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ABSTRACT

We present a simple method to render complex 3D models at in-
teractive rates using real-time displacement mapping. We use an
octree to decompose the 3D model into a set of height fields and
display the model by rendering the height fields using per-pixel
displacement mapping. By simply rendering the faces of the oc-
tree voxels to produce fragments for ray-casting on the GPU, and
with straightforward transformation of view rays to the displace-
ment map’s local space, our method is able to accurately render
the object’s silhouettes with very little special handling. The al-
gorithm is especially suitable for fast visualization of high-detail
point-based models, and models made up of unprocessed triangle
meshes that come straight from range scanning. This is because
our method requires much less preprocessing time compared to the
traditional triangle-based rendering approach, which usually needs
a large amount of computation to preprocess the input model into
one that can be rendered more efficiently. Unlike the point-based
rendering approach, the rendering efficiency of our method is not
limited by the number of input points. Our method can achieve in-
teractive rendering of models with more than 300 millions points
on standard graphics hardware.

Index Terms: I.3.3 [COMPUTER GRAPHICS]: Picture/Image
Generation—Viewing algorithms;

1 INTRODUCTION

Interactive visualization of high-detail 3D models has always been
one of the main research focuses in computer graphics. Range scan-
ning has become a common means to model real-world objects,
and today’s advancement in the range scanning technology has en-
abled us to even record fine brush strokes on paintings as well as
chisel marks on sculptures [18]. This has produced very detailed
and complex 3D models that can hardly be displayed at interactive
frame rates. Earlier research has mostly focused on mesh simplifi-
cation algorithms to reduce the number of vertices and triangles to
be processed at the rendering stage [9]. However, as these meth-
ods require too much preprocessing time [30], more recently, re-
searchers have become interested in using the input data directly
for rendering by using points as rendering primitives. While these
point-based rendering techniques can reach interactive frame rates
for certain 3D models, the main bottleneck still lies at the vertex
processing stage, such that this approach may not cope well with
the rapid growth of data size in the near future.

In this paper, we propose an alternative solution that requires
much less preprocessing time than the triangle mesh-based ap-
proach and its rendering speed is not limited by the number of in-
put points. Our algorithm decomposes the input 3D model into a
set of height fields and displays the model by rendering the height
fields using per-pixel displacement mapping. Per-pixel displace-
ment mapping performs image-space ray-casting on the 2D height
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fields, and thus allows us to avoid the vertex-processing bottleneck
that plagues many point-based rendering techniques.

We assume the input model is a set of 3D points that sufficiently
sample the surface of the object, and each 3D point has a surface
normal vector. In practice, this type of input usually comes from
range scanning of 3D objects. Traditionally, the detailed render-
ing of the acquired model can only take place after the overlapping
range images have been aligned (registered), merged and simpli-
fied. The merging and simplification normally take many hours of
computation and a huge amount of memory for very detailed scans.
If the aligned range images were to be rendered as triangle meshes
without merging and simplification, there would be too many tri-
angles to render at interactive rates, and the overlapping regions
would cause rendering artifacts, such as z-fighting.

Our algorithm is ideal for such application. It is able to take
in all the points in the aligned range images, perform very simple
local merging, and efficiently convert the entire model into multiple
displacement maps. These displacement maps are then rendered at
interactive rates, with accurate rendering of the object’s silhouettes.
The preservation of the surface details is only limited by the amount
of texture memory on the graphics hardware. Our method is general
enough that it can also take in those unprocessed triangle meshes as
input and render them efficiently.

1.1 Contributions
The main contribution of our work lies in the simplicity of our
method. In the preprocessing step, we use simple octree and PCA
to convert the 3D model to a set of height fields. During render-
ing, we simply render the faces of each voxel to produce fragments
for ray-casting on the GPU. Each ray is then transformed to the dis-
placement map’s local space. With this approach, we can accurately
render the object’s silhouettes even when using a simple 2D height
field ray-casting algorithm, such as the iterative parallax mapping
algorithm [2]. This is unlike existing displacement mapping tech-
niques, which usually require complex decomposition of the input
model into a set of base polygons or volumes, and use more com-
plex algorithms to compute intersections between viewing rays and
the displacement maps [4, 12, 22, 27]. More importantly, most of
these methods do not correctly render the object’s silhouettes [12].

The simplicity and generality of our decomposition and render-
ing algorithms have allowed our method to be used as a practi-
cal interactive rendering technique for high-detail 3D models. Our
method is also a better alternative for large point-based models, in
that it does not have the vertex processing bottleneck.

In the next section, we review existing work on real-time dis-
placement mapping and on point-based rendering.We describe our
algorithm in detail in Section 3. Our experiment results are pre-
sented in Section 4, and finally, we conclude the paper and discuss
some possible future work in Section 5.

2 RELATED WORK

Image-space ray-casting was introduced by Roth in 1982 [29] for
visualizing and modeling 3D solid objects. In general, image-space
ray-casting offers more flexible visualization than the triangle-
based rasterization approach. For example, Levoy introduced a 3D
volume rendering algorithm for displaying medical images by com-
positing colored opacity along viewing rays [17]. Ray-casting is



also used for accurate rendering of parametric surfaces [14] [23].
Parametric surfaces such as Bezier or NURBs patches are defined
only by sets of control points and cannot be rendered directly using
triangle-based rasterization.

Last few years have seen a new interest in image-space ray-
casting for real-time displacement mapping. The idea of adding
fine local details on surfaces through 2D height maps was first pro-
posed by Cook [5]. It allows complex geometric variations to be
added onto much simpler geometry. Over the years, there have
been several proposals for applying displacement mapping tech-
niques on dedicated hardware. It began with vertex-based displace-
ment mapping. For example, Bunnell presented a level-of-detail
driven rasterization approach, implemented on GPU, that inserts
new vertices into the base mesh [3]. Moule and McCool have im-
proved the area coverage computation to detect change in the dis-
placement map to drive a similar adaptive scheme [20]. However,
if not done carefully, these methods can often result in an explo-
sion of the number of vertices [11]. On the other hand, instead of
adding new vertices, techniques using the image-space ray-casting
approach for displacement mapping can improve the surface geo-
metric details without adding extra vertices. This approach was ini-
tially proposed by Pharr and Hanrahan [24], and by Heidrich and
Seidel [10]. However, the initial algorithms involve complex inter-
section calculations that do not map well to standard programmable
graphics hardware.

Only in recent years do we see a new proliferation of real-time
image-space displacement mapping techniques on GPU. Parallax
mapping [2, 15] is one of the first methods for approximating the
parallax seen on uneven surfaces. However, the technique uses
single-step sampling that does not account for occlusion. The
generalized displacement mapping method proposed by Wang et
al. [33, 34], on the other hand, stores per-pixel displacement infor-
mation from all viewing directions. The technique provides accu-
rate and non-aliasing results by pre-computing the appropriate off-
set for each potential view direction, and thus avoiding ray-surface
intersection computation during rendering. Similarly, per-pixel dis-
placement mapping using distance functions [6] employs 3D tex-
ture, so called distance map, to store the distance from each voxel
inside the displacement volume to the closest point on the height
field. Large texture memory consumption is, however, an obvious
problem for this algorithm, which makes it infeasible for large and
high-resolution displacement maps. Later, McGuire and McGuire
introduced the iterative steep parallax mapping [19] to improve on
the previous parallax algorithm [15]. Steep parallax mapping uses a
linear search to find ray-surface intersections along the viewing ray
with regular intervals. The method provides better results but still
has aliasing artifacts at grazing view angles [2]. However, an impor-
tant advantage of steep parallax mapping [19] over the generalized
displacement mapping method [33,34] is that it is much more mem-
ory efficient. Relief mapping [26] is another iterative ray-casting
method that consists of a linear search, in the same fashion as steep
parallax mapping, and a binary search to refine the intersection. To
skip empty regions safely, Oh et al. used a hierarchical image pyra-
mid of the displacement map to yield more accurate intersection
results, even on steep-slope height fields [21].

In general, image-space per-pixel displacement mapping tech-
niques add local distortion onto the surface efficiently by shifting
texture coordinates according to the depth in the height map and
the view direction. However, different from vertex-based displace-
ment mapping techniques, most image-space displacement map-
ping techniques can only perform ray-casting on flat 2D planes.
A view ray starts from the base polygon on top of the height map
and marches down to search for new parallax texture coordinates at
the intersection point. But in reality, a ray can pass over its current
height map and continue to march into its neighboring height map
as illustrated in Figure 3(b). This leads to incorrect rendering of

the object’s silhouettes often seen in many per-pixel displacement
mapping methods [2, 7, 8, 25, 26]. The generalized displacement
mapping technique of Wang et al. can produce accurate height field
silhouettes [33], but the cached 5D data consumes too much mem-
ory for it to be used for rendering high-resolution 3D models. For
an efficient and general displacement mapping method to render
high-detail complex 3D models, we present a simple alternative,
which we describe in detail in Section 3.

On the other hand, for quick visualization of range data,
Rusinkiewicz and Levoy have proposed the use of points as render-
ing primitives [30] for displaying point-sampled surfaces directly
without expensive preprocessing. However, since each point is
“splatted” directly onto the framebuffer without neighboring inter-
polation, point-based rendering often results in aliasing artifacts.
For high-quality rendering, low-pass filtering is employed and has
been implemented on hardware [1, 16, 28, 31]. However, low-pass
elliptical weighted average (EWA) filtering is an expensive opera-
tion as it requires multiple passes for rendering smooth surfaces on
GPU. The performance, as a result, is thus sacrificed for visual qual-
ity. Most recently, Marroqium et al. [28] introduced a new point-
based rendering algorithm that has good rendering performance and
still maintains high-quality result. It uses pull-push interpolation in
image space to reconstruct the surfaces from points. The method
was claimed to have better performance than previous multi-pass
methods because it is more GPU-friendly. It requires only single
rendering pass for point projection, and is less limited by vertex
processing bottleneck.

3 OUR ALGORITHM

Our algorithm consists mainly of a preprocessing part and a
rendering part. The following is a brief description of the two parts
and the details are provided in the subsequent subsections.

Part 1: Preprocessing

1. We use an octree to decompose the input 3D model into a fi-
nite set of 2D height fields. Each height field has a domain
plane such that no two points on the height field surface can
be orthogonally projected onto the same point in the domain
plane. The number of height fields depends on the model’s
geometric complexity rather than its vertex density. For exam-
ple, a single sphere shown in Figure 1(a) can be decomposed
into eight separate height fields regardless of how many points
are actually used to approximate the curved surface.

2. Next, each height field is converted into a 2D height map (or
displacement map) and packed into hardware memory in the

(a) HF decomposition of 3D Sphere (b) HF decompsi-

tion of Bunny

Figure 1: Decomposition of 3D models into 2D height field surfaces.
Each height field surface is bounded by a bounding box.



form of a 2D texture atlas (see Figure 2).

3. Finally, the faces of the octree voxel that bounds the height
field are appropriately assigned texture coordinates. These
faces are the polygons that are being displacement-mapped,
and will be rasterized during rendering to produce the neces-
sary fragments. Each of these fragments represents a viewing
ray, which is used to search the height map for intersection.
Figure 1(b) shows a height-field decomposition of the Stan-
ford Bunny model, together with the bounding boxes.

Part 2: Rendering

1. The bounding boxes of the height fields are projected and
rasterized to produce fragments, where each fragment pro-
vides the initial coordinates from which the viewing ray starts
marching into the height field domain.

2. For each fragment, the viewing ray is transformed from the
world coordinate frame to the local coordinate frame of the
corresponding 2D height map.2

3. Finally, we perform ray-casting algorithm to find the first in-
tersection between the ray and the height field surface, as il-
lustrated in Figure 3.

Our rendering algorithm performs image-space ray-casting on
2D height fields, and its performance thus has no relation to the
original number of vertices or points. The time complexity of our
rendering algorithm is O(F + B) where F is the total number of
fragments produced by the rasterization and B is the total number
of bounding boxes. In our experiments, even for very huge models
with hundred millions vertices, the value of B is typically less than
100 thousand. In modern graphics processors, this number of boxes
can be handled comfortably by the vertex processing units at high
frame rates. The performance of our rendering algorithm is thus
very unlikely to be geometry-bound.

Figure 2: Transformation of coordinates. During ray-casting, each
viewing ray is transformed from the world coordinate space into the
texture coordinate space using the transformation matrix M.

3.1 Height Field Decomposition
Given an input 3D model, the main purpose of this process is to
subdivide the original complex 3D surface into many simpler 2D
height field surfaces. Height field surfaces allow simpler and more
efficient computation of ray-surface intersections. Finding suitable
height field domain planes such that the number of height fields is
minimal is not a trivial problem. Here, we use an octree to partition
the model surface and use the PCA transform to test and compute a
suitable height field domain plane for each surface patch.

(a) Case 1 : Ray hits surface (b) Case 2 : Ray passes over

surface

Figure 3: Illustration of iterative parallax ray-casting method for 2D
height field.

3.1.1 Octree Decomposition

In the preprocessing stage, our algorithm subdivides the bounding
cube of the 3D model into smaller cells such that each cell must
contain either a 2D function surface (a height field surface) or just
empty space. If the surface within a cell is not a height field sur-
face, it is further subdivided into smaller cells. Besides its sim-
plicity, octrees give us the following advantage. The octree parti-
tioning scheme subdivides volume into eight orthogonal and non-
overlapping bounding cubes. This allows simple and unique map-
ping of rays in the bounding boxes to 2D depth map coordinates,
which enables our ray-casting algorithm to perform efficiently and
correctly. This is unlike other iterative displacement mapping tech-
niques that uses triangular prisms as bounding volumes. These
prisms are formed by extruding the base triangle mesh in the di-
rection of the vertex normals. As of now, there is still no accu-
rate and efficient algorithm that can correctly render displacement
maps using a base triangle mesh. Porumbescu et al. [27] have pro-
posed subdividing the extrusion prisms into tetrahedra to provide a
piece-wise linear mapping from “shell space” to height field “tex-
ture space”. However, these mappings lead to objectionable arti-
facts at the subdivision boundary, similar to the artifacts induced
by non-perspective-correct texture mapping [12]. The reason is
that the straight ray path in the prism space becomes a nonlinear
curve in the height field texture space [12]. Jeschke et al. [12] pro-
posed curved shell mapping that is accurate and tangent-continuous
at prism borders. However, curved shell mapping is slow due to its
complexity and is not suitable for real-time visualization. Chen and
Chang [4] attempted to address the tangent discontinuities along
the viewing ray by employing an extra tangent-space map to bend
the viewing ray in the texture space. However, the result is not
accurate with noticeable inconsistent displacement from different
viewing angles (these artifacts are visible in their demo video, and
have been acknowledged by one of its authors). The generalized
displacement mapping method [33] is able to give correct intersec-
tion between ray and height field surface in general case because
ray marching distances have been precomputed and are retrieved
during rendering. However, large memory requirement is a prob-
lem for this method.

3.1.2 Height Field Test

For each octree cell, we need to determine whether the enclosed
surface is a height field surface. If it is not, then the octree cell is
subdivided, otherwise a height field domain plane has to be com-
puted. Here, we employ the PCA transform [13] for the height field
condition test. First, we apply the PCA to all the points or vertices
in the octree cell to find the best-fit plane. Next, using the plane’s
normal vector as the projection direction, we determine whether
any of the points or vertices in the cell has its normal vector back-



facing the projection plane (assuming all the points are on one side
of the projection plane). If there is, then this is not yet a height field
surface and the cell needs to be subdivided. Otherwise, the best-fit
plane is used as the height field domain plane for the cell. In our
experiments, the octree height varies between 6 and 10.

The PCA height field condition test may fail even when the sur-
face is already a height field surface. This can happen when many
points are distributed on a few “tall mountains” on the surface. For
this case, it may actually be better to let the test fail and subdivide
the surface further. This is because “tall-mountain” surfaces result
in abrupt changes in the height maps, which are more expensive to
intersect accurately during image-space ray-casting.

3.2 Setting Up Displacement Mapping

In the preprocessing stage, after the height field decomposition, we
need to generate the height maps (displacement maps), and find
the transformation from the world space to the height field texture
space, so that we can set up the texture coordinates of the bounding
boxes, and transform the viewing ray from the world space to the
texture space.

3.2.1 Height Map Generation

A height map is a discrete 2D image that records the scalar dis-
tance between each point on the height field surface and the domain
plane. For each octree cell, if the input model is made up of trian-
gle meshes, we simply orthographically project the meshes onto the
framebuffer along the domain plane normal vector direction, with
the camera placed at the cell center. The content in the depth buffer
is used as the height map for the cell. If the input model is made
up of points, then we employ the efficient pull-push interpolation
method [28] to reconstruct the height map.

Each height map is a square image whose side is
√

3 times the
length of the corresponding bounding box, so that any point in the
cell can always be projected onto the height map regardless of the
orientation of the domain plane relative to the bounding box. The
height maps are then tightly packed into one or more texture atlases
(see Figure 2). The image resolution allocated to each height map
is half (in both dimensions) of that in its parent’s level. Therefore,
by counting the number of octree leaf nodes at different levels and
with the given total available texture image size, we can compute
the image resolution that can be allocated to each height map. We
leave pixel-wide gaps between height maps in the texture atlas to
take care of the hardware texture filtering.

3.2.2 Coordinates Transformation

To enable the rendering stage to perform ray-casting of a height
map, we need to transform each viewing ray into texture coordi-
nates in the texture atlas. The transformation of a viewing ray from
the world coordinate space to the texture coordinate space can be
decomposed into two successive transformations. The first one is a
transformation from the world coordinate space to the height field
coordinate space (the height field coordinate space is a by-product
of the PCA height field test). The second transformation is one from
the height field coordinate space to the texture coordinate space.
Figure 2 illustrates these transformations. Let M be the combined
transformation, and in matrix form,

M = M1 ·M2

where

M1 =

⎛
⎜⎝

u1 u2 u3 −U ·O
v1 v2 v3 −V ·O
w1 w2 w3 −W ·O
0 0 0 1

⎞
⎟⎠

M2 =

⎛
⎜⎝

s1 0 0 t1
0 s2 0 t2
0 0 s3 t3
0 0 0 1

⎞
⎟⎠

In M1 , the vectors U = [u1,u2,u3]T , V = [v1,v2,v3]T , and W =

[w1,w2,w3]T are the orthogonal axes of the height field coordinate

frame, and O = [o1,o2,o3]T is the coordinates of its origin. The
matrix M2 maps the height map into its actual size and location in
the texture coordinate space of the texture atlas. The height values
in the height map are also mapped by M2 to the range [0, 1].

In the preprocessing stage, each vertex of a bounding box is as-
signed texture coordinates. The texture coordinates are computed
by multiplying the matrix M1 to the world coordinates of the ver-
tex. During the rendering stage, these texture coordinates will be
interpolated at each fragment produced by the rasterization of the
bounding box. The interpolated texture coordinates provide the ini-
tial position of the viewing ray in the height field coordinate frame.
The viewing ray direction vector is transformed by the top-left 3×3
sub-matrix of M1. Each query of the height map is transformed into
the texture space by M2.

3.3 Rendering
Our rendering algorithm has two steps. The first step starts with the
rasterization of the bounding boxes. With backface culling, at most
three faces of each bounding box need to be rasterized. Each ver-
tex of the bounding box has been assigned 3D texture coordinates
as described in Section 3.2.2. These texture coordinates will be
interpolated at each fragment produced by the rasterization of the
bounding box. The interpolated texture coordinates provide the ini-
tial position of the viewing ray in the height field coordinate frame
(X0 in Figure 3).

In the next step, for each fragment, we transform the viewing ray
direction from the world space into the height field space using the
precomputed matrix M1 in Section 3.2.2. From the initial position
of the viewing ray, we iteratively search for the first intersection be-
tween the ray and the height map. This step is illustrated in Figure
3.

Basically, we compute the intersection by marching along the
ray, from the initial location, to find the position that has the closest
distance above the height map. In fact, many algorithms have been
proposed for 2D height field ray-casting [6,19,21,26,34]. Szirmay-
Kalos and Umenhoffer [32] have presented a detailed analysis of
the different existing techniques. We have adapted the iterative par-
allax mapping algorithm [2] for two reasons. Firstly, unlike many
other methods [6, 7, 34], the iterative parallax mapping algorithm
does not need to pre-compute extra information. This makes it
memory efficient. Secondly, iterative parallax mapping produces
less aliasing artifacts compared to other methods such as the relief
mapping [32].

3.3.1 Boundary Culling
After an intersection on the height map has been found, we perform
a test, called the boundary test, to ensure that the ray indeed inter-
sects the current height map and not a neighboring height map in
the texture atlas. This may happen when the viewing ray is at a shal-
low angle and passes over the current height map (see Figure 3(b)).
If the intersection is in the wrong height map, the corresponding
fragment is discarded. The boundary test tells whether the ray in-
tersects the height field surface within the bounding boxes. If it does
not, the fragment is discarded so that it will not occlude the correct
fragment value when the ray intersects height fields inside bound-
ing boxes that are further away from the viewpoint. The boundary
test can be easily implemented in our case since we already know
the limits of each height map in the texture atlas.



Frames Per Second

Model Vertices Cells Texels Preprocessing Time (mins) (1) (2) (3)

St. Mathew 368M 57K 101M 20.7 147 18 12
David 28M 31K 96M 0.7 300 32 23
Lucy 14M 41K 91M 1.4 162 28 17

Thai Statue 5M 74K 64M 1.2 170 21 9

Table 1: Rendering results. The framerates are for (1) NVIDIA GeForce 8800 GT, (2) NVIDIA GeForce 8500 GT, and (3) NVIDIA GeForce Go
7900.

Note that each pixel of the image represents a viewing ray, and
it may intersect multiple bounding boxes, and thus multiple height
fields. We use z-buffering to keep only the frontmost height field
fragment intersected by the ray.

4 RESULTS AND DISCUSSION

We tested our algorithm on various models from
the Stanford 3D Scanning Repository (www-
graphics.stanford.edu/data/3Dscanrep). The most challenging
test is the model of the St. Mathew statue, which has 368 million
vertices. Our algorithm is able to render the model, to a 1024x1204
viewport, with great details at 12 FPS on a laptop computer
equipped with a GeForce Go 7900 GPU connected via PCI Express
16x to an Intel P4, 2.4 GHz CPU. We used a total of 101 million

Figure 4: The St. Mathew model (368M) with its height field de-
composition cells (57K). The different colors of the cells indicate the
different orientations of the domain planes of the height fields.

texels to store the 57 thousand height maps for this model, so fine
details are quite well preserved. The height field decomposition of
the St. Mathew model is shown in Figure 4. Eight iterations were
used for the parallax mapping ray-casting.

Rendering times for several other models on different graph-
ics hardware are summarized in Table 1. The rendered image is
1024x1024 in size. Sample images from the rendering of these
models are shown in Figure 6, with close-up views for quality com-
parison. It is evident from the sample images that the object’s sil-
houettes have been properly rendered. To achieve accurate results,
using 12 iterations in the height field ray-casting has been suffi-
cient to produce images with no noticeable errors. For comparison,
Figure 5 shows sample results produced using different number of
iterations in the ray-casting.

Even though the Thai Statue has only 5 million vertices, its ge-
ometric complexity is actually high, and this leads to high number
of octree subdivisions. We use 64 million texels to represent the
height maps, and this must have a lot of data redundancy since the
original model has only 5 million vertices. We believe these height
maps could be compressed very well through hardware texture map
compression. Triangle-based rendering may be more suitable for
this model since the vertices on the model are relatively sparse.

The St. Mathew model is an ideal case for our algorithm because
the base surface is relatively smooth and simple, which is covered
with a lot of fine surface details. This leads to fewer octree subdi-
visions because many large surface regions satisfy the height field
condition. Smaller number of bounding boxes results in less pixel
overdraw and thus speeds up the rendering.

Note that our height field data structure is not multiresolution be-
cause each surface of the model is only stored at a single resolution.
However, the rendering is inherently and automatically multireso-
lution, in the sense that the projected image size of each bounding
box determines how many ray-castings have to be performed for
each height field.

5 CONCLUSIONS AND FUTURE WORK

We have presented a new approach to decompose a complex 3D
model into height fields and render the height fields using a image-
space ray-casting algorithm. Compared to existing methods that
use the point-based rendering approach [28], our algorithm of-
fers significant performance improvement by avoiding the vertex-
processing bottleneck. Moreover, the way we decompose the 3D
model into height fields, together with our improved ray-casting al-
gorithm, has resulted in a simple displacement mapping approach
that can render object’s silhouettes correctly and efficiently. The
relatively short preprocessing time required by our algorithm has
made it suitable for quick visualization of range scanning data on-
site.

There are still some limitations of our algorithm that requires
future research. For example, results have shown that our algo-
rithm works well for surface with high-frequency features, but it is
not efficient for flat and smooth surfaces. An interesting solution
might be a combination of triangle-based rendering and per-pixel
displacement mapping. The amount of details that we can preserve
from the input model is limited by the amount of texture memory.



(a) 1 iteration (b) 4 iterations

(c) 8 iterations

Figure 5: Iterative parallax mapping with different number of iterations in the ray-casting.



A limitation of our current height field decomposition method is
that, although it is aware of the height field condition, it does not
adaptively use the amount of surface details in a voxel to determine
the height map size in the texture atlas.

Since we do not use mipmapping for our height maps, our
method may produce aliasing artifacts at very small surface details.
We cannot use straightforward mipmapping for our case as the tex-
ture atlas is made up of different height maps. We plan to get around
this by pre-filtering each height map separately before putting them
on texture atlases of different “mipmap levels.”

Another possible extension to our algorithm is to make it suit-
able for dynamic or deformable surfaces. The success of that re-
quires selective update of the height field decomposition of the af-
fected surface regions. Many other preprocessing steps, such as
height map generation, must be highly optimized to provide the
much needed speed. Currently, our preprocessing algorithm is not
out-of-core. An out-of-core algorithm is necessary when the input
model is too large to fit into the system memory.
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Figure 6: Sample images produced by our rendering algorithm. From left to right: St. Mathew (368M), David (28M), Lucy (14M), and Thai Statue
(5M).
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