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ABSTRACT

Dual photography is a well-known application of light transport ac-
quired by a projector-camera system. By applying compressive sens-
ing, compressive dual photography [1] is a fast approach to acquire
the light transport for dual photography. However, the reconstruction
step in compressive dual photography can still take several hours be-
fore dual images can be synthesized because the entire light trans-
port needs to be reconstructed from measured data. In this paper, we
present a novel reconstruction approach that can directly and pro-
gressively synthesize dual images from measured data without the
need of first reconstructing the light transport. We show that our ap-
proach can produce high-quality dual images in the order of minutes
using only a thousand of samples. Our approach is most useful for
previewing a few dual images, e.g., during light transport acquisi-
tion. As a by-product, our method can also perform low-resolution
relighting of dual images. We also hypothesize that our method is
applicable to reconstructing dual images in a single projector - mul-
tiple cameras system.

Index Terms— dual photography, compressive sensing

1. INTRODUCTION

Light transport [2] is a mathematical operator that captures how light
bounces among surface points in a scene. In computer graphics and
computer vision, several applications have been proposed that make
use of light transport such as relighting [2], dual photography [3],
and radiometric compensation. Among those, dual photography is
an interesting and well-known application of light transport thanks to
its simplicity and usefulness. Given a light transport of a scene lit by
a controlled light source and captured by a camera, dual photography
can virtually swap the roles of the light source and the camera to
produce dual images. The dual images can be perceived as if the
scene is lit by the camera and captured by the light source. Dual
photography is also useful in capturing 6D light transport [3].

Traditionally, to obtain dual images of a scene, it is necessary to
first acquire and reconstruct the entire light transport matrix of the
scene. Several approaches have been proposed to efficiently acquire
and reconstruct light transport such as multiplexed illumination [4],
compressive sensing of light transport [1, 5], or optical computing of
light transport [6]. However, reconstructing the entire light transport
matrix from the acquired data can still be very costly since the num-
ber of rows and columns of the light transport matrix can be tens or
hundreds of thousands. This means a huge amount of computational
time is required before the first dual image can be synthesized and
ready for display.

In this paper, we present a novel approach to efficiently compute
dual images from measured data without reconstructing the light
transport. We build our method upon compressive sensing of light
transport [1, 5] and propose an approach to directly and progres-
sively reconstruct high-quality dual images using L1-norm optimiza-

(a) (b) SSIM: 0.46, RMSE: 30.25

(c) SSIM: 0.47, RMSE: 25.93 (d) SSIM: 0.55, RMSE: 27.32

Fig. 1. Dual photography. (a) Camera view. (b) Dual image directly
reconstructed from 16000 samples, which is not practical. (c) Dual
image progressively reconstructed from only 1000 samples using our
method with 64 basis dual images. (d) Dual image reconstructed
with settings as in (c) but from 1500 samples. Haar wavelet is used
for the reconstruction.

tion. The number of measurement samples needed is comparable to
that used for light transport reconstruction in compressive dual pho-
tography. Such direct reconstruction allows us to quickly synthesize
dual images as soon as the acquisition data is enough. Our method
can also generate progressive results while the dual image is being
reconstructed. Therefore, our method can be beneficial for preview-
ing a few dual images. Besides, we also demonstrate that our method
can be used for low-resolution relighting of dual images. We also hy-
pothesize that our approach is extendable to synthesize dual images
in setups that have a single light source and multiple cameras.

2. RELATED WORKS

Recently, several approaches to efficiently acquire and reconstruct
light transport have been proposed [4, 3, 1, 5, 6]. In the seminal
work about dual photography [3], Sen et al. proposed a hierarchical
approach to detect projector pixels that can be turned on simultane-



ously in a single light pattern. This greedy-like approach can reduce
the number of light patterns in the acquisition to the order of thou-
sands. In the worst case when most of projector pixels conflict to
each other and can only be scheduled to be turned on sequentially,
this approach can be as slow as brute-force acquisition.

In compressive dual photography [5, 1], the authors proposed to
use rows of measurement matrices in compressive sensing as light
patterns, thus turns light transport acquisition into a compressive
sensing problem that allows the light transport to be reconstructed
using the well-known L1-norm optimization. This approach works
well for high-rank and sparse light transport matrix which is often
seen in a projector-camera system. In this work, we also build our
approach based upon compressive sensing. We provide a simple re-
formulation of compressive dual photography that allows us to di-
rectly and progressively reconstruct dual images using L1-norm op-
timization.

Recently, O’Toole and Kutulakos [6] proposed to use Arnoldi
iterations to determine eigenvectors of a light transport using optical
computing. While their method only requires less than a hundred
of images, it is more suitable for dense and low-rank light transport
where the light source is diffuse. In this work, we target sparse and
high-rank light transport.

While compressive sensing of light transport is designed to min-
imize the number of images to acquire, it often results in long com-
putation time needed to reconstruct the light transport in the post-
processing step. This is an issue for dual photography, especially
when we only need to see a handful number of dual images. There-
fore, it is necessary to have an approach that can compute dual im-
ages from measured data as fast as possible. In this work, we fill in
this gap by proposing such an approach based on compressive sens-
ing and L1-norm optimization.

Sen et al. [1] also discussed about single pixel imaging and how
it is related to compressive dual photography. This is probably most
closely related to direct reconstruction of dual images which we pro-
posed in this work. The authors noticed that directly recovering
the reflectance function of this single pixel, which is equivalent to
directly computing the dual image under floodlit lighting, is rather
troublesome because the dual image is more complicated and there-
fore a lot more samples are needed. In this work, we solve this prob-
lem by presenting a simple basis so that dual images can be progres-
sively reconstructed from a small amount of measurement samples.

Finally, while it is not closely related to dual photography, we
note that the idea of direct reconstruction using compressive sensing
was also exploited to obtain the inverse light transport [7].

3. COMPRESSIVE DUAL PHOTOGRAPHY

Let T be the light transport matrix of a scene captured by a projector-
camera system. Suppose that the light source emits pattern l. The
image c of the scene captured by the camera can be represented by
the light transport equation:

c = Tl. (1)

In dual photography, by utilizing Helmholtz reciprocity, the dual im-
age can be computed as

c′ = T>l′, (2)

where l′ is the dual light pattern virtually emitted by the camera and
c′ is the dual image virtually captured by the light source.

By projecting a set of N light patterns L = [l1 . . . lN ] and cap-
turing images of the scene C = [c1 c2 . . . cN ] lit by this set of

patterns, we can rewrite the light transport equation as

C> = L>T>, (3)

which suggests an elegant way to measure light transport T using
compressive sensing. Each row of T can be measured by letting L>

be a measurement matrix such as Bernoulli or Gaussian matrix that
satisfies the restricted isometry property [8]. Each row ti of light
transport matrix T can be independently reconstructed by minimiz-
ing

ti = argmin
u
‖c>i − L>u‖22 + λ‖W>u‖1 (4)

where c>i denotes column i of C>, i ∈ [1 . . . |T|], |T| the num-
ber of rows of matrix T, W the basis of the space where each row
of the transport matrix can be sparse. However, since |T| can be
tens of thousands, e.g., |T| = 128 × 128 which represents a rather
low-resolution camera view, the reconstruction of T can take several
hours to complete [1].

To speed up, it is possible to further exploit coherency among
pixels in each column of matrix T by using another compression
basis P as in [5]. We get:

P>C = (P>TW)(W>L). (5)

We capture images as before but transform them into basis P in the
post-processing. As before, compressive sensing can be applied to
reconstruct each row of the compressed matrix P>TW indepen-
dently, but this time the number of rows needed to reconstruct can
be less. However, in our observation, the number of non-zero rows
of P>C is still in the order of thousands because the captured im-
ages C lit by measurement patterns L can contain a lot of complex
blocky patterns that are difficult to compress by basis P.

4. DIRECT AND PROGRESSIVE RECONSTRUCTION

4.1. Direct reconstruction

We are now ready to present our approach to directly reconstruct
dual images, which we build on top of compressive dual photogra-
phy [1]. We start by showing that dual image can be directly com-
puted from the acquired images and light patterns. By multiplying
the dual light pattern l′ to both sides of Equation 3, it is easy to get:

C>l′ = L>c′. (6)

By letting L> be a measurement matrix and pre-computing the left
part C>l′, we can view dual image synthesis as a compressive sens-
ing problem. Therefore, the dual image can be directly reconstructed
by L1-norm optimization:

c′ = argmin
u
‖C>l′ − L>u‖22 + λ‖W>u‖1. (7)

Theoretically, this approach should be able to reconstruct the dual
image c′. Unfortunately, in practice, in order to obtain a high-quality
dual image, almost tens of thousands number of measurement sam-
ples, or camera images and light patterns, are necessary. This is
because dual image is not as sparse as reflectance functions stored
in rows of light transport T, thus it requires more samples in the
reconstruction.



(a) 4000 samples.
SSIM: 0.43

RMSE: 34.35

(b) 8000 samples.
SSIM: 0.44

RMSE: 30.16

(c) 16000 samples.
SSIM: 0.44

RMSE: 28.30

(d) 1000 samples.
SSIM: 0.41

RMSE: 31.86

(e) 2000 samples.
SSIM: 0.57

RMSE: 28.82

(f) Ground truth.

Fig. 2. Comparison between direct and progressive reconstruction.
Dual image (a), (b), and (c) are from direct reconstruction. Dual
image (d) and (e) are from progressive reconstruction with 64 ba-
sis dual images. (f) Ground truth is generated from light transport
from 16000 samples by inverting the circulant measurement matrix.
Daubechies-8 wavelet is used for the reconstruction.

4.2. Progressive reconstruction

We propose a simple approach in order to overcome the above issue.
Suppose that we can project the dual light pattern l′ into a basis
Q = [q1 q2 . . .q|Q|]:

l′ = Qw =
∑
i

wiqi, (8)

where |Q| is the number of basis vectors in Q, i ∈ [1 . . . |Q|], w the
coefficient vector of l′ in basis Q. Therefore, the dual image can be
computed by

c′ =
∑
i

wic
′
i (9)

where c′i is the basis dual image which satisfies

C>qi = L>c′i. (10)

Each basis dual image can be found independently by optimizing

c′i = argmin
u
‖C>qi − L>u‖22 + λ‖W>u‖1. (11)

The intuition behind this formulation is that we can split the recon-
struction of the dual image into several passes, and reconstruct each
basis dual image that forms a part of the dual image in each pass.
It is significant to guarantee that each basis dual image should be
sufficiently sparse so that it can be successfully reconstructed us-
ing Equation 11 without using too many measurement samples. As
shown in Figure 1 and 2, the number of samples needed to recon-
struct basis dual images is comparable to that required to reconstruct
the entire light transport in traditional compressive dual photogra-
phy, which is more practical than direct reconstruction. Figure 3
shows a few examples of the progressive reconstruction.

projector

camera

scene

Fig. 3. Progressive results of the dual image in Figure 1(d) by ac-
cumulating those reconstructed basis dual images. Our projector-
camera setup to acquire light transport is shown in the diagram.

We choose basis Q based on two following criteria. First, the
dimension of space Q should be as low as possible. It is best to
choose Q of which the dimension is about tens or hundreds. Second,
the basis dual images c′i obtained by setting dual lighting to basis
vectors of Q should be sparse so that high quality reconstruction can
be achieved.

Based on such criteria, we propose a simple and easy to imple-
ment basis Q as follows. We subdivide the dual lighting pattern l′

into a grid and let each patch in the grid be a basis vector qi. There-
fore, the weight wi is simply set to one. It is easy to see that smaller
patch size tends to produce sparser coefficients of basis dual images
in the wavelet domain. This can yield higher accuracy in the recon-
struction but result in longer computational time.

An advantage of choosing basis Q as above is that we can dis-
play progressive results of the dual image by accumulating existing
basis dual images while other remaining basis dual images are pend-
ing for reconstruction, which is useful for previewing applications.

5. IMPLEMENTATION

We use a projector-camera system to acquire the light transport. The
projector is a Sony VPL-DX11. The camera is a Sony DXC-9000 of
which the response curve is linear.

The light patterns to compressively acquire the light transport
are obtained from a circulant matrix of which the first row is an i.i.d
Bernoulli distribution with value −1 and 1 [9]. An advantage of
using a circulant measurement matrix is that its multiplication with
a vector can be quickly computed using fast Fourier transform. Also,
circulant matrix requires very little memory storage as only the first
row needs to stored.

Since our patterns contain both positive and negative values, we
project positive and negative patterns separately and combine the
corresponding camera images in the post-processing by the formula
c = T(l+ − l−) = c+ − c−, where superscript + and − denote
positive and negative patterns and images, respectively. For simplic-
ity, we also crop and downsample camera images to the same size as
the light patterns so the light transport is a square matrix.

We implement our system in MATLAB. We implement split
Bregman iterations [10] for L1-norm optimization in Equation 11.
We let λ = 0.001 for all progressive reconstruction. We let λ =
0.05 for direct reconstruction to further suppress noise. We test
the reconstruction with Haar wavelet and Daubechies-8 wavelet pro-
vided by the Rice Wavelet Toolbox [11].



During progressive reconstruction, we discard basis dual images
of which the absolute maximum value of their corresponding left-
hand side vector C>qi is less than 10−4. In fact, this corresponds
to regions that can be lit by the projector but are out of field of view
of the camera so zero solutions for basis dual images are appropriate.

6. EXPERIMENTS

The results of our method are shown in Figure 1. The resolution of
the dual image is 128 × 128. As can be seen, our method is able
to reconstruct a good-quality dual image without first obtaining the
light transport. We provide quantitative comparisons between our
results of direct and progressive reconstruction and the ground truth
shown in Figure 2 using both structural similarity index (SSIM) [12]
and root-mean-square error (RMSE).

In Figure 1, by using basis Q with patch size set to 16 pixels,
only 1000 samples are needed to reconstruct total 64 basis dual im-
ages and a high-quality final dual image. Figure 3 shows some of the
progressive results of the dual image during reconstruction. In con-
trast, directly reconstructing the dual image without basis Q requires
16000 samples in order to reach similar image quality, which is far
less practical. In fact, given 16000 samples, it is often more prefer-
able to reconstruct the entire light transport in the post-processing
by inverting the circulant measurement matrix using FFT, which is
fast. Here we use this approach to generate the ground truth dual
image as shown in Figure 2(f). We do not opt to reconstruct the light
transport from only 1000 measurement samples since it takes tens of
thousands of L1-norm optimization which is too time consuming to
perform.

Figure 2 further demonstrates how our method works with
different number of samples for both direct and progressive recon-
struction using Daubechies-8 wavelet for compression. As expected,
more samples allows more details of the dual image to be revealed.

As a by-product, we demonstrate a relighting application by lin-
early combining basis dual images by setting the weight vector to a
low-resolution lighting pattern. Figure 4 shows our relit images. The
new lighting has resolution 8× 8 since our basis vectors are derived
from 8× 8 grid patches.

We measured the running time of our progressive reconstruction
on an Intel Core 2 Quad processor clocked at 2.8 GHz with 8 GB of
RAM. Our MATLAB implementation output the direct result (b) of
Figure 1 in 10 minutes and the progressive result (c) in 40 minutes.
While progressive reconstruction is a few times slower, it saves a
large amount of acquisition time as it requires far less number of
samples to reach similar image quality. With the same number of
samples, progressive reconstruction is also faster than reconstructing
the entire light transport when only a few images are needed.

6.1. Running time analysis

We provide a simple analysis to estimate how much and when pro-
gressive reconstruction is better than traditional light transport re-
construction in terms of running time as follows. We assume the
following model to predict the running time of progressive recon-
struction:

t = 2αN + kρ|Q|, (12)

where t is the running time in seconds,N the number of samples ac-
quired, α the time to acquire a single image, ρ the time to reconstruct
a basis dual image, k the number of dual images we are interested
in in total. The constant 2 represents the need to capture two images
per sample due to positive and negative entries of the measurement

Fig. 4. Relighting of the dual image in Figure 2(e).

matrix. Similarly, the running time of traditional light transport re-
construction can be predicted by:

t′ = 2αN ′ + ρ′|T|, (13)

whereN ′ is the number of samples needed to acquire for light trans-
port reconstruction, ρ′ the time to reconstruct a row of T.

Empirically, we set α = 1 second, N = 1000 samples, ρ = 75
seconds, according to the examples in the previous figures. Since the
reflectance function stored in each row of light transport T can be
more sparse than dual images, we pessimistically assume that N ′ =
500 which means our progressive reconstruction requires twice the
number of samples. We also set ρ′ = 2 to assume that each row of
T can be reconstructed much faster. We also have |Q| = 64 and
|T| = 16000.

As a result, in order to guarantee t < t′, we need to bound
k ≤ 6. This indicates the maximum number of dual images we can
reconstruct before our method cannot offer any time savings. When
only a dual image is needed, or k = 1, the speed up is about 5×.

7. DISCUSSION

Conventionally, in order to compute a dual image of light transports
of a scene captured by a single projector and multiple cameras, the
light transport matrix between each pair of projector-camera needs to
be reconstructed. In such case, for quick reconstruction, our method
is still applicable. In the case of two cameras, we have:[

C>1 C>2
] [l′1

l′2

]
= L>c′. (14)

It is natural to extend the formulation to the case of multiple cameras.
We leave the implementation of such a system for future works.

8. CONCLUSIONS

In this paper, we presented an approach based on compressive sens-
ing to directly and progressively reconstruct dual photography im-
ages without the need of reconstructing the entire light transport.
Our method can be useful for previewing of dual images. We are
also able to perform low-resolution relighting of dual images.

There are a few limitations in our approach. First, our recon-
structed dual images tend to be noisier than those produced by the
full light transport. This can be explained by the dot product between
the camera images and the dual lighting pattern, which sums up the
variance of each camera pixel. Second, our method may fail when
the basis dual images are not sparse enough.

It is interesting to extend this work further in the future. First, it
can be useful to have a careful noise analysis of dual images obtained
by our method. Second, it can be exciting to seek a more optimal
basis than our grid basis in order to reconstruct dual images in higher
quality.
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