Multi-Resolution Screen-Space Ambient Occlusion

Thai-Duong Hoang Kok-Lim Low

National University of Singapore

Ambient Occlusion (AO)

AO

Cosine-weighted fraction of a tangent hemisphere that is occluded

$$AO(\mathbf{p}) = \frac{1}{\pi} \int_{\Omega} \rho(\mathbf{p}, d_i) \cos \theta_i \, dw_i$$
$$d_i \ge d_{max}: \rho = 0$$
$$d_i = 0 \qquad : \rho = 1$$

Volumetric AO [SKUT10]

SSAO (Dis)Advantages

- 🗱 Inaccurate
 - Local AO
 - Over/underestimatedAO
- Low quality
 - 🗱 Noise
 - 🖊 Blur

- ✓ Simple
- 🗸 Fast
- 🗸 General
- Easy to integrate

Multi-Resolution AO (MSSAO) Intuition

$$AO_{final} = \max(AO_i)$$

Multi-Resolution AO (MSSAO) Intuition

 $AO_{final} = f(\max(AO_i), \operatorname{average}(AO_i))$ $AO_{final} \ge \max(AO_i)$ $AO_{final} \propto \operatorname{average}(AO_i)$

MSSAO Overview

MSSAO AO from Multiple Resolutions

MSSAO Overview

MSSAO Downsampling

$$\mathbf{p}_1^z \le \mathbf{p}_2^z \le \mathbf{p}_3^z \le \mathbf{p}_4^z$$

if
$$\mathbf{p}_4^z - \mathbf{p}_1^z \le d_{threshold}$$

 $\mathbf{p} \leftarrow (\mathbf{p}_2 + \mathbf{p}_3)/2$
 $\mathbf{n} \leftarrow (\mathbf{n}_2 + \mathbf{n}_3)/2$
else

$$\mathbf{p} \leftarrow \mathbf{p}_2 \\ \mathbf{n} \leftarrow \mathbf{n}_2$$

MSSAO Overview

MSSAO Neighborhood Sampling

- Project the AO radius of influence to screen space at each pixel p at resolution Res_i to get $r_i(p)$ (in terms of pixels)
- Cap $r_i(p)$ to some value r_{max} (typical value is 5)

512x512 1024x1024 256x256 16-point Poisson disk Works well with a 3x3 Gaussian filter

model after the Monte-Carlo approximation of

$$AO(\mathbf{p}) = \frac{1}{\pi} \int_{\Omega} \rho(\mathbf{p}, d_i) \cos \theta_i \, d\omega_i$$

MSSAO Overview

MSSAO Bilateral Upsampling

- Bilinear weights w_b
- Depth weights

$$w_z(p_i) = \left(\frac{1}{1+|z_i-z|}\right)^{t_z}$$

Normal weights

$$w_n(p_i) = \left(\frac{\mathbf{n} \cdot \mathbf{n}_i + 1}{2}\right)^{t_n}$$

$$AO(p) = \sum_{i=1}^{4} w_{b}(p_{i})w_{z}(p_{i})w_{n}(p_{i})AO(p_{i})$$

MSSAO Combining AO Values

 $AO_{final} = 1 - (1 - \max(AO_i))(1 - \operatorname{avg}(AO_i))$

- max(AO_i) and avg(AO_i) are computed by "propagating" appropriate values across resolutions
- Avoid underestimating AO by ensuring $AO_{final} \ge \max(AO_i)$
- And a plausible heuristic

 $AO_{final} \propto \operatorname{avg}(AO_i)$

MSSAO Temporal Filtering

Results Quality

Blizzard [FM08]

MSSAO

19

Results Quality

Results Quality

Results Ground-truth Comparison

Results Noise/Blur

Blizzard [FM08] HBAO [BSD08]

Results Multiple AO Scales

Small AO radius

Large AO radius

Results Performance

- Scenes rendered at 1024x1024 on GeForce GTX 460M
- Exclusive of geometry pass
- The same parameters used to produce the shown images

	MSSAO	VAO	Blizzard	HBAO
Sibenik Cathedral	21.9 ms	22.9	25.7	50.1
Conference Room	24.0 ms	24.8	24.9	49.5
Sponza Atrium	22.2 ms	24.0	28.9	54.3

MSSAO Conclusions

- \star Inaccurate
 - Local AO
 - Over/underestimated AO
- <mark>∺ Low quality</mark>
 - <mark>≭ Noise</mark>
 - <mark>∺ Blur</mark>
- 🗱 Use more memory
- Poor temporal coherence on very thin geometry
 - Not too noticeable
- Errors due to the use of coarse resolutions
 - Not too noticeable unless compared with ground-truths

Simple

🗸 Fast

- 🗸 General
- Easy to integrate
- Capture multiple shadow frequencies

Thank You