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Abstract 
 
Current blending methods in image-based rendering 

use local information such as “deviations from the 
closest views” to find blending weights. They include 
approaches such as view-dependent texture mapping 
and blending fields used in unstructured lumigraph 
rendering. However, in the presence of depth 
discontinuities, these techniques do not provide smooth 
transitions in the target image if the intensities of 
corresponding pixels in the source images are 
significantly different (e.g. due to specular highlights). 

In this paper, we present an image blending 
technique that allows the use of global visibility and 
occlusion constraints. Each blending weight now has a 
global component and a local component, which, 
respectively, are due to the view-independent and the 
view-dependent contributions of the source images. 
Being view-independent, the global components can be 
computed in a pre-processing stage. Traditional 
graphics hardware is exploited to accelerate the 
computation of the global blending weights. 

 
Keywords: Image-Based Rendering, Image Blending. 

 
 

1. Introduction 
 
Image-based rendering (IBR) has become a popular 

alternative to traditional three-dimensional graphics. 
Two examples of effective IBR methods are the view-
dependent texture mapping (VDTM) [Debevec98] and 
the light field/lumigraph [Levoy96, Gortler96] 
approaches. Light field, lumigraph and concentric 
mosaic [Shum99] require a large collection of input 
images from cameras, but they make few, if any, 
assumptions about the geometry of the scene. In 
contrast, VDTM assumes a relatively accurate geometric 
model, but requires only a small number of images from 
input cameras that can be in general positions. Both 
methods interpolate color values for a desired ray as 
some weighted combination of input rays. In VDTM 
this interpolation is performed using a geometric proxy 
model to determine which pixel from each input image 

“corresponds” to the desired ray in the output image. Of 
these corresponding rays, those that are closest in angle 
to the desired ray are weighted to make the greatest 
contribution to the interpolated result. 

The blending operation ensures that the influence of 
a single source image on the final rendering is a 
smoothly varying function across the target image plane 
(or, equivalently, across the geometry representing the 
scene). These smooth weighting functions combine to 
form a “blending field” that specifies how much 
contribution each input image makes to each pixel in 
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Figure 1. (Top) The blending function at each scene 
point can be expressed as a weighted combination 
using local information such as the angles between the 
target ray and the corresponding source rays. The 
yellow region indicates local radiance. (Bottom) In the 
case of view-dependent surface reflectance, and in the 
presence of depth discontinuities, the neighboring scene 
points may have very different contributions from the 
source images. 

 



the output image. The reconstructed blending field is 
then used to blend pixels from the input images to form 
the output image. 

The main reasons for blending images are (i) lack of 
photometric agreement in the source images (caused by 
change in camera response or view-dependent 
appearance of scene), and (ii) small errors in 
registration and depth maps. Blending may ruin crisp 
imagery due to blurring, but is necessary to mask the 
unavoidable errors due to the lack of agreement in the 
source images. Blending methods can be image-space, 
acting on pixel fragments, or they can be object-space, 
handling each polygon in the geometric proxy. 

Current blending methods use only local information 
such as “deviations from the closest views” to find 
blending weights. They include approaches such as 
view-dependent texture mapping [Debevec98] and 
blending fields used in unstructured lumigraph 
rendering [Buehler01]. Both these and other methods 
(e.g. [Pulli97]) create smooth spatial and temporal 
transitions in blended source images. In this paper, we 
focus on the specific problem of blending sparse views 
in the presence of depth discontinuities. Many previous 
papers have mentioned the problem of handling 
feathering across depth discontinuities and proposed 
solutions based on local computations. We instead use a 
global image-space approach to create smooth blending 
weights across the scene geometry. 

 
1.1. Contributions 

 
In this paper, we identify the problem in traditional 

blending methods and re-state the blending goals to 
consider global constraints. We present a general 
algorithm that works in the presence of depth 
discontinuities. Then we present a fast technique to 
implement the global blending algorithm using 
traditional graphics hardware. 

 
2. Previous Work 

 
The blending methods in this paper are inspired by 

very useful feathering techniques presented by Debevec 
et al in their paper about view-dependent texture 
mapping [Debevec98] and by Buehler et al in their 
paper about unstructured lumigraph rendering 
[Buehler01]. We are also influenced by a technique 
devised for projector-based augmented reality to fill in 
shadows of one projector by other projectors in Shader 
Lamps [Raskar01]. 

The appearance of a scene can be described through 
all light rays (2D) that are emitted from every 3D scene 
point, generating a 5D radiance function, called the 

plenoptic function. In a transparent medium the 
plenoptic function is reduced to four dimensions. In 
practice, the plenoptic function is sampled from discrete 
calibrated camera views, and those radiance values that 
are not sampled have to be represented by interpolating 
the recorded ones, sometimes with additional 
information on physical restrictions. 

Often, real objects are assumed to be Lambertian, 
meaning that each point on the object has the same 
radiance value in all possible directions. This implies 
that two viewing rays have the same color value if they 
intersect at a surface point. If specular effects occur, this 
is no longer true. Two viewing rays then have similar 
color values, only if their directions are similar and their 
point of intersection is near the real scene point. To 
reconstruct an image for a virtual camera, we have to 
determine those source rays that are closest, in the above 
sense, to those of this camera. The closer a source ray is 
to a desired ray, the greater is its contribution to the 
target color value. 

The basic approach to view-dependent texture 
mapping (VDTM) is put forth by Debevec et al in their 
Facade image-based modeling and rendering system 
[Debevec96]. Facade is designed to estimate geometric 
models consistent with a small set of source images. As 
part of this system, a rendering algorithm was developed 
where pixels from all relevant cameras were combined 
and weighted to determine a view-dependent texture for 
the derived geometric models. In later work, Debevec et 
al describe a real-time VDTM algorithm [Debevec98]. 
In this algorithm, each polygon in the geometric model 
maintains a “view map” data structure that is used to 
quickly determine a set of three input cameras that 
should be used to texture it. Like most real-time VDTM 
algorithms, this algorithm uses hardware supported 
projective texture mapping for efficiency. 

Buehler et al listed a set of desirable goals that an 
ideal image-based rendering algorithm should satisfy 
when blending multiple views [Buehler01]. It includes, 
among others, the following two main goals: 

 
1. Near-view fidelity 

Epipole consistency. When a desired ray passes 
through the center of projection of a source camera, it 
can be trivially reconstructed from the ray database 
(assuming a sufficiently high-resolution input image 
and the ray falls within the camera’s field-of-view). 
In this case, an ideal algorithm should return a ray 
from the source image. An algorithm with epipole 
consistency will reconstruct this ray correctly without 
any geometric information. 

Minimal angular deviation: In general, the 
choice of which input images are used to reconstruct 



a desired ray should be based on a natural and 
consistent measure of closeness. In particular, source 
image rays with similar angles to the desired ray 
should be used when possible. 
 

2. Continuity 
When one requests a ray with infinitesimal small 

distance from a previous ray intersecting a nearby 
point on the geometric proxy, the reconstructed ray 
should have a color value that is correspondingly 
close to the previously reconstructed color. 
Reconstruction continuity is important to avoid both 
temporal and spatial artifacts. For example, the 
contribution due to any particular camera should fall 
to zero as one approaches the boundary of its field-of-
view [Pulli97], or as one approaches a part of a 
surface that is not seen by a camera due to visibility 
[Raskar01].  
 
In this paper we focus on the goal of achieving 

continuity. Both authors [Debevec98, Buehler01] accept 
that spatial continuity is not provided due to visibility 
changes. As described below, algorithms based only on 
local information cannot achieve smoothness across 
depth boundaries. The VDTM algorithm of [Debevec98] 
uses a triangulation of the directions to source cameras 
to pick the “closest three”. Even if the proxy is highly 
tessellated, nearby points on it can have very different 
triangulations of the “source camera view map”, 
resulting in very different reconstructions. While this 
objective is subtle, it is nonetheless important, since lack 
of such continuity can introduce noticeable artifacts. 

In [Buehler01, Heigl99], the authors use a very large 
number of views, and pixels are blended using views 
that are very similar and captured by the same (video) 
camera. Such dense sampling avoids most of the 
artifacts even if the target pixel is blended from very few 
source pixels. In later work [Matusik01], in relation to 
the sparse unstructured light field blending, the authors 
attempt to handle visibility changes. However, since all 
the computations are based locally on individual vertices 
(or triangles), global smoothness on the scene geometry 
cannot be achieved. 

In Shader Lamps [Raskar01], multiple projectors are 
used to project imagery onto real-world 3D surfaces to 
simulate interesting lighting effects. Shadows from one 
projector due to occlusion are “filled in” by other 
projectors, with feathering around the shadowed region. 
Since the illuminated surfaces are diffuse, the blending 
weights are computed during pre-processing and do not 
need to be updated. Furthermore, the final blending is 
automatically done in the “real world” and hence there 
is no need to merge the source images. 

3. Local and Global Constraints 
 
Despite the formalization of the blending problems, 

the previous IBR algorithms attempt to solve the 
problem by considering one-fragment at a time. This 
only works well when 

 
(i) the surface is diffuse so that radiance is the same in 

all directions and corresponding pixels have very 
similar intensities and  

(ii) there are no occlusion boundaries so that the 
relative ordering of corresponding pixels in any 
local neighborhood is the same, resulting in 
continuous functions without gaps. 

 
Consider the example in Figure 1. In the top part of 

the figure, the target value at is a weighted combination 
of radiance in the directions of Camera 1 and Camera 2, 
i.e. a1 and a2. Similarly, bt is a weighted combination of 
b1 and b2. Thus, nearby points a and b in the scene 
combine in a very similar fashion. 

In the presence of a depth discontinuity (bottom part 
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Figure 2. (Top) The weighted combination at is very 
similar to a1 if feathering across depth discontinuity is 
considered. (Middle) The traditional feathering based on 
local information has a gap in the assigned weights. 
(Bottom) Our method considers depth boundaries to 
ensure smoothness. 

 



of Figure 1) with respect to Camera 2, at is combined as 
before but bt = b1 and there is no contribution from 
Camera 2 at b. Thus nearby points a and b combine 
very differently. This usually results in an obvious jump 
in computed intensities in the target view. It is also clear 
that any computation based on local information cannot 
detect the variation in the contribution at neighboring 
points such as a and b. 

We propose a global solution, which considers the 
contribution not just at a fragment but also in the 
neighborhood of the fragment. As shown in Figure 2, 
the blending weights near depth discontinuity (in any 
single source view) are modified to maintain local 
smoothness. The global processing may not be very 
critical for reconstruction from very dense set of views, 
but is essential for view-dependent reconstruction from 
a sparse set of source views. 

For n source images each with m pixels, time 
complexity of all blending algorithms is O(n2 + nm), 
due to the need to find corresponding pixels between all 
source images and the need to process each source pixel. 

 
4. Computing Blending Fields 

 
Spatial smoothness relates to variation of weights of 

source images within a target image. Neighboring pixels 
in target image should have similar weights if there is 
no depth discontinuity. Temporal smoothness relates to 
variation of weights of source images at a 3D feature 
point in the scene in nearby novel views. The weights at 
a scene feature should change smoothly if the views 
change smoothly. The guidelines for achieving spatial 
and temporal smoothness of contributing weights can be 
stated as follows: 

 
1. Normalization. The sum of the intensity weights of 

the corresponding source image pixels is one so that 
the intensities in the target image are normalized. 

2. Continuity:  
Scene smoothness. The weights of a source image 
along a physical surface should change smoothly in 
and near overlaps so that the inter-camera intensity 
differences do not create visible discontinuity in 
target image. 
Intra-image smoothness. The distribution of 
intensity weights within a source image should be 
smooth if there is no depth discontinuity. 

3. Near-view fidelity: Epipole consistency and 
minimal angle deviation; 

4. Localization. Unnecessary blending should be 
avoided by limiting the number of transition regions 
to reduce blurring. 

The guidelines suggest solving the feathering 
problem without violating the weight constraints at 
depth discontinuities and shadow boundaries. It is 
important to note that, under certain conditions, some of 
the guidelines may be in conflict and it may not be 
possible to satisfy all of them. For example, when the 
boundaries between overlap regions and non-overlap 
regions meet at a singularity, the blending weights in 
the local neighborhood of the singularity are not 
continuous. 

 
4.1. Approach 

 
We use an image-space approach and divide our 

blending field calculation into two parts: view-
independent and view-dependent. The view-independent 
contributions of the source images are due to the global 
relationships among the source images and the scene 
features. They primarily include field-of-view and 
visibility. One may also include other parameters such 
as resolution, i.e. sampling density.  

View-dependent contribution is due to relationship 
between the target view and the available sampled 
source rays. As described in Section 4.4, the final 
blending field at a scene feature is a normalized dot 
product of the view-independent and the view-
dependent components. The view-independent 
calculations take into consideration the global visibility 
constraints while view-dependent calculations are 
performed per fragment of the target image. A fragment 
can be an image pixel or a polygon of the geometric 
proxy. 

Typically, in scenes with significant depth 
discontinuities, view-independent calculations are more 
complex than view-dependent calculations. For static 
scenes, the view-independent contribution can be pre-
processed. However, the algorithm described below is 
sufficiently fast to be implemented for dynamic scenes. 

 
4.1.1. View-independent Contributions 

Traditional feathering methods use the distance to 
the nearest invisible or boundary pixel to find the weight 
[Szeliski97]. In [Debevec98, Buehler01], the 
contribution due to any particular source view falls to 
zero as one approaches the boundary of its field-of-view. 
We, instead use the notion of “distance to the nearest 
image boundary or depth discontinuity”. In this paper, 
we also refer to depth discontinuity as depth boundary. 
We first find pixels corresponding to regions seen in 
only a single source image and assign them intensity 
weights of 1. Then, for each remaining pixel in the 
source image, the basic idea behind our technique is to 
find the shortest path to an image boundary or depth 



boundary pixel, ignoring paths that cross overlap 
boundaries. The assigned weight is proportional to this 
distance. Figure 2 shows the result of this feathering 
algorithm in flatland for two source images. Even under 
view-dependent intensities, the algorithm generates 
smooth transitions corresponding to image of a 
continuous surface in the presence of shadows and 
fragmented overlaps. The algorithm can be used for 
three or more source images without modification. 

 
4.1.2. View-dependent Contributions 

The view-dependent component is dependent on the 
angular deviation of a source ray from the target ray. 
We use weights based on the traditional approach of 
using the angular deviations with respect to the k-
nearest neighbors [Buehler01]. For each target pixel, we 
choose the corresponding pixels in the k-nearest camera 
views in which the pixel fragment is visible. The 
follwoing pseudo-code shows how the view-depedent 
weights are computed: 

 
For each target pixel x, 
    For each source image i, 
        anglei = deviation of source ray from target ray x 
    Find k smallest angles 
    For each source image i in k-nearest neighbors, 
        wi(x) = max( 0, (1/anglei )*(1 – anglei / anglek) ) 

 
We do not need to normalize the view-dependent 

blending weights, wi(x), across source images because 
they will be normalized after the dot product with the 
view-independent weights. This weighting scheme also 
ensures the epipole consistency. If the deviation is zero 
(i.e. the target ray is an epipole) then weight is close to 
one. The weight gradually drops to zero when the 
camera drops out of the first k-nearest views. anglek 
denotes the largest angle among the k neighbors. 

 
4.2. View-Independent Weights 

 
Let us consider the view-independent computation in 

more detail. For a practical real time implementation, 
we use four buffers for each source image: in addition to 
the image buffer, Image(x) and depth buffer Depth(x), 
we use a overlap buffer v(x) to record overlaps, a 
distance buffer d(x) and weight buffer w(x) to store 
values for pixel x. 

A depth buffer is a 2D array of depth values of a 
source images. If a geometric proxy is used, the depth 
buffer can be calculated by rendering the geometric 
proxy from the source camera’s viewpoint and reading 
back the rendered depth buffer. The overlap buffer 
contains integer values to indicate the number of 
overlapping camera views for each pixel. The overlap 

regions (i.e. overlap count of two or more) are computed 
using the traditional shadow-buffer technique. The 
following is an outline of the subsequent steps to 
compute the view-independent weights: 

 
For each source image, 
    Compute depth discontinuities in depth buffer 
    For each pixel in overlap region, 
        Update shortest paths to image or depth boundary 

 
For each source image, 
    For each pixel in overlap region, 
        Find all corresponding pixels in other source images 
        Assign weights proportional to the shortest distance 

 
The following shows how to find the depth 

boundaries in a depth buffer. 
 

For each depth buffer Depthi(.) 
    For each pixel x with overlap count vi(x) >= 1 
        Mark pixel if depth of any pixel in  
        8-neighbor is > ( Depthi(x)+ threshold ) 

 
Due to the inequality, the depth boundary pixels are 

only on the nearer surface and do not result in double 
boundaries at depth discontinuity (as noticed in 
traditional edge detectors). The threshold is used to 
eliminate errors due to lack of depth precision. 

The algorithm for weight computation basically 
creates a smooth function based on the “shortest path to 
image or depth boundary”. In the absence of depth 
discontinuities, this function will be smooth across the 
source image. By ignoring paths that cross overlap 
boundaries, we enforce the scene smoothness condition. 
Hence, the blending weights are discontinuous only at 
the depth boundaries in image space but are continuous 
along the scene geometry. During run time, the view-
independent weight d(x) is multiplied by the view-
dependent blending weight, w(x), which is also smooth. 
Naturally, the product of these two weighting functions 
is also smooth except at the depth boundaries 
[Borgefors86]. 

The time-consuming part of this weight assignment 
algorithm is, however, the computation of the distances 
along the shortest paths, since the paths may not be 
along straight lines. 

 
4.3. Finding Nearest Nodes 

 
The shortest path problem is well-studied in the field 

of computational geometry. [Latombe91] suggest many 
approaches based on generalized Voronoi diagrams. 
They are commonly used for applications such as path 
planning in potential field and for avoidance of obstacle 
nodes. Motion planning is a fundamental problem, with 



applications to the animation of digital actors, 
maintainability studies in virtual prototyping, and robot-
assisted medical surgery. The classic Piano Mover’s 
problem involves finding a collision-free path for a 
robot moving from one location (and orientation) to 
another in an environment filled with obstacles. The 
underlying idea is to treat the obstacles as repulsion 
nodes. The Voronoi boundaries then provide paths of 
maximal clearance between the obstacles. Due to the 
practical complexity of computing generalized Voronoi 
diagrams, the applications of such planners have been 
limited to environments composed of a few simple 
obstacles. 

Recently, hardware based approaches have been used 
for greedy path planning algorithms with gradient 
approach [Hoff99]. They are relatively fast. However, 
encoding of shortest path for all points with respect to 
attraction nodes and repulsion nodes is difficult. In our 
case, attraction nodes are the overlap boundaries and 
repulsion nodes are the image and depth boundaries. 

Instead, we propose an approximation of the distance 
along shortest path. We try to satisfy the following three 
goals: 

 
(i) Weights near overlap boundary in overlap region 

are close to one. 
(ii) Weights near depth boundary in overlap region are 

close to zero. 
(iii) Weights for pixels in regions in between transition 

smoothly. 
 

4.3.1. Voronoi Diagrams Using Graphics Hardware 
Our method is based on [Hoff99] to compute Voronoi 

diagrams using graphics hardware. The idea is to render 
a cone to approximate each node’s distance function. A 
node can be a pixel on a image boundary or a depth 
boundary. Each node is assigned a unique color ID, and 
the corresponding cone is rendered in that color using a 
parallel projection. When rendering a polygonized cone, 
the polygon rasterization in the graphics hardware 
reconstructs all distances across the image plane using 
linear interpolation of depth across polygons and the Z-
buffer depth comparison operation. The Z-buffer depth 
test compares the new depth value to the previously 
stored value. If the new value is less, the Z-buffer 
records the new distance, and the color buffer records 
the site’s ID. In this way, each pixel in the frame buffer 
will have a color corresponding to the site to which it is 
closest, and the depth-buffer will have the distance to 
that site. In order to maintain a single-pixel-accurate 
Voronoi diagram, a finely tessellated cone needs to be 
rendered. 

Let Z(x) and z(x) denote the nearest depth boundary 
node and distance to that node, for a pixel x. Note that 
these Euclidean distances are along straight lines, as 
defined by Voronoi diagrams. (We convert the depth-
buffer values to object-space depth distances, which in 
this case correspond to distances from boundary pixels 
in pixel-units). We need to update z(x) to avoid the 
depth boundary nodes. Let d(x) denote the updated z(x), 
i.e. the approximate distance that is proportional to the 
distance to the nearest image or depth boundary. 

The pseudo-code for computing the view-
independent weights for each source image is as 
follows: 

 
For each pixel j  on image and depth boundary, 
    Draw a cone with color(j) using parallel projection 
Read buffers: Zcolor = color buffer, and Zdepth = depth buffer 
For each pixel x, 
    d(x) = Zdepth(x) 

 
4.4. Rendering Target Image 

 
Let xi denote the corresponding pixel for a target 

pixel x in source image i. For a given target view, the 
following pseudo-code computes the target image using 
the view-dependent weights and the view-independent 
weights: 

 
For each source image i, 
    For each pixel j in image i, 
        Splat in target view  
        and store di(j), view vector and view depth 
For each pixel x in target view 
        Eliminate invisible contributions 
        Find w(xi) for k-nearest views 
        Find normalized weight  
            W i(xi) = (wi(xi) * di(xi)) / Σi (wi(xi) * di(xi)) for i = 1..k 
        TargetImage(x) = Σi Imagei(xi)* W i(xi) 

 
As mentioned earlier, the procedure can be modified 

to use any type of fragments. Instead of pixels, one can 
use polygons from geometric proxy [Buehler01, 
Debevec98]. The procedure is somewhat simpler than 
methods where multiple weights per pixel have to be 
assigned and later distinguished depending on depth 
values. In our case, to eliminate invisible contributions, 
before splatting, we simply render the geometric proxy 
to update the depth buffer in the target view. The 
summation after dot product on the last line of the 
algorithm above is achieved with an accumulation 
buffer in the graphics hardware. 

 
 
 
 



5. Results 
 
Figures 3 and 4 show the results for a simple 

example. Our objective is to verify our blending method 
and compare its results with those of traditional local 
approaches. We have also tested the algorithms with 
more complex scenes. The multiple source images are 
blended in real time using alpha blending and an 
accumulation buffer. 

 
5.1. Issues 

 
For sparse views, the depth values (or proxy 

geometry) are expected to be sufficiently accurate to 
avoid aliasing. However, for blending, stricter 
requirement is needed to ensure that the weights 
computed using global constraints remain normalized 
after re-projection. During implementation, we had to 
handle depth precision and image re-sampling problems 
and had to use fast morphology (erosion and dilation) to 
get rid of isolated regions and the resultant artifacts in 
overlap buffers. 

Further analysis is required to understand the trade-
off between blurring and limited interpolation of source 
samples, similar to the sampling issues discussed in 
[Chai00]. 

 
6. Conclusion 

 
We have described a new blending method to 

influence pixel intensities for merging multiple source 
views into a target view. We have presented the need to 
use global constraints for handling feathering across 
depth discontinuities. In our method, each blending 
weight is made up of a view-independent and a view-
dependent component. We have detailed how the view-
independent components can be computed by 
considering global information such as depth 
discontinuities and visibility. Using traditional graphics 
hardware, approximation of the desired view-
independent weights can be quickly computed. 

The technique presented in this paper is sufficiently 
general to be used for blending operations in many types 
of interpolation. They include synthesis from surface 
light fields, re-lighting of image-based scenes, and novel 
view generation from sampled BRDF values. We are 
also investigating adaptive blending techniques for a 
given image-content such as in [Burt83] and extend 
them to non-planar scene geometry. 

 
More details and images can be found at 
http://www.cs.unc.edu/~raskar/Blending/ 
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Source Image 1 

 
Overlap Map 1 Voronoi Diagram 1 

   
Source Image 2 

 
Overlap Map 2 Voronoi Diagram 2 

The simple scene consists of a small 
square floating high above a bigger 

one. Note the view-dependent specular 
highlights in the source images. 

The overlap map of each source view 
shows the overlap regions (green), the 

non-overlap regions (red), overlap 
boundaries (black) and depth 

boundaries (blue). 

Each pixel in the above voronoi 
diagrams is colored with the color ID of 
the nearest node on the image or depth 
boundaries. The depth boundaries are 

shown in blue. 
 

  
View-independent weights for Source View 1. 

 
View-independent weights for Source View 2. 

 
View-independent weights. Note that the weights are one in the non-overlap regions, close to one for pixels near the non-

overlap regions and close to zero near depth boundaries. 
 

Figure 3. Results for a simple example. 



  

  

  
  

Figure 4. Constructing a target image. (Left column) Using only “deviation from the nearest views” method. (Right 
column) Our method, which considers depth discontinuities. (Top and middle rows) Contribution from individual source 
views. (Bottom) Combined sum. Note how in the bottom-left image, the intensities jump near the shadow boundary. In our 
method (bottom-right image), due to view-independent feathering, the intensities are smooth. (Please ignore the green 
colored artifacts due to unclamped accumulation buffer.) 

 


