and 3× 2 data matrices, G
is M ×M affinity matrix and γ of Eqn (7) controls degree
of smoothness.
The feature coordinate vectors are

cijθ = (bci )
{m+1} − (tcjθ)

{m+1},

rijθ = (bri )
{m+1} − (trjθ)

{m+1}.

Operator
∑
i,j,θ represents a triple sum of indexes i, j and θ.

Similarity Transformation. Eqn (3) is updated by solving
the 5 linear equations∑

i,j,θ

(
σ2
rFijθ (cijθ) + σ2

cφijθ(B ,T j)rijθ
)

= 03×1,∑
i,j,θφijθ(B ,T j)cijθ(1:2) = 02×1, (9)

for the parameters {s, u, v, t1, t2}{m+1}.

Affine Transformation. Eqn (4) is updated by solving the
9 linear equations ∑

i,j,θDijθ (cijθ) = 06×1,∑
i,j,θ

(
φijθ(B ,T j)rijθ

)
= 03×1, (10)

for the parameters {A, s, u, v}{m+1}.

Smoothly Varying Orientation and Affine. Parameteri-
zation of Eqn (5) is updated by solving 6 + 9 ×M linear
equations ∑

i,j,θDijθ (cijθ) = 06×1,

GV + 2λσ2
c∆A = 0M×6,

GU + 2λσ2
r∆R = 0M×3, (11)

for the parameters {A,∆Ai,∆si,∆ui,∆vi}{m+1}. V and
U are matrices whose respective i-th rows are

V(i,:) =
∑
jθ (Dijθcijθ)

T , U(i,:) =
∑
jθ φijθ(B ,T j) (rijθ)

T

and the i-th row of matrices ∆A and ∆R are

∆A(i,:) =
[
∆A

{m+1}
i(1,1:3),∆A

{m+1}
i(2,1:3)

]
, ∆R(i,:) =

(
(bri )

{m+1}
)T

.

Feature Re-localization. Eqn (8) uses the same smoothly
varying affine spatial parameterization as Eqn (11) but re-
places orientation choice with a spatial correspondence
choice. Its 6 + 6×M linear update equations are∑

i,j,k

D̃ijk (c̃ijk) = 06×1,

GṼ + 2λσ2
c∆A = 0M×6, (12)

with ˜ denoting matrix variants where orientation choice
terms tjθ, θ,Θ and N are replaced with the spatial choice
terms t̃jk, k,Ki and M defined in Eqn (8).

Spatial warping of a 2 × 1 base image coordinate z is de-
fined by the sum of the global affine A and its smoothly
varying affine offset a(z). a(z) is a continuous function de-
fined as

WM×6 = [w1, ...,wM ]T = G+∆A,

a(z) =
∑M
i=1 wig(z− b0i(1:2), γ),

(13)

where G+ is G’s pseudo-inverse, and wi is a 6× 1 vector.

2.4. Implementation
System implementation details are as follows. SIFT de-

scriptors are computed using VL-SIFT that allows specifi-
cation of the desired feature orientation. After feature cre-
ation, image coordinates of features are normalized to zero
mean, unit variance. Image alignment is computed using
Algorithm 1. For the similarity transformation, its initial



scale value s is set to 1, while the remaining {u, v, t1, t2}
parameters are initialized to the orientation neutral 0. The
remaining transformations are initialized from the previous
estimate. Throughout the algorithm, σd of the SIFT features
is held constant, while σc and σr of the evolving coordinates
are annealed smaller to force alignment. Parameters for the
various algorithm stages are listed below. Unless otherwise
stated, these parameters are used throughout the paper and
the algorithm is relatively insensitive to minor variations in
parameter choice.

initial σ2
c initial σ2

r σ2
d λ γ

Similarity 0.1 0.01 0.04 − −
Affine 0.01 0.0004 0.04 − −
Smooth. Var. 0.01 0.0004 0.04 20 4
Re-loc. 0.01 − 0.04 20 4

Input: Base image, Target image

for each parameterization do
while σc above threshold do

while no convergence do
switch{parameterization}
case Similarity:
update alignment with Eqn (9)
case Affine:
update alignment using Eqn (10)
case Smoothly Varying Orientation and
Affine:
update alignment using Eqn (11)
case Re-localization:
update alignment using Eqn (12)

end
Anneal σc = εσc, σr = εσr,where ε = 0.97.

end
end
Output: Aligned images

Algorithm 1: Overall algorithm

3. Results
We align image pairs with relative scale and rotation

ranges of [0.5, 2] and [−45◦, 45◦]. While the algorithm can
handle larger orientation changes, there is a trade off be-
tween stability to appearance variations and the permitted
orientation range. Over these ranges, a mixed Matlab and C
implementation of our algorithm can handle most 360×480
images within15 minutes on an Intel Core i7 computer.

In Sections 3.1 and 3.2, we evaluate our alignment re-
sults, while Sections 3.3 and 3.4 demonstrate Camera Pose
Recovery and High Dynamic Range imaging as two of the
applications of our alignment method.

3.1. Evaluation

To evaluate warping quality over illumination change,
we capture a set of images at different locations. At each

location, images are taken at a number of fixed illumination
conditions. Warping is computed between images taken at
different illumination conditions. The warp is transfered
to image pairs taken under similar illumination conditions,
which serves as evaluation ground-truth.

We compute the root-mean-square error (rmse) between
images. We also compute the percentage of warped pixels
whose target surroundings do not contain any similar pix-
els (% outliers). Surroundings are defined as a 4-pixel ra-
dius while the similar pixel threshold is set at 10 gray levels.
The latter metric is similar in spirit to the “earth movers dis-
tance” and seeks to filter away illumination variation noise
while avoiding over penalization of small discrepancies.

We evaluate two scenes, with the second containing sig-
nificant depth discontinuity. While our algorithm’s error is
clearly higher on the second scene that violates its smooth-
ness assumption, it remains stable. For benchmarking pur-
poses, we show the results for SIFT flow [12] and Large
Displacement optical flow [21].

Ours 

B 

T 

GT 

(11.5%,  33.1) (23.4%,  47.6) (29.2%,  49.8) 

GT 

T 

B 

(6.1%,  33.8) (13.2%,  41.3) (14.6%,  37.2) 

SIFT flow Large disp. optical flow  

Figure 3. Left column: Base image, target image and reference
ground truth. Right columns: Warps and overlays for SIFT
flow [12], Large Displacement optical flow [21] and our algorithm.
Errors are given below the images in the form (% outliers, rmse).

3.2. Alignment

We evaluate our alignments using standard image dataset
from Mikolajczyk et al. [14] and Internet images. Align-
ments are visualized by replacing the warp’s green channel
with that of the target image. We also show the results of
NRDC [9] and SIFT flow [12]. Our alignments are finer
than SIFT flow’s and we handle orientation change better.
Our warps are denser than NRDC’s correspondence, espe-
cially for less textured scenes. Dense warping is much more
difficult than sparse matching, as it requires maintenance of
a reasonable error rate while trying to maintain a perfect re-
call. Some examples of Internet image alignment are shown



in Figure 4, with results for Mikolajczyk et al.’s [14] dataset
in the supplementary material.1

For Internet images, our algorithm works well between
scale ranges of ×3 and out of plane rotation of ±20◦ de-
grees. Most color variations can be handled as long as im-
ages are taken during the day, however, the illumination
variations caused by night photography are beyond our al-
gorithms capability.

Note that these results are obtained without explicit color
modeling, thus validating our hypothesis that proper geo-
metric handling of SIFT descriptors is sufficient to compen-
sate for large variations in image appearance.

3.3. Camera Pose

Our dense alignment also facilitates “tracking” a point
across all images of a set. This is advantageous to cam-
era pose recovery. By propagating correspondence across
all images and using Hartley normalized image coordinates
to reduce size variation caused by differing focal lengths
or image resolutions, we can utilize the very stable factor-
ization [22] algorithm for pose recovery from orthographic
image streams. This recovers of camera pose up to a for-
ward translational ambiguity. Many Internet images can be
modeled as orthographic and reconstruction of a user cho-
sen image set is shown in Figure 5. Works such as “Building
Rome in a Day” [2] cannot reconstruct the scene from such
small image sets because of the paucity of SIFT correspon-
dences (approximately zero for this set).

View 1 

View 2 

Figure 5. Left: Two different 3-D views of an orthographic recon-
struction. Images represent camera positions arranged spherically
around a reconstructed point cloud. Right: Input images.

1Our algorithm’s emphasis on descriptor distances does not always cor-
respond to human perception. In particular, when matching faces, our al-
gorithm’s low emphasis on the un-textured eyes can result in an overall
correct warping outline but mis-aligned facial fiducial points.

3.4. High Dynamic Range Imaging

Another application is High-Dynamic-Range (HDR)
Imaging, a set of techniques to increase the dynamic
range between the lightest and darkest areas of an image.
Typically, this is achieved by merging multiple standard-
dynamic-range (SDR) images. Tone-mapping is used to dis-
play the HDR image on lower dynamic range devices [18].

One difficulty of HDR imaging is the alignment of mul-
tiple SDR images of different exposures. However, even
under-exposed images contain SIFT feature our algorithm
can utilize to align images. This enables HDR capture with
a hand-held camera.2 While better results can be obtained
by first applying exposure correction techniques, our algo-
rithm directly aligns the un-processed images. Results are
shown in Figure 6.

Figure 6. Alignment of SDR images using ours, Photomatix and
Photoshop. Alignment quality is visible in direct fusion without
de-ghosting. Other alignment software incur significant ghosting.
Observe the surprising number of SIFT features on the under-
exposed image. This allows us to align it with the other images
despite significant appearance changes. Final result, an artistically
chosen tone-mapped image after using our algorithm’s alignment.

4. Discussions
Our descriptor-based algorithm can align images over

large appearance variations with only geometric constraints.
While there are limits to the tolerable variations (we are
restricted to day images), our approach reduces the reliance
on photometric models and lays the foundation for better

2This is different from matching day and night images which our algo-
rithm does not perform well on.
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Figure 4. Left to right: In-
put images, our warped
results and overlays for
NRDC [9], SIFT flow [12]
and our algorithm. Observe
that we handle orientation
change better than SIFT
flow, while NRDC’s corre-
spondence for less textured
scenes is quite sparse.

results by employing both techniques. More practically,
this opens opportunities for harnessing rich, Internet image
content. An example is computation of relative Internet
image poses demonstrated in this paper. Our approaches
drawback is smoothing over discontinuous motion. This
causes errors when there is significant parallax.
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