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Abstract

We describe an approach for automatically registering
color images with 3D laser scanned models. We use the chi-
square statistic to compare color images to polygonal mod-
els texture mapped with acquired laser reflectance values.
In complicated scenes we find that the chi-square test is not
robust enough to permit an automatic global registration
approach. Therefore, we introduce two techniques for ob-
taining initial pose estimates that correspond to a coarse
alignment of the data. The first method is based on rigidly
attaching a camera to a laser scanner and the second uti-
lizes object tracking to decouple these imaging devices. The
pose estimates serve as an initial guess for our optimization
method, which maximizes the chi-square statistic over a lo-
cal space of transformations in order to automatically de-
termine the proper alignment.

1. Introduction

Real world data capture techniques are becoming in-
creasingly sophisticated and practical for creating accurate
3D models of objects and environments. A popular class of
image-based modeling algorithms employ a laser scanner
to acquire a 2D scene representation consisting of the dis-
tance to the surface and the surface reflectance [12]. These
high-fidelity range images can easily be converted into a 3D
model, but to be visually compelling, the models must be
viewed in color. The majority of high fidelity modeling ap-
proaches use a camera to acquire 2D color texture maps sep-
arately from the 3D geometric data [1, 2, 6, 7, 11]. However,
before a 3D model can be texture mapped with a color im-
age, the transformation that aligns the two datasets must be
estimated.

The alignment process is difficult to automate because
color and laser reflectance images are of different modali-
ties. A color digital camera sensor passively captures light
intensity in the red, green, and blue bands of the visible
spectrum, while a laser scanner actively acquires depth and

reflected intensity samples from within the red or infrared
portion of the electromagnetic spectrum. Furthermore, since
laser scanners illuminate the surfaces whose intensities they
measure, they do not image the shadows seen by a color
camera. Therefore, some image features in the color image,
such as shadow edges, will not appear in laser scanned data.

One commonly used alignment approach requires a hu-
man operator to determine the complicated relationship be-
tween color and range images. A user is employed to man-
ually click on corresponding points in both the color and
range images [1, 4, 16]. Unfortunately, this registration ap-
proach requires a significant amount of interactive time,
about 5 minutes per image. This implies that a user must
perform an hour of repetitive work to texture map images
onto a single full field range image.

Our eventual goal is to acquire hundreds of color im-
ages at historical locations in order to build models with
view-dependent color [3], surface light fields [4], or even
spatial bi-directional reflectance distribution functions [10].
The immense number of images involved and the high cost
of manual registration demands a robust and completely au-
tomatic solution to the multi-modal alignment problem.

1.1. Automatic Registration Approaches

Most approaches for multi-modal data registration can
be characterized as one of two types. The first class of al-
gorithms is based on locating invariant image features, such
as corners, which can be detected in both color images and
in the intensity component of a range map. McAllister,et al
suggest correlating edges common to the color image and
the range map’s intensity component [11]. Elstrom’s ap-
proach aligns images by matching up the corners of pla-
nar surfaces [6]. Lensch,et al introduced an efficient align-
ment algorithm for objects based on silhouette comparison
[7]. Stamos and Allen have developed an approach for ur-
ban environments that exploits the parallelism and orthogo-
nality constraints inherent in most buildings [15]. These ap-
proaches are all successful in a given domain, such as scan-
ning objects or buildings, but none are fully applicable to



environment scanning.

A more general multi-modal registration approach is to
treat images and 3D models as random variables and to ap-
ply statistical techniques that measure the amount of de-
pendence between the variables. The most common statis-
tical technique is based on maximizing mutual information,
which measures the dependence between two probability
distributions [9, 17]. This method is commonly employed
for the registration of multi-modal medical data such as MR
images and CT scans [9]. Another metric, the chi-square
test, is ideal for robustly measuring the differences between
binned data [13]. Boughorbal,et al showed that maximiz-
ing the chi-square statistic generally produces better results
than mutual information when registering color images and
laser scanned models [2].

Even with a robust information metric, it is generally dif-
ficult to optimize alignment over the transformation’s six
degrees of freedom. We will show that the desired align-
ment frequently does not correspond to the global max-
imum of the information metric over all transformations.
Therefore, a global optimization scheme will often con-
verge to the wrong alignment. This is especially true for im-
ages that are acquired far from the scanner’s center of pro-
jection, where occlusion causes the data to have fewer cor-
responding features.

One way to improve the robustness of the registration ap-
proach is with orientation tracking. You,et al developed a
hybrid inertial and vision-based tracking approach for out-
door augmented reality [20]. In this paper we will intro-
duce a robust multi-modal data alignment algorithm based
on tracking the imaging devices in order to obtain a coarse
estimate of the alignment.

1.2. Technical Contributions

We have developed a fast and automatic algorithm for
registering color images with laser scanned models. Our ef-
ficient approach can be utilized on-site and without user
interaction, which allows the operator to verify the qual-
ity of acquired data before leaving the scanning location.
We show that global optimization will not always converge
on the “correct” alignment using information-theoretic met-
rics, which implies the need for an initial estimate of the
pose relating an image and a model. We present two meth-
ods for obtaining an initial data alignment that is sufficient
for automatic registration using the chi-square metric. The
first procedure involves rigidly mounting the camera on the
laser scanner. The second method is based on attaching a
tracker sensor to each of the imaging devices. Finally, we
have developed calibration procedures that are necessary for
making the above methods feasible.

Figure 1. We mount a digital camera above
the DeltaSphere laser scanner such that both
of their centers of projection lie along the
scanner’s panning axis.

1.3. Outline of the Paper

This paper discusses an efficient and automated solution
to the multi-modal data alignment problem. In Section 2 we
discuss geometric and color data acquisition along with two
approaches for initial pose estimation. Next, we briefly con-
sider image and model preprocessing, which must be per-
formed prior to alignment. Then, in Section 4 we discuss
multi-modal data alignment, focusing on the chi-square
metric. In Section 5 we discuss results obtained with two
different scans. Finally, we conclude with a summary of the
findings and introduce some avenues for future work.

2. Data Acquisition

To capture the raw data needed to build compelling 3D
environments we follow the basic approach of McAllister,
et al [11]. First, we acquire one or more high-resolution
range maps using a 3rdTech DeltaSphere 3000 Laser 3D
Scene Digitizer [12]. We have customized our system to use
an infrared laser rangefinder rather than the standard 670nm
visible light laser. Time-of-flight laser range scanning sys-
tems are also available from Quantapoint, MENSI, and
Cyra. Under nominal conditions, these devices all exhibit
millimeter accuracy in their range measurements. Time-of-
flight laser rangefinders are well suited to scanning real
world environments, while triangulation based methods are
generally more effective at acquiring individual objects.

After using the laser scanner, we capture a sequence of
color images using a high-resolution digital camera. We ac-
quire color with a Kodak DCS760 6-megapixel camera and
a Nikon 14mm flat-field lens. We mount the camera verti-
cally and image an83o vertical field of view. We fix the fo-
cus and aperture for all images acquired on a given scan by
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Figure 2. HiBall tracker sensors rigidly
mounted on our scanning equipment. (a) Ko-
dak DCS 760 digital camera. (b) DeltaSphere
3000 laser scanner.

wrapping the lens with electrical tape. Thus, we only need
to perform camera calibration once.

We have developed two methods for obtaining an ini-
tial estimate of the transformation that relates an image to
a laser scan. Both of these methods involve annotating the
data with pose estimates at acquisition time according to the
procedures outlined in the next two sections.

2.1. Pose Estimation by Construction

One way to obtain an initial pose estimate is to place a
mechanical constraint on the position and orientation of the
camera relative to the scanner. As shown in Figure 1, we
mount the camera on a bracket designed by 3rdTech, Inc.
that positions it above the scanner. The bracket was ma-
chined such that the camera and scanner centers of projec-
tion both lie along the scanner’s panning axis. The acquisi-
tion process begins with placing the devices on a tripod and
raising them up by 22cm, a calibrated amount. After ac-
quiring the range map we lower the tripod by 22cm so that
the camera’s center of projection is within millimeters of
the previous laser scan’s center of projection. The scanning
software then automatically pans the devices and the cam-
era acquires images at every30o of azimuth, imaging the
angular extent of the most recent range scan.

Using this procedure, we estimate that the initial transla-
tion relating the scans’ centers of projection is[0, 0, 0] mm.
We also assume initial values of0o for the rotational twist
and elevation. Since camera images are acquired by pan-
ning the scanner, we also obtain an accurate estimate of the
azimuthal angle in the scanner’s coordinate system. Thus,
we easily obtain an initial estimate for all 6 alignment pa-
rameters, which is sufficient for automatically aligning the
data using the data alignment procedure given in Section 4.

2.2. Pose Estimation by Tracking

Another way to obtain initial pose estimates is to track
the imaging and scanning devices separately. There are
many ways to track real-world objects, with varying degrees
of quality and expense. Our goal in this research was to
achieve automatic alignment, so from an experimental per-
spective we have chosen to first employ the highest quality
tracking available. After verifying that the chi-square align-
ment method works we can experimentally determine the
tracking accuracy required for robust alignment. In future
work we will determine the tracking method that offers the
best portability and least expense within the accuracy re-
quirements.

Our current tracker-based data acquisition system uti-
lizes a 3rdTech HiBall-3100 Wide-Area Tracker [19]. We
use one tracker sensor to measure the camera’s pose and
another to determine the pose of the laser scanner. We have
machined a metal bracket for rigidly joining each of these
devices to the tracker sensors, as shown in Figure 2.

2.2.1. Scanner Pose CalibrationA mechanical coupling
between the tracker sensor and laser scanner allows us to
acquire the pose of the tracker sensor within the context
of the tracker’s coordinate system. However, we must also
determine the relationship between the tracker sensor and
scanner coordinate frames. Determining this transforma-
tion is known in the robotics literature as hand-eye cali-
bration. In that context a sensor is generally attached to
the end of a robotic arm, whose movements and pose are
known. A Bayesian hand-eye calibration procedure has pre-
viously been developed for a 3D laser range sensor that uses
structured light and triangulation [14]. Unfortunately, this
highly accurate approach is impractical for our purposes.
The method was developed for a scanner that acquires about
500 samples in a measurement, while our scanner acquires
millions of points in a single scan, over a longer time pe-
riod.

We measure the pose between the laser scanner and the
tracker sensor by panning the scanner and calculating the
axis about which the tracker sensor is rotated [8]. This cali-
bration takes about a minute to perform and gives us an off-
set within 5mm of the hand-measured amount. We find that
this calibration is sufficient when using the HiBall tracker,
although other tracking methods may demand the deriva-
tion of a more accurate calibration procedure.

2.2.2. Camera Pose CalibrationTo compare scanner and
camera orientation we also need to determine the camera’s
pose relative to the tracker’s coordinate system. We perform
this calculation using a 1.2m by 0.7m calibration checker-
board pattern. We affix the checkerboard to a wall so that
we can be assured that it will not move during our measure-
ments. We find the camera’s center of projection in tracker
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Figure 3. We acquired this model in the library at Monticello, the home of former U.S. President
Thomas Jefferson. (a) A color image of the library, i. (b) The library model texture mapped with laser
reflectance values. (c) The library model rendered from the perspective of the projective texture Pi

under the transformation Ti. This is the floating image fi. (d) A joint histogram of intensities that
has been Parzen windowed with a Gaussian blur, σ = 2 pixels. The x-axis corresponds to laser re-
flectance intensities from fi and the y-axis represents color image intensities from ri.

sensor spaceOCS using the equation:

OCS = M−1
ST MBT M−1

BC [0, 0, 0, 1]T , (1)

where the specification of each of these three matrices will
be treated in turn.

The matrix MST gives the transformation from the
tracker sensor coordinate frameS to the tracker’s ceil-
ing frameT . We capture a single image of the checkerboard
and store the pose of the tracker sensor as a4 × 4 ma-
trix, MST .

We calculate the matrixMBT that relates the transfor-
mation from the calibration checkerboardB to the tracker
ceiling coordinate frameT . We derive checkerboard coor-
dinates by measuring the physical width and height of the
checks and by setting the upper left corner as the origin. Our
coordinate frame specification is consistent with that used in
our camera calibration procedure [21]. We measure the cor-
responding position of check corners in the tracker space us-
ing a tracked stylus. We accurately measure these point lo-
cations using the procedure described and implemented by
Low [8].

Finally, the matrixMBC gives the relation from the
checkerboard coordinate frameB to the camera frameC.
We construct this matrix directly from the camera’s extrin-
sic parameters, which we obtain for the image that was cap-
tured in the first step of this calibration process.

We have compared this offset calculation to a physical
measurement and determined that the two correspond to
within several millimeters. As demonstrated in the results,
we find that our measurement yields a sufficiently accurate
initial pose for the purposes of automatic image registra-
tion.

3. Data Preprocessing

Before registering a color image to geometric data we
must perform a fast preprocessing step to obtain the 3D
model. The DeltaSphere laser scanner returns a range map
which we convert into a polygonal model texture mapped
with the laser reflected intensity values. We export the
model as a dense mesh that we simplify from millions of
polygons down to about 50,000 triangles using Polyworks’
IMCompress. In the case that multiple range scans are ac-
quired we register and merge them into a unified model
[18]. This multi-scan registration requires no user interven-
tion if the scans are annotated with pose estimates from a
tracker.

Our alignment method assumes a pinhole camera model
so that images can be directly mapped onto the 3D model.
Therefore, we undistort the images using the radial and tan-
gential distortion parameters determined by camera calibra-
tion [21]. Undistortion takes just 2s per image. We also cal-
culate the image aspect ratio and field of view directly from
the image resolution and camera focal length. We account
for the reduced image field of view following undistortion
by using the original image resolution in our calculations.

4. Multi-Modal Data Alignment

We are interested in calculating the transformationT =
[φx, φy, φz, tx, ty, tz] that aligns a 2D color image with a
3D model of a laser scanned environment. We drive the
alignment process by exploiting the statistical dependence
between the color image and an image of the 3D model ren-
dered from a virtual camera with poseT . We rely on initial



pose estimates in order to guarantee that our method will
succeed, even with complex input scenes.

We recast the slow 2D to 3D alignment into a fast 2D
image-based registration process by deriving a grayscale
image from each of the datasets. We take an original2008×
3032 color imagei, as shown in Figure 3(a), and scale it
down to a low resolution grayscale image using bilinear in-
terpolation of pixels from the color image’s red channel.
We ignore the green and blue channels because the red
channel’s appearance is more consistent with the surface
reflectance as imaged by our laser scanner. Following the
nomenclature of Maes,et al, we refer to this small grayscale
image as thereferenceimageri [9].

We texture map our 3D model with grayscale values
from the range map’s reflectance component, as illustrated
in Figure 3(b). We treat each color image that needs to be
aligned as a projective texturePi. We compute the perspec-
tive projection matrix forPi from the rotation and transla-
tion parameters ofTi and from the associated camera’s in-
trinsic parameters. Specifically, we use the pre-computed
vertical field of view and aspect ratio. We derive afloating
imagefi by rendering the 3D model from the perspective
of Pi and reading back the framebuffer, as shown in Fig-
ure 3(c). We use equal resolution reference and floating im-
ages to make our image-based comparison fast.

In the next section we describe the concept of chi-square
information and its application to the alignment problem.
Then, in the following section we will discuss our optimiza-
tion scheme.

4.1. Chi-Square Information Metric

Chi-square information is a statistical measure of the de-
pendence between random variables. We wish to estimate
the transformation̂T that aligns the floating imagef with
the reference imager by maximizing the chi-square statis-
tic χ2 over all allowable transformationsT ,

T̂ = arg max
T

χ2(r, f | T ). (2)

The statistical chi-square test is well suited to evaluate
the relationship between discrete random variables [13]. In
order to apply the test we consider intensities from the im-
agesr andf as observations of the discrete random vari-
ablesR andF . Our image representation dictates that these
intensities are integers between 0 and 255, inclusive. The
first step towards calculating theχ2 statistic is to build the
256 × 256 joint histogram ofr andf , Hrf [9].

The 2D joint histogram indicates how often the intensity
x observed in the imager occurs at the same location as the
intensityy in the imagef . We estimate the joint probability
densityPRF (x, y) by dividing each entry in the histogram

(a) (b)

Figure 4. Plots showing angle of azimuth ver-
sus the chi-square statistic. (a) The image in
Figure 3(a) from the library scan has a strong
maximum at 86.2, which corresponds to the
correct alignment. (b) An image from the lab
scan acquired from a different center of pro-
jection has a strong local maximum that cor-
responds to the correct alignment (indicated
by the arrow). However, the global maximum
of chi-square information corresponds to the
incorrect alignment.

by n, the total number of pixels in bothr andf :

PRF (x, y) =
Hrf (x, y)

n
. (3)

We smooth the estimate by Parzen windowing the joint den-
sity, which entails blurring the space with a Gaussian ker-
nel [5, 17]. We have found that convolving with a Gaussian
of standard deviationσ = 2 pixels yields good results. A
smoothed probability distribution is shown in Figure 3(d).
The vertical bands are caused by quantization limitations in
the laser reflectance image, 3(c).

Next, we estimate the marginal probability densities by
summing over the joint density,PR(x) =

∑
y PRF (x, y)

andPF (y) =
∑

x PRF (x, y). We also calculate the distri-
bution that would result ifR andF were statistically inde-
pendent,PR(x) ·PF (y). The chi-square statistic can be cal-
culated from these distributions as follows:

χ2(T ) =
∑
xy

(PRF (x, y) − PR(x) · PF (y))2

PR(x) · PF (y)
, (4)

where the floating image’s random variableF is a function
of the registration parameters inT .

The chi-square statistic is a single number that indicates
how well the imagesr andf are aligned underT [2]. Fig-
ure 4(a) shows how the chi-square statistic varies for the
library model (Figure 3) as a function of one component
of the transformation, the azimuthal angleφx. The image
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Figure 5. Automatic alignment results. (a) The library model with three images rendered using their
initial pose estimates. (b) The library model with all images aligned. (c) The lab model texture mapped
with laser reflectance. (d) The lab model rendered with two aligned color images. (e) Close up view
of the blended image overlap area indicating relatively low registration error.

of the library model was acquired from the same center of
projection as the scanner using the camera bracket shown in
Figure 1. Therefore, there is no occlusion; all objects visible
in the color image are visible in the laser scan. In this case
a global optimization scheme could easily find the global
maximum that corresponds to the correct alignment of the
color image.

Unfortunately, in more complicated scenes that we often
encounter in practice, the transformation associated with the
chi-square statistic’s global maximum does not always cor-
respond to the desired alignment. Figure 4(b) shows the chi-
square statistic for the lab scene that we will discuss in the
Results. A global optimization process will not converge on
the correct alignment in this case. This demonstrates why
reasonable initial pose estimates are essential for guaran-
teeing a good registration. The local optimization scheme
presented in the next section is consistently able to achieve
the correct alignment when initialized with good pose esti-
mates.

4.2. Optimization

We use Powell’s multidimensional direction set method
to maximize the chi-square statistic over the 6 parameters

of T , using Brent’s one-dimensional optimization algorithm
for the line minimizations [13]. This method has previously
been applied for medical image registration using mutual
information [9]. Powell’s method does not require function
derivatives, but it does require an initial estimate for each
of the parameters to be optimized. We provide an initial
pose estimate using the procedures described in Section 2.
We initialize the direction matrix as the identity matrix so
that each parameter’s search direction begins as a unit vec-
tor. The order in which parameters are provided to Pow-
ell’s method may play a role in the robustness of the algo-
rithm [9]. Since our initial estimates for the translation are
more accurate, we optimize the 3 rotation angles before the
3 translation parameters.

5. Results

We have validated our registration algorithm on several
different datasets, but we present two cases here in order to
illustrate the results using the two types of initial pose esti-
mation. We render the aligned images by projecting them
directly on the geometry and we use techniques similar
to Unstructured Lumigraph Rendering to handle occlusion



and importance concerns [3]. Our efficient rendering im-
plementation is adapted to modern graphics hardware us-
ing the OpenGL Shading Language. We perform visibility
and blending calculations in a fragment shader by comput-
ing depth maps for the projective textures. We could instead
have chosen to stitch the color images into a unified texture
map [7], but when we render with more images, we want
to keep view-dependent effects. We performed our align-
ment experiments on a 1.5GHz Windows XP machine with
1.5GB of RAM and an ATI Radeon 9700 Pro graphics card.

The first example is a scan of Thomas Jefferson’s library
in Monticello simplified to 50,000 triangles along with three
color images acquired from the scanner’s center of projec-
tion. We obtained initial pose estimates by mounting the
camera on the scanner, as in Section 2.1. We rendered the
images using initial pose estimates (Figure 5(a)) and again
following the application of our multi-modal registration al-
gorithm (Figure 5(b)). The registration of each image took
an average of 33s with 380 iterations of Powell’s method.
The chi-square objective function took an average of 0.014s
to render the model, 0.029s to read back thefloating im-
age from the framebuffer, and 0.044s to compute the his-
togram and the chi-square statistic.

We compared our results to the same dataset manually
aligned using an implementation of the “3DPOSE Algo-
rithm” [16]. We found no discernable difference in the reg-
istration quality. Both methods seem to be limited by the
camera calibration quality more than any other factor. How-
ever, the manual registration took over 15 minutes of in-
teractive time for 3 images, compared to just seconds to
start our automatic batch process running. We also regis-
tered the images using mutual information [9]. We found
that the alignment quality was not as good, though the aver-
age time to compute the histogram and mutual information
was slightly lower at 0.033s.

We acquired another scan with a tracked camera and
scanner in a lab at the University of North Carolina, as
shown in Figure 5(c). Here we acquired two images from
centers of projection other than the laser scanner’s center of
projection, using the tracking method given in Section 2.2.
The two color images shown in Figure 5(d) took an aver-
age of 344 iterations and 28.5s to align. Figure 5(e) shows
a enlarged view of the image overlap area where the pro-
jective textures are blended. The optimized alignment is far
better than the registration given by the tracker’s initial pose
estimate.

6. Conclusions and Future Work

We have developed an algorithm for automatically align-
ing color images with 3D models. Our system uses the ro-
bust chi-square metric in conjunction with good initial pose
estimates to obtain fast and accurate registration. We pro-

posed two methods for estimating the initial pose that have
different advantages. The pose estimation by construction
method is inexpensive, because beyond the requisite invest-
ment in a camera and scanner, it just requires a machined
bracket. This approach works very well for building a model
from a few images, where the color is stitched onto the
model as normal texture maps.

We also introduced a method for obtaining pose esti-
mates by tracking the equipment. Our current system uses
an optical tracker, which yields very accurate pose esti-
mates, but is not sufficiently portable. Future work should
determine the quality of tracking required to obtain good
registration and choose the tracking method with the best
tradeoff of portability, accuracy, and expense. Tracking the
devices allows the modeler to decouple the geometry and
color acquisition. This makes the method suitable for ac-
quiring hundreds of images and automatically building a
surface light field [4], or any other view-dependent color
representation.
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