A Probabilistic Analysis of the Efficiency of Automated Software Testing

Marcel Böhme and Soumya Paul

Abstract—We study the relative efficiencies of the random and systematic approaches to automated software testing. Using a simple but realistic set of assumptions, we propose a general model for software testing and define sampling strategies for random (R) and systematic (S\textsubscript{0}) testing, where each sampling is associated with a sampling cost: 1 and c units of time, respectively. The two most important goals of software testing are: (i) achieving in minimal time a given degree of confidence x in a program’s correctness and (ii) discovering a maximal number of errors within a given time bound n. For both (i) and (ii), we show that there exists a bound on c beyond which R performs better than $S\textsubscript{0}$ on the average. Moreover for (i), this bound depends asymptotically only on x. We show that the efficiency of R can be fitted to the exponential curve. Using these results we design a hybrid strategy H that starts with R and switches to $S\textsubscript{0}$ when $S\textsubscript{0}$ is expected to discover more errors per unit time. In our experiments we find that H performs similarly or better than the most efficient of both and that $S\textsubscript{0}$ may need to be significantly faster than our bounds suggest to retain efficiency over R.

1 INTRODUCTION

Efficiency is an important property of software testing; potentially even more important than effectiveness. Because complex software errors exist even in critical, widely distributed programs for many years [2], [3], developers are looking for automated techniques to gain confidence in their programs’ correctness. The most effective way to inspire confidence in the program’s correctness for all inputs is called program verification. However, due to state explosion and other problems, the applicability of verification remains limited to programs of a few hundred lines of code. Now, software testing trades this effectiveness for efficiency. It allows one to gain confidence in the program’s correctness with every test input that is executed. So, automated testing is an efficient way to inspire confidence in the program’s correctness for an increasing set of inputs. Yet, most research of software testing has mainly focussed on effectiveness:

The most effective testing technique reveals a maximal number of errors and inspires a maximum degree of confidence in the correctness of a program.

Only now are we starting to investigate its efficiency:

The most efficient testing technique i) generates a sufficiently effective test suite in minimal time or ii) generates the most effective test suite in the given time budget.

Using a simple set of assumptions, we construct a general model of software testing, define testing strategies where each generated test input is subject to a cost, and cast our efficiency analysis as a problem in probability theory.

- M. Böhme is with the Software Engineering Chair at Saarland University in Germany but conducted this research while he was PhD Candidate at the School of Computing, National University of Singapore in Singapore. E-mail: boehme@cs.uni-saarland.de
- S. Paul is with the School of Computing, National University of Singapore in Singapore.

A conference version of this article was published at the 2014 ACM SIGSOFT International Symposium on the Foundations of Software Engineering [1].

We model the testing problem as an exploration of error-based input partitions. Suppose, for a program there exists a partitioning of its input space into homogeneous subdomains [4], [5]. For each subdomain, either all inputs reveal an error or none of the inputs reveal an error. The number and “size” of such error-based partitions can be arbitrary but must be bounded. Assuming that it is unknown a-priori whether or not a partition reveals an error, the problem of software testing is to sample each partition in a systematic fashion to gain confidence in the correctness of the program.

A testing technique samples the program’s input space. We say that a partition $D\textsubscript{i}$ is discovered when $D\textsubscript{i}$ is sampled for the first time. The sampled test input shows whether or not partition $D\textsubscript{i}$ reveals an error. Effectively, the sampled test input becomes a witness for the error-revealing property of $D\textsubscript{i}$. A testing technique achieves the degree of confidence x when at least $x\%$ of the program inputs reside in discovered partitions. Hence, if none of the discovered partitions reveals an error, we can be certain that the program works correctly at least for $x\%$ of its input.

For our efficiency analysis, we consider two strategies: random testing that is oblivious of error-based partitions and systematic testing that samples each partition exactly once. Random testing R samples the input space uniformly at random and might sample some partitions several times and some not at all. Specifically, we show that for R the number and size of partitions discovered decays exponentially over time.1 Systematic testing samples each error-based partition exactly once and thus strictly increases the established degree of confidence. We model a systematic testing technique $S\textsubscript{0}$ that chooses the order in which partitions are discovered uniformly at random and show that number and size of partitions discovered grows linearly over time. Note that our hypothetical $S\textsubscript{0}$ can proof correctness eventually.

1. Thus, to predict the efficiency of R, e.g., in terms of errors exposed (or even paths exercised), one only needs to fit an exponential curve!
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2015.2487274, IEEE Transactions on Software Engineering

Weyuker and Jeng [4] observe that a technique that samples from error-based partitions, like S_0, is most effective. However, realistic systematic testing techniques are much less effective [6]. In fact, a test suite – that is 100% statement- and branch-coverage adequate, kills all possible mutants, and executes successfully – does still not guarantee the correctness of the tested program [7]. By analyzing the program’s specification, tools can automatically generate test inputs that cover corner-cases [8]. By analyzing the program’s source code, tools can generate inputs that stress potentially faulty statements, branches, or paths by increasing the coverage of the code [9], [10], [11]. By generating and analyzing deliberately faulty versions [12], tools can generate even more effective test input. Generally, the more comprehensive such analysis, the more effective can the testing technique be. But, with increasing analysis time, what about the associated reduction of efficiency?

To analyze the efficiency of both techniques, we assume that each sampling takes time and call it the sampling cost. Random testing does not spend any time on program analysis. We say that R takes one unit of time to sample one test input. However, systematic testing inherently requires some time to analyze artifacts related to the program, such as source code, specifications, or faulty versions, to derive the error-based partitions. We say that S_0 takes c units of time to sample one test input. Note that we give the sampling cost for S_0 as a factor of the sampling cost of R. This allows us to account for the time spent on the concrete sampling-related tasks that are common to both techniques. For instance, if R takes, on average, $5ms$ to generate and execute a valid, readable, and typical test case and check whether it passes or fails, then by definition S_0 takes $(c \cdot 5)ms$ which includes the same time spent on test generation, execution, and oracle checking and the time spent on program analysis.

We observe that the efficiency of systematic testing decreases as the time spent on analysis increases while the efficiency of random testing remains unchanged. In other words, as the sampling cost c for S_0 increases, it takes more time to establish the same degree of confidence and discover the same number of errors. So, in order for S_0 to maintain its efficiency over R, c cannot exceed a certain value and is thus bounded above!

In this paper, we study the maximum sampling cost c_0 of S_0 beyond which the systematic testing technique S_0 is expected to be less efficient than random testing R. Thereby, we explore two notions of testing efficiency that may well be the main goals of automated software testing: i) to achieve a given degree of confidence in minimal time, and ii) to expose a maximal number of errors in a given time. Furthermore, for our probabilistic analysis we take the sampling cost c as a constant. However, we provide a discussion on implications for the more realistic case when c increases with time, program size, number of inputs sampled, or is inversely proportional to partition size.

We design a more efficient hybrid technique. Given any systematic testing technique S that discovers one partition for each input sampled, we introduce a hybrid technique H that starts with R and switches to S after a certain time. We discuss how to determine when H switches from R to S in expectation and in practice and show that H is more efficient than both its constituent techniques, on the average.

The most important contributions of the paper are as follows. We provide a uniform mathematical framework for modeling software testing which is elementary and intuitive. In this framework we show that even a highly effective systematic testing technique is inefficient compared with random testing if the time per sampling is relatively too high. More precisely, we show the following:

- **1st Problem of Efficient Testing.** Given a degree of confidence x, we show that the time taken by S_0 to sample an input cannot exceed $(ex - ex^2)^{-1}$ times the time taken by R to sample an input. Otherwise, R is expected to achieve x earlier. For instance, let R take $10ms$ per test; to establish the confidence that any program works correctly for 90% of its input, S_0 must take less than $41ms$ per test. In our experiments we find that S_0 must take signific. less time than our bound suggests to be expected to achieve x earlier.

- **2nd Problem of Efficient Testing.** Given n time units, we show that the time taken by S_0 per test cannot exceed $\frac{n}{k} \cdot (1 - (1 - q_{min})^n)^{-1}$ times the time taken by R per test, in order for S_0 expose more errors in n time units — where k is the number of partitions and q_{min} the fractional size of the “smallest” error-revealing partition in the program’s input space.

- **Exponential Decay.** We show that for R the number of errors discovered decays exponentially over time. In practice, this allows to predict the efficiency of R by fitting the exponential curve $h(n) = ae^{-\lambda n} + b$.

- **Hybrid Testing Technique.** Using the above insights, (the efficiency of R decays exponentially while that of S does not) we design a hybrid technique H which starts using R and switches to S when S is expected to discover more partitions per unit time than R.

- **24,000 Simulation Experiments.** We observe that H performs similarly or better than the most efficient of both, and that the maximum cost c_0 of S_0 can be significantly higher if the input space is partitioned such that there is a small number of huge and a very large number of very tiny partitions.

In summary, we present strong, elementary, and theoretical results about the efficiency of automated testing that hold for all programs and every systematic testing technique under the realistic assumptions stated in the following section.

2 Preliminaries

2.1 Background

In this work, we focus on automated testing techniques that seek to establish a certain degree of confidence in the correctness of the program or reveal a maximal number of errors. Interestingly, this eliminates inexactitude, automated techniques that seek to generate just one failing test input as evidence of the incorrectness of the program. First, the search for a failing test input may never terminate due to the undecidability of the infeasible path problem [13]. Secondly, the absence of a failing test input throughout the search does not inspire any degree of confidence in the absence of errors. Instead, we shall focus on partition testing techniques, such as coverage, mutation, and specification based testing.
Partition testing [4], [7] comprises of testing techniques that 1) divide the program’s input domain into classes whose points share the same property in some respect and then 2) test the program for at least one input from each class. Thus, the problem of systematic testing is reduced to finding a “good” partition strategy. For example, a specification-based partition strategy might divide the input domain into subdomains, each of which invokes one of several program features or satisfies the pre-condition of some predicate [8]. Mutation-based partition strategies may yield subdomains, each of which strongly kills a certain mutant of the program [12], [14]. A differential partition strategy yields subdomains, each of which either homogeneously exposes a semantic difference or homogeneously shows semantic equivalence [15]. Symbolic execution is a path-based partition strategy [11]. One may also consider an assertion-based partitioning strategy that divides the input space into classes where inputs do and others do not violate an assertion in the program. Such assertion-based partitioning would be fit to serve as practical counter-part of the hypothetical error-based partitioning where erroneous program behavior is explicitly encoded using assertions (or exceptions, etc.).

However, questioning its effectiveness, Hamlet and Taylor [7] find that “partition testing does not inspire confidence”. Varying several parameters, the authors repeated the experiments of Duran and Ntafos [16] who presented a surprising result: The number of errors found by random and partition testing is very similar. Hamlet and Taylor came to much the same conclusion. The results universally favoured partition testing, but not by much. Weyuker and Jeng [4] found that the effectiveness of partition testing varies depending on the fault rate for each subdomain that is systematically sampled and concluded that a partitioning strategy that yields error-based (revealing) subdomains is the most effective. Subsequently, several authors discussed conditions under which partition testing is generally more effective than random testing (e.g., [17], [18]).

Arcuri et al. [19] study the scalability of random testing. In this work, scalability refers to the ability of exercising many “targets” in the program as the number of targets increases. Specifically, the authors show that random testing scales better than a directed testing technique that focuses on one target until it is “covered” before proceeding to the next. Intuitively, parallel search (here, random testing) scales better than sequential search (here, directed testing). In contrast, we assess the scalability of systematic testing relative to random testing by investigating the efficiency of both techniques as the program size increases. Thereby, we also consider systematic techniques that are not “directed”.

Leaving the scope of our analysis are several practical concerns that are common to all automated testing techniques. i) Firstly, there is the oracle problem [20] which states that a mechanism deciding for every input whether the program computes the correct output is pragmatically unattainable and only approximate. Partial solutions include the automated encoding of common [21], [22], [23] and the manual encoding of custom error conditions as assertions [24], [25], [26]. ii) Secondly, there is the typicality problem which states that automatically generated test cases may not represent the “typical” input a user would provide or “valid” input that satisfies some pre-condition for the program to execute normally. Technically, both techniques could sample according to the operational distribution [27] or using symbolic grammars [28]. Then, both techniques receive the same ability to sample typical, valid inputs. We make no such assumptions. iii) Finally, we want to stress explicitly that for the purpose of this article the achieved code coverage is only secondary. For instance, suppose a branch somewhere in the program is exercised only if for some variable i we have i == 780234. Then this branch may (or may not) have a very low probability to be exercised randomly. Instead, the technique shall achieve confidence and expose errors. In our investigations, we also account for partitions that are relatively small, possibly containing only one input.

2.2 Definitions and Notations

We construct a general model of software testing that is based on three simple assumptions: i) the input space is bounded, ii) errors are deterministic, and iii) it is unknown a-priori whether or not some input reveals an error. These assumptions are stated explicitly and formally and may be relaxed in future work. Furthermore, we define error-based partitioning, the two problems of efficient software testing, and the two testing strategies, \(R \) and \(S_0 \).

Given any program \(P \), the number of input variables to the program determine the dimensionality of the program’s input space. The values for an input variable determines the values of the corresponding dimension in the program’s input space. For instance, a program with two input variables of type integer has a two dimensional input space that can take any integer values. Regarding the input space, we make the following assumptions:

- **Bounded Dimensionality.** Given any program \(P \), the space of inputs to \(P \) has a bounded dimension. This assumption is realistic since the length of \(P \) is bounded, it can only manipulate a bounded number of variables.

- **Bounded Input Space.** Given any program \(P \), every input variable \(P \) can take only a bounded number of values from a finite domain. This assumption is also realistic since in practice the size of the registers where the variables are stored is bounded.

Given these assumptions, we see that given a program \(P \), its input space can be taken to be a finite, measurable metric space \(D = \prod_{i=1}^{d} A_i \) where \(d \) is the dimension of the input space of \(P \) and \(A_i \) is a finite set for every \(1 \leq i \leq d \). In what follows, we fix a program \(P \) which in turn fixes the dimension \(d \) and the input space \(D \).

Definition 1 (Error-based Partitioning)

The input space \(D \) of a program \(P \) can be partitioned into \(k \) disjoint non-empty subdomains \(D_i \) where \(1 \leq i \leq k \) with the following property: Either every input \(t \in D_i \) reveals the same error, or every input \(t \in D_i \) does not reveal an error. If every input of a partition \(D_i \) reveals an error then we call \(D_i \) an error-revealing partition.

We notice that Def. 1 requires determinism: All executions of the same test input yield the same output. This is satisfied also if a model that renders an execution deterministic, like a specific thread schedule, is constituent of the test input.
Note that $|D_i| > 0$ for all $1 \leq i \leq k$ where $| \cdot |$ denotes the cardinality of a set. Since $|D|$ is finite, k is finite, too, and

$$|D| = \sum_{i=1}^{k} |D_i|$$

(1)

If we draw an input t uniformly at random from D_i for every partition D_i there is a probability that $t \in D_i$. We denote this probability vector by $p = (p_1, \ldots, p_k)$. Note that for every $i : 1 \leq i \leq k$

$$p_i = \frac{|D_i|}{|D|}$$

(2)

$$\sum_{i=1}^{k} p_i = 1$$

(3)

For every $i : 1 \leq i \leq k$, let θ_i be the indicator random variable which is 1 if partition D_i reveals an error and 0 otherwise.

A testing technique samples the input space of the program-under-test and discovers error-based partitions. We assume that the information whether a partition does or does not reveal an error is unknown a-priori. This is a fair assumption because otherwise there was no need for testing. Hence, each sampled test case becomes a witness of whether or not the corresponding partition is error-revealing.

Definition 2 (Discovered Partitions)

Given a testing technique F that samples the input space D, we say that F discovers partition D_i in n units of time if F samples from D_i after exactly n units of time and no test input has been sampled from D_i previously.

While the goal of software verification is to show the correctness of the program for all inputs, the goal of software testing is to show the correctness of the program for at least for some $x\%$ of the input. Arguably, this more modest goal may also be more practical and economical.

Definition 3 (Achieving Confidence)

Let $x = (X_1, \ldots, X_k)$ where X_i is the random variable indicating whether testing technique F has discovered partition D_i in n units of time, we say that F achieves the degree of confidence x in n units of time if

$$x|D| \leq \sum_{i=1}^{k} X_i |D_i|$$

In other words, a testing technique achieves the degree of confidence x when at least $x\%$ of the program inputs reside in discovered partitions.

In the following, we define two main goals of efficient software testing. The first goal is to achieve a certain degree of confidence x in minimal time.

Definition 4 (The 1st Problem of Efficient Software Testing)

Given two testing techniques, F_1 and F_2, and the degree of confidence x, let n_1 and n_2 be the units of time in which F_1 and F_2 are expected to achieve x. We say that F_1 is more efficient than F_2 according to the 1st Problem of Efficient Software Testing iff $n_1 < n_2$.

The second goal is to expose the most number of errors in a certain time budget \hat{n} (see E-measure [19]).

Definition 5 (The 2nd Problem of Efficient Software Testing)

Given two testing techniques, F_1 and F_2, and the time budget \hat{n}, let d_1 and d_2 be the expected number of error-revealing partitions discovered by F_1 and F_2 in \hat{n} units of time. We say that F_1 is expected to be more efficient than F_2 according to the 2nd Problem of Efficient Software Testing iff $d_1 > d_2$.

Now, we define two particular testing techniques, random testing R and the systematic testing technique S_0. For each technique we assign a sampling cost that corresponds to the time that is required for sampling a test input. The sampling of a test input comprises of concrete tasks such as generating and executing the corresponding test case and checking the correctness of its outcome. The sampling cost is computed as the sum of the time it takes each sampling-related task.

Definition 6 (Random Testing R)

Given a program P, random testing R tests P by sampling at each iteration its input space D uniformly at random. The cost for each sampling is one unit of time.

Note that random testing R samples with replacement.

Definition 7 (Systematic Testing Technique S_0)

Given a program P, the systematic testing technique S_0 tests P by sampling at each iteration exactly one undiscovered error-based partition uniformly at random. The sampled partition itself is also chosen uniformly at random from the remaining undiscovered error-based partitions. The cost for each sampling is c units of time.

Note that S_0 samples exactly one input from each error-based partition. Eventually, S_0 will have discovered all partitions and is thus most effective. The cost for each sampling of c unit of time includes the time to generate and execute the corresponding test case and verify the correctness of its output and the time it takes for the additional analysis. Hence, we call c the analysis cost of S_0. Note that S_0 discovers all of k partitions in ck units of time.

We note that both techniques can sample from a reduced input subdomain that contains only e.g., valid, readable, or typical test cases if such are concerns. However, we make no such assumptions.

We now delve into the technical details. In the following, we shall formalise relevant concepts of approximation and exponential decay.

Definition 8 (Asymptotics)

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be real functions. We say

1) $f \sim g$ if $\frac{f(n)}{g(n)} \to 1$ as $n \to \infty$. Thus, for every $\epsilon > 0$ there exists $n_0 \in \mathbb{R}^+$ such that for every $n > n_0$, $|f(n) - g(n)| < \epsilon$.

2) $f \lesssim g$ if there exist constants $c, n_0 \in \mathbb{R}^+$ such that $|f(n)| < c|g(n)|$ for all $n > n_0$.

3) $f \gtrsim g$ if there exist constants $c, n_0 \in \mathbb{R}^+$ such that $|f(n)| > c|g(n)|$ for all $n > n_0$.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Note, if $f \lesssim g$ then $g \gtrsim f$ and conversely.

Definition 9 (Exponential Decay)

A function $f : \mathbb{R} \to \mathbb{R}$ has exponential decay if it is differentiable at every $x \in \mathbb{R}$ and $\frac{df(x)}{dx} = -\lambda f(x)$ for some constant λ. In particular note that the function $ae^{-\lambda x}$ where a is a constant has exponential decay.

3 The 1ST Problem of Efficient Testing

Achieving a given degree of confidence x in minimal time is the 1st Problem of Efficient Software Testing (1st PoEST). In other words, an efficient testing technique establishes the expected degree of confidence achieved grows linearly with the size of the input space discovered after n units of time. Given a degree of confidence x, we compare the expected time it takes to achieve x by random testing R and by the systematic testing technique S_0. After introducing the concepts and insights with an example, we investigate the efficiency of S_0 and R. For S_0, we show that the expected degree of confidence achieved grows linearly with time. In contrast, for R we show exponential decay.

Given a degree of confidence x, we find that the sampling cost c of S_0 must be below $(ex - x^2)^{-1}$ units of time in order for S_0 to remain more efficient than R. For example, to establish that the program works correctly for 90% of its input, sampling one test systematically must take much less than five times the time it takes to sample one test randomly.

3.1 Efficiency Analysis of Individual Techniques

In this work, we define the confidence that is achieved wrt. the input space that is discovered (Def. 3). So, we give the expected size of input space discovered after n time units.

Lemma 1 (Confidence – Efficiency of S_0)

For the systematic testing technique S_0, the expected input space discovered after n time units is

$$f_s(n) = \frac{|D|}{ck} \cdot n$$

where c is units of time taken for sampling one test input.

Proof: By Definition 7, S_0 discovers n/c partitions in n units of time. The order in which partitions are discovered is decided by choosing uniformly at random from the set of undiscovered partitions. Let X_i be the random variable indicating that partition D_i has been discovered after n units of time. Then,

$$E[X_i] = \frac{n}{ck}$$

Let the expected size of the input space discovered by S_0 after n units of time be given by the function $f_s : \mathbb{N} \to \mathbb{R}$. We compute $f_s(n)$ as the expected value of the sum of the size of all discovered partitions.

$$f_s(n) = E \left[\sum_{i=1}^{k} X_i | |D_i| \right]$$

$$= \sum_{i=1}^{k} |D_i| E[X_i]$$

$$= \sum_{i=1}^{k} |D_i| \frac{n}{ck}$$

$$= \frac{|D|}{ck} \cdot n$$

Thus, the expected size of the input space discovered grows linearly with the number of iterations. As the cost increases, the slope with the time-axis, $|D|/(ck)$, of $f_s(n)$ decreases.

Now, we look at the case for random testing.

Lemma 2 (Confidence – Efficiency of R)

For random testing R, the expected size of the input space discovered after n units of time is

$$f_r(n) = |D| \left[1 - \sum_{i=1}^{k} p_i (1 - p_i)^n \right]$$

Proof: By Definition 6, R samples n tests in n units of time. By Eqn. (2), the probability that R discovers partition D_i in any trial is p_i. Let X_i be the random variable indicating that partition D_i has been discovered after n units of time. The probability that D_i has not been discovered after n units of time is $(1 - p_i)^n$. Thus,

$$E[X_i] = 1 - (1 - p_i)^n$$

Let the expected size of the input space discovered by R after n units of time be given by the function $f_r : \mathbb{N} \to \mathbb{R}$. We compute $f_r(n)$ as the expected value of the sum of the size of all discovered partitions.

$$f_r(n) = E \left[\sum_{i=1}^{k} X_i | |D_i| \right]$$

$$= \sum_{i=1}^{k} |D_i| E[X_i]$$

$$= \sum_{i=1}^{k} |D_i| (1 - (1 - p_i)^n)$$

$$= |D| \sum_{i=1}^{k} p_i (1 - p_i)^n$$

To approximate the above quantity, we cast the problem of achieving confidence into the problem of finding the bonus sum in the generalized coupon collectors problem [29]. Given $|D|$ coupons with k different colours, there are $|D_i|$ coupons of a colour i where $1 \leq i \leq k$ and each coupon has a bonus value of $|D_i|$. Note that the probability to collect a coupon of colour i is $p_i = |D_i|/|D|$. Then the above quantity is nothing but the bonus sum of the coupons collected after a person collected n coupons when counting the bonus value of each colour only once. From the result of Rosen [29, Theorem 1] we have

$$f_r(n) \sim |D| \left[1 - \sum_{i=1}^{k} p_i e^{-np_i} \right]$$

3.2 Example for Equal-Sized Partitions

We illustrate the main insights for the simplified case where the size of each partition is equal. In this setting, we demonstrate that the confidence achieved per unit of time decays exponentially for random testing R while it grows linearly for the systematic testing technique S_0. Later, this result is generalized for partitions of arbitrary size.

First, we show a simple corollary of Lemma 2.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
The corollary shows that $\bar{f}_r(n)$ has exponential decay as per Definition 9.

Figure 1 shows the expected size of input space discovered per unit of time for R and S_0 when $k = 100$ and $c = 2$. So, it takes S_0 twice as long to sample a test input compared to R. On the average, after 80 units of time, S_0 discovered partitions in 40% of the input space while R discovered partitions in 55% of the program’s input space. On the average, after 160 units of time both techniques break even, having discovered partitions in 80% of the input space.

There exists a time n_0 where $\bar{f}_r(n_0) = f_r(n_0)$ and S_0 has discovered more of the input space than R for any $n > n_0$, on the average. To assess the relative efficiency of S_0 we pose the following question: Given a degree of confidence x, what is the maximum cost c_0 for S_0 such that S_0 achieves x in time $n \leq n_0$? We give the answer by the following lemma.

Lemma 3

Given a degree of confidence x, let n_x and n_r be the time at which S_0 and R are expected to achieve x, respectively. When $p_i = \frac{1}{k}$ for every $i : 1 \leq i \leq k$, the maximum cost c_0 of S_0, such that $n_x \leq n_r$, is given as

$$c_0 = \tilde{c} \cdot \frac{-\ln(1-x)}{x}$$

for a constant \tilde{c}.

Proof: First, we compute the time it takes S_0 to achieve x depending on c_0 and k. Setting $f_r(n) = |D|\bar{x}$ gives

$$n = xk\bar{c}_0$$

Then, we set the same time for R by substituting n. Setting $f_r(n) = |D|\bar{x}$ yields

$$x = 1 - \left(1 - \frac{1}{k}\right)^{xk\bar{c}_0} \quad \text{[by Eqn. (19)]}$$

Solving for the maximum cost c_0 gives

$$1 - x = \left(1 - \frac{1}{k}\right)^{xk\bar{c}_0}$$

$$\ln(1-x) = xk\bar{c}_0 \ln \left(1 - \frac{1}{k}\right)$$

$$\frac{\ln(1-x)}{x} = -k\bar{c}_0 \ln \left(\frac{k-1}{k}\right)$$

$$c_0 = \tilde{c} \cdot \frac{-\ln(1-x)}{x}$$

where

$$\tilde{c} = \left(k \ln \left(\frac{k}{k-1}\right)\right)^{-1}$$

Figure 2 shows for the segment from $x : 0.8 \leq x \leq 1$ the exact cost c_0 for S_0 such that both techniques are expected to break even at a given degree of confidence. Giving the degree of confidence $x = 0.8$, S_0 is expected to be more efficient than R according to the 1st PoEST only if the sampling cost of S_0 is $c < 2$. For $x = 0.99$, we see in Fig. 2 that the maximum sampling cost of S_0 is $c_0 = 4.65$ units of time so that S_0 is expected to be more efficient than R.

3.3 Bounds on the Expected Confidence Achieved by Random Testing

Under the simplified conditions of the example, where each partition has the same size, $|D_1| = \cdots = |D_k|$, we have shown that the confidence achieved per unit of time decays exponentially for random testing. In the following, we prove that this is the case for partitions of arbitrary sizes. Towards that, we define two quantities p_{\min} and p_{\max}.

$$p_{\max} = \max_{i=1}^{k} \{p_i\} \quad \text{and} \quad p_{\min} = \min_{i=1}^{k} \{p_i\}$$

(27)

where the functions \max and \min compute the maximum and minimum number in a given set, respectively. Note that $p_{\max} \geq 1/k$ and $p_{\min} \leq 1/k$. We claim
Lemma 4 (Approximate Bounds)

\[f_r(n) \text{ is bounded above and below approximately as} \]
\[|D|[1 - kp_{min}e^{-np_{min}}] \leq f_r(n) \leq |D|[1 - kp_{max}e^{-np_{max}}] \]

Proof: Let \(I_{max} \subseteq \{1, 2, \ldots, k\} \) be the set of indices such that \(p_{max} \neq p_i \) iff \(i \in I_{max} \). For all \(i \in I_{max} \), let \(n_i \) be the point in time such that
\[n_i = \frac{\ln(p_{max}) - \ln(p_i)}{p_{max} - p_i} \]
(28)

This implies for all \(n \geq n_i \)
\[e^{np_{max} - np_i} \geq e^{\ln(p_{max}) - \ln(p_i)} \]
(29)
\[e^{-np_i} \geq \frac{p_{max}}{p_i} \]
(30)
\[p_{max}e^{-np_{max}} \leq p_i e^{-np_i} \]
(31)

Let \(n_{max} \) be the point in time such that
\[n_{max} = \max_{i \in I_{max}} \{ n_i \} \]
(32)

For all \(n \geq n_{max} \) we have
\[\sum_{i=1}^{k} p_i e^{-np_i} = \sum_{i \in I_{max}} p_i e^{-np_i} + \sum_{i \notin I_{max}} p_i e^{-np_i} = \sum_{i \in I_{max}} p_i e^{-np_i} + \sum_{i \in I_{max}} p_{max} e^{-np_{max}} \]
\[\geq \sum_{i \in I_{max}} p_{max} e^{-np_{max}} + \sum_{i \notin I_{max}} p_{max} e^{-np_{max}} \]
\[= kp_{max} e^{-np_{max}} \]
[by Eqn. (31)]

Similarly, let \(I_{min} \subseteq \{1, 2, \ldots, k\} \) be the set of indices such that \(p_i \neq p_{min} \) iff \(i \in I_{min} \). Let \(n_{min} \) be the point in time such that
\[n_{min} = \max_{i \in I_{min}} \left\{ \frac{\ln(p_i) - \ln(p_{min})}{p_i - p_{min}} \right\} \]
(33)

We can show for all \(n \geq n_{min} \) that
\[\sum_{i=1}^{k} p_i e^{-np_i} \leq kp_{min} e^{-np_{min}} \]
(34)

So, for all \(n \geq \max\{n_{min}, n_{max}\} \), we have
\[kp_{max} e^{-np_{max}} \leq \sum_{i=1}^{k} p_i e^{-np_i} \leq kp_{min} e^{-np_{min}} \]
(35)

Hence by Lemma 2 and Def. 8, we have
\[|D|[1 - kp_{min}e^{-np_{min}}] \leq f_r(n) \leq |D|[1 - kp_{max}e^{-np_{max}}] \]
(36)

Thus \(f_r(n) \) being asymptotically bounded above and below by functions having exponential decay also behaves like one.

3.4 Relative Efficiency of \(S_0 \) in 1st PoEST

We evaluate the efficacy of the systematic testing technique \(S_0 \) relative to that of random testing \(R \). Because of the additional analysis cost, sampling a test input using \(S_0 \) takes \(c \) times longer than sampling a test input using \(R \). Since in general the achieved confidence per unit of time decays exponentially for \(R \) while it grows linearly for \(S_0 \), there is a point where \(S_0 \) and \(R \) are expected to break even. Its coordinates depend on the value of \(c \).

Given a degree of confidence \(x \), we compute the maximum cost \(c_0 \) such that the expected time it takes for \(S_0 \) to achieve \(x \) is at most the same as the expected time it takes \(R \) to achieve \(x \) and \(S_0 \) remains more efficient than \(R \).

Proposition 1

Given a degree of confidence \(x : 1 - e^{-1} \leq x < 1 \), let \(n_s \) and \(n_r \) be the units of time after which \(S_0 \) and \(R \) are expected to achieve \(x \), respectively. For all programs \(P \), the maximum cost \(c_0 \) of \(S_0 \), such that \(n_s \leq n_r \), is bounded above as
\[c_0 \leq \frac{1}{e^{EX} - e^{EX^2}} \]

Proof: Fix a program \(P \) which in turn fixes the number of partitions \(k \) and also the probabilities \(p_i \) for all \(i \leq 1 \leq i \leq k \). Let \(c_0^P \) be the cost of \(S_0 \) such that \(n_s = n_r \) for \(P \). Now, setting \(f_r(n_s) = |D|x \) in Lemma 1 we have
\[n_s = n_r = xk_0 \]
(37)

Setting \(f_r(n_r) = |D|x \) in Lemma 2 gives
\[x \sim 1 - \frac{\sum_{i=1}^{k} p_i e^{-np_i}}{kp_{min}} \]
(38)
\[x \geq 1 - kp_{min} e^{-np_{min}} \]
[by Lemma 4]
(39)
\[x \geq 1 - \frac{kP_{min}}{e^{xk_0^P}} \]
[by Eqn. (37)]
(40)

When solving for \(c_0^P \) note that \(0 < x < 1 \) and \(kp_{min} > 0 \),
\[e^{xk_0^P} \leq \frac{kP_{min}}{1 - x} \]
(41)
\[c_0 \leq \frac{\ln \left(\frac{kP_{min}}{1 - x} \right)}{kP_{min}} \]
(42)

Let us denote \(\frac{\ln \left(\frac{kP_{min}}{1 - x} \right)}{kP_{min}} \) as \(h(k, p_{min}) \). From Eqn. (42),
\[c_0 \leq \max_P \{ c_0^P \} \leq \max_P \{ h(k, p_{min}) \} \]
(43)

where \(\max_P \) denotes the maximum of the given quantity over all programs.

To find the value of \(\max_P \{ h(k, p_{min}) \} \), we first relax the requirement that \(k \) takes integral values and allow \(k \) to range over the reals \(\mathbb{R} \). By doing so we notice that \(h(k, p_{min}) \) is a continuous function over \((\mathbb{R} \times [0, 1]) \) which is differentiable everywhere. This allows us to use techniques from differential calculus to maximize \(h(k, p_{min}) \) with \(p_{min} \) and \(k \). [As we shall see below, \(h(k, p_{min}) \) will have exactly one global extremum at some non-boundary point. Hence, the value of \(\max_P \{ h(k, p_{min}) \} \), with the original requirement that \(k \) ranges over the discrete integral domain, will be attained at one of the two nearest integers.]
To derive all extrema of $h(k, p_{\text{min}})$ wrt p_{min}, we set the partial derivative of $h(k, p_{\text{min}})$ wrt p_{min} to 0.

\[
\frac{\partial}{\partial p_{\text{min}}} \ln \left(\frac{k p_{\text{min}}}{1 + x} \right) = \frac{1 - \ln \left(\frac{k p_{\text{min}}}{1 + x} \right)}{k p_{\text{min}}^2} = 0
\] \hspace{1cm} (44)

This yields a critical point for $h(k, p_{\text{min}})$ when

\[
p_{\text{min}} = \frac{e - e x}{k}
\] \hspace{1cm} (45)

The second partial derivative of $h(k, p_{\text{min}})$ wrt p_{min} is given by

\[
\frac{\partial^2}{\partial p_{\text{min}}^2} \ln \left(\frac{k p_{\text{min}}}{1 + x} \right) = -\frac{3 + 2 \ln \left(\frac{k p_{\text{min}}}{1 + x} \right)}{k p_{\text{min}}^3}
\] \hspace{1cm} (46)

Hence for $h(k, p_{\text{min}})$ to be maximal wrt p_{min} it must hold that

\[
-3 + 2 \ln \left(\frac{k p_{\text{min}}}{1 + x} \right) < 0
\] \hspace{1cm} (47)

which yields

\[
p_{\text{min}} < \frac{e \sqrt{e} (1 - x)}{k}
\] \hspace{1cm} (48)

Since (45) satisfies (48) we have that $h(k, p_{\text{min}})$ attains a maximum wrt p_{min} at $p_{\text{min}} = \frac{e - e x}{k}$.

By a similar analysis we can demonstrate that $h(k, p_{\text{min}})$ attains a maximum wrt k at $k = \frac{p_{\text{min}}}{e - e x}$ which is the same as Eqn. (45). Plugging $p_{\text{min}} = \frac{k}{e - e x}$ into $h(k, p_{\text{min}})$ we get

\[
e_0 \leq \frac{1}{e x - e x^2}
\] \hspace{1cm} (49)

Finally, to derive the bounds on the confidence x for which the above inequality holds, note that it must also hold that $0 < p_{\text{min}} \leq 1/k$ whence from Equation (45) we have

\[
0 < \frac{e - e x}{k} \leq \frac{1}{k}
\] \hspace{1cm} (50)

which gives

\[
1 - e^{-1} \leq x < 1
\] \hspace{1cm} (51)

4 THE 2ND PROBLEM OF EFFICIENT TESTING

Exposing the most number of errors within a certain time budget is the 2nd Problem of Efficient Testing (2nd PoEST). So, given the same time budget \bar{n}, we compare the expected number of errors found by random testing \mathcal{R} with the expected number of errors found by the systematic testing technique \mathcal{S}_0. After illustrating our main insights by an example, we investigate the efficiency of \mathcal{S}_0 and \mathcal{R} wrt the expected number of errors discovered. We show that the expected number of errors discovered per unit of time grows linearly for \mathcal{S}_0 while it decays exponentially for \mathcal{R}.

Note that Definition 1 of error-based partitioning states that failing inputs revealing the same error are grouped into the same error-revealing partition. This is reasonable because in practice several failing inputs may expose the same error. Thus, the number of error-revealing partitions discovered corresponds to the number of errors found.

Given a time bound \bar{n}, we find that the expected number of errors discovered by \mathcal{R} within \bar{n} time units is less than or equals that of \mathcal{S}_0 only if the analysis cost c incurred by \mathcal{S}_0 is less than $\frac{2}{3} \cdot (1 - (1 - q_{\text{min}})^k)^{-1}$, where k is the number of error-based partitions, and q_{min} is the fractional size of the “smallest” error-revealing partition.

Duran and Ntafos [16] define a quantity θ_i for every partition \mathcal{D}_i which gives the probability of that partition to reveal an error. In our setting, θ_i can be defined as

\[
\theta_i = \begin{cases} 1 & \text{if } \mathcal{D}_i \text{ is error-revealing} \\ 0 & \text{otherwise} \end{cases}
\]

Then the total number of errors is given by $z = \sum_{i=1}^{k} \theta_i$.

4.1 Efficiency Analysis of Individual Techniques

First, we give the expected number of errors found per unit of time, i.e., the efficiency, for the systematic technique \mathcal{S}_0.

Lemma 5 (Errors Found – Efficiency of \mathcal{S}_0)

For the systematic testing technique \mathcal{S}_0, the expected number of errors discovered after n time units is

\[
g_s(n) = \frac{z}{ck} \cdot n
\]

for $n : 0 \leq n \leq k$, where sampling one input takes c units of time.

Proof: By Definition 7, \mathcal{S}_0 performs n/c draws in n units of time. In this classical urn problem of sampling without replacement we shall call the discovery of an error-revealing partition a “success”. The expected number of successes in n/c draws without replacement from a finite population k containing z successes is given by $\frac{z}{ck} \cdot n$.

The expected number of errors discovered w.r.t the number of iterations grows linearly. As the cost c increases, the slope with the time-axis, $z/c k$, of the line, $g_s(n)$, decreases.

Now, we look at the case for random testing.

Lemma 6 (Errors Found – Efficiency of \mathcal{R} [16])

For random testing \mathcal{R}, the expected number of errors discovered after n time units is

\[
g_r(n) = k - \sum_{i=1}^{k} (1 - p_i \theta_i)^n
\]

The proof is due to Duran and Ntafos [16]. By Definition 6, every iteration occurs in one unit of time.

4.2 Example for Equal-Sized Partitions

We illustrate the main insights for the simplified case where the size of each partition is equal, $|\mathcal{D}_1| = \cdots = |\mathcal{D}_k|$ and hence $p_i = \frac{1}{k}$ for all $1 \leq i \leq k$. In this setting, we demonstrate that the number of errors exposed decays exponentially for \mathcal{R} while it grows linearly for \mathcal{S}_0. Later, this result is generalized for partitions of arbitrary size.

First, we derive the corollary of Lemma 6.

Corollary 2

For random testing \mathcal{R} where $p_i = \frac{1}{k}$ for all $1 \leq i \leq k$, the expected number of errors found after n time units is

\[
g_r(n) = z - z (1 - 1/k)^n
\]

where $\lambda = \ln \left(\frac{1}{1 - 1/k} \right)$.
Given a time bound \bar{n}, the maximum cost c_0 increases approximately linearly as the given time bound \bar{n} increases. If the average analysis cost of S_0 exceeds c_0 for a given time bound \bar{n}, then \mathcal{R} is generally more efficient than S_0 (here for $p_i = \frac{1}{k}$ and $k = 1000$).

4.3 Tight Bounds on the Expected Number of Errors Discovered for Random Testing

Under the simplified conditions of the example, where each partition has the same size, $|\mathcal{D}_1| = \cdots = |\mathcal{D}_k|$, we see that the efficiency of random testing decays exponentially. In the following, we show that this is the case for partitions of arbitrary sizes. Intuitively, random testing discovers many (error-revealing) partitions in the beginning and much less as the number of iterations increases.

Towards that, let $Q \subseteq \{p_1, \ldots, p_k\}$ be a set of probabilities such that $p_i \in Q$ iff $\theta_i = 1$ for all indices $1 \leq i \leq k$. Thus, Q is the set of p_i’s corresponding to all the error-revealing partitions \mathcal{D}_i. We define two quantities

$$q_{\text{max}} = \max\{q \mid q \in Q\} \quad \text{and} \quad q_{\text{min}} = \min\{q \mid q \in Q\}$$

where the functions \max and \min give the maximum and minimum elements in a given set, respectively. We have

Lemma 8 (Tight bounds)

*Given a program \mathcal{P}, let k be the total number of partitions of the input space out of which z are error-revealing. Let

$$\lambda_{\text{min}} = \ln \left(\frac{1}{1 - q_{\text{min}}}\right) \quad \text{and} \quad \lambda_{\text{max}} = \ln \left(\frac{1}{1 - q_{\text{max}}}\right)$$

Then,

$$z - z e^{-\lambda_{\text{min}}n} \leq g_r(n) \leq z - z e^{-\lambda_{\text{max}}n}.$$*

Proof:

$$g_r(n) = k - \sum_{i=1}^{k} (1 - \theta_i)p_i$$

$$= k - \left(\sum_{q_i \in Q} (1 - q_i)\right) - \left(\sum_{q_i \notin Q} 1\right)$$

$$= k - \left(\sum_{q_i \in Q} (1 - q_i)\right) - (k - z)$$

$$= z - \sum_{q_i \in Q} (1 - q_i)n$$

Hence, we have

$$z - z (1 - q_{\text{min}})^n \leq g_r(n) \leq z - z (1 - q_{\text{max}})^n$$

$$z - z e^{-\lambda_{\text{min}}n} \leq g_r(n) \leq z - z e^{-\lambda_{\text{max}}n}$$

The function $g_r(n)$ being bounded above and below by exponentially decaying functions also behaves like one. That is, there exists a 3-tuple (a, b, λ) such that $g_r(n) = ae^{-\lambda n} + b$.

\[0098-5589\ (c) 2015\ IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.\]
4.4 Relative Efficiency of S_0 in 2nd PoEST

We evaluate the efficiency of the systematic testing technique S_0 relative to that of random testing R. Because of the additional analysis cost, sampling a test input using S_0 takes c times longer than sampling a test input using R. Since in general the efficiency of R, here w.r.t. discovering errors, decays exponentially while that of S_0 grows linearly, there is a point in time where S_0 and R are expected to break even. The coordinates of this point depend on the value of S_0’s sampling cost c.

Given \hat{n} units of time, we compute the maximum cost c_0 such that S_0 remains more efficient than R according to the 2nd Problem of Efficient Software Testing. Specifically, we compute c_0 such that the expected number of errors discovered by S_0 is at least the same as the expected number of errors discovered by R after the time budget of \hat{n} time units is exhausted.

Proposition 2

Given a program P, let k be the total number of error-based partitions out of which z are error-revealing. Given \hat{n} units of time, let d_r and d_s be the expected number of error-revealing partitions discovered by the systematic testing technique S_0 and random testing R, respectively. Then, the maximum cost c_0 of S_0, such that $d_r \leq d_s$, is given as

$$c_0 \leq \frac{\hat{n}}{k} \left(1 - (1 - q_{\text{min}})^{\hat{n}} \right)^{-1}$$

where q_{min} is defined as in Eqn. (56).

Proof: Setting $g_r(\hat{n}) = g_s(\hat{n})$ yields

$$\frac{z\hat{n}}{k c_0} = k - \sum_{i=1}^{k} (1 - p_i \theta_i)^{\hat{n}}$$

(63)

$$\frac{z\hat{n}}{k c_0} \geq z - z(1 - q_{\text{min}})^{\hat{n}}$$ \hspace{1cm} \text{[By Lemma 8]} \hspace{1cm} (64)

Solving for c_0 having $\hat{n} > 0$, $k > 0$, and $z \geq 0$ gives

$$c_0 \leq \frac{1}{k} \cdot \frac{\hat{n}}{1 - (1 - q_{\text{min}})^{\hat{n}}}$$

(65)

5 A Hybrid Testing Technique H

Given a systematic technique S that discovers a partition with every input sampled, subject to the sampling cost c, there exists a hybrid testing technique H that, at any time, has discovered at least as many partitions as the random technique R and at least as many partitions as the systematic technique S. Since S is expected to discover all partitions eventually, while R is not, there must be a time when it is best to switch from R to S to gain optimal efficiency.

For simplicity, we assume i) that the sampling cost c of S is known and constant, and ii) that the switch itself takes no time at all. In practice, the sampling cost of S may be a function over time n. In that case, $c(n)$ of S needs to be derived empirically by measuring the time it takes to generate test cases as compared to a random generator.

2. Notice that S_0 as defined in Def. 7 is an instance of S where the order in which the partitions are sampled is chosen at random.

3. Note that the partitioning need not be error-based for H to discover at least as many partitions as R or S; a partition could also correspond to the set of inputs exercising the same path [11].

Also, in practice the cost of measuring the number of partitions that R has already discovered and the cost of the switch itself should be considered.

Algorithm 1 Hybrid Testing Technique H

Require: Systematic Testing S with sampling cost c

Require: Random Testing R with sampling cost 1

Require: Program P with k partitions in input space D

1: let $time, nDisc := 0$
2: while $nDisc < k$ do
3: let $time := time + 1$
4: sample t from D using R
5: if t sampled from undiscovered partition then
6: let $nDisc := nDisc + 1$
7: let $T_{nDisc} := time$
8: let $E[T_{nDisc}] := \text{regression}(\{T_i | 1 \leq i \leq nDisc\})$
9: if $E[T_{nDisc}] > c$ then break; end if
10: end if
11: end while
12: while $nDisc < k$ do
13: let $nDisc := nDisc + 1$
15: sample t from D using S
16: end while

In Algorithm 1, we define the hybrid technique H that tests the program using R until the time to discover the next partition exceeds c units of time and then switches to testing using S. In Algorithm 1, H samples test input using R until the expected time it takes R to discover (not sample!) the next partition exceeds the expected time c it takes S to sample (and thus discover) the next partition. The expected time it takes R to discover the next partition is not difficult to predict, given sufficiently many previous random samples. From Lemma 8, we know that the expected number of partitions discovered decays exponentially over time. Hence, for each program there exists a 3-tuple (a, b, λ), such that $h(n) = ae^{-\lambda n} + b$ gives the expected number of partitions that R discovers over time n. In Alg. 1, the function regression in line 8 takes the vector of the previous points in time, when R discovered a new partition to fit to an exponential curve and predict the expected time-to-next-discovery. In line 9, H switches to S.

The efficiency of the hybrid technique is intuitively explained in Figure 5. The hybrid technique H switches from R to S at that precise moment when S is expected to discover the most number of partitions per unit time.

Fig. 5. H performs better than S_0 and R ($c = 2$, $k = 1000$, $p_i = \frac{1}{k}$).
5.1 Expected Time To Next Discovery

Given a systematic testing technique S and a program P, we can compute the number of partitions that have to be discovered using random testing R until the expected time to the next discovery exceeds the sampling cost c of S. In the following, we discuss a simple example when we are given that $p_i = 1/k$ for all $i: 1 \leq i \leq k$.

Lemma 9 (Expected Time to Switch ($S_0, p_i = \frac{1}{k}$))

Given sampling cost c of S and a program P where $p_i = \frac{1}{k}$ for all $i: 1 \leq i \leq k$, the expected time to the next discovered partition exceeds c after $(k-1/c)$ partitions have been discovered using R.

Proof: Let the random variables T_j, $1 \leq j \leq k$ denote the time units taken from the discovery of the j-1-th partition to the discovery of the j-th partition. Moreover, let p denote $\frac{1}{k}$. The following are easy to observe.

\[E[T_1] = 1 \]

\[E[T_2] = 1(1-p) + 2p(1-p) + 3p^2(1-p) + \ldots = 1/(1-p) \]

\[E[T_3] = 1(1-2p) + 2 \cdot 2p(1-2p) + 3(2p)^2(1-2p) + \ldots = 1/(1-2p) \]

\[\ldots \]

\[E[T_j] = 1/(1-(j-1)p) \quad \text{where } 1 \leq j \leq k \]

Let j_0 be the number of partitions that have to be discovered using R until the expected time to discover the next partition exceeds c. Then,

\[E[T_{j_0+1}] > c \]

Using Eqn. (69) and substituting back the value of p:

\[j_0 > k(1-1/c) \]

Note, from the above proof that for R, $E[T_j]$ increases strictly with j. We show that this is the case for non-equisized partitions, too.

Lemma 10 (Monotonicity of R)

Let the random variables T_j, $1 \leq j \leq k$ denote the time units taken from the discovery of the j-1-th partition to the discovery of the j-th partition for R. Then for all $i, j : 1 \leq i < j \leq k$, we have $E[T_i] < E[T_j]$. That is, $E[T_j]$ increases strictly with j.

Proof: Let $d_j, 1 \leq j \leq k$ denote the probability that R discovers a partition after the discovery of $j-1$ partitions. Note that $d_1 = 1$. Because with every discovery, the size of the space of undiscovered partition decreases and hence the probability to sample from that space also decreases, we have

\[d_j < d_i \quad \text{for all } i: 1 \leq i < j \leq k \]

So, the expected time for the j-th discovery is given as

\[E[T_j] = 1 \cdot d_j + 2(1-d_j)d_j + 3(1-d_j)^2d_j + \ldots = 1/d_j \]

Thus from (72) we have

\[E[T_i] < E[T_j] \quad \text{for all } i: 1 \leq i < j \leq k \]

5.2 Efficiency of H over R and S

We can show that the hybrid testing technique H, at any point in time n, has discovered at least as many partitions as both its constituent techniques R and S in expectation.

Proposition 3

Let $1 \leq j \leq k$ and suppose $n_s(j), n_r(j)$ and $n_h(j)$ are random variables denoting the respective times taken by R, S and H to discover j partitions. Then

\[E[n_h(j)] \leq E[n_s(j)] + E[n_r(j)] \]

Proof: By construction, H employs R and switches to S when the cost to discover the next partition using R exceeds c. Given a program P, let j_0 be the expected number of partitions discovered before H switches from R to S. Let T^h_j, T^r_j, T^s_j for all $j : 1 \leq j \leq k$ be the random variables denoting the time units taken from the discovery of the j-1-th partition to the discovery of the j-th partition, by H, R, and S, respectively. Note, that for all $j : 1 \leq j \leq k$

\[T^h_j = c \]

We distinguish two cases: (i) $j \leq j_0$ and (ii) $j > j_0$. If (i) $j \leq j_0$, according to Alg. 1, $E[T^h_j] = E[T^s_j]$, and since H hasn’t made the switch from R to S_0 we have

\[E[T^h_j] < c \]

\[E[T^r_j] < E[T^s_j] \quad \text{by Eqn. (76)} \]

If (ii) $j > j_0$, according to Alg. 1, $E[T^h_j] = E[T^r_j]$. From Lemma 10, we know that $E[T^r_j]$ strictly increases with j. Since, $E[T^s_{j_0+1}] > c$, we know that for all $j : j_0 < j \leq k$

\[c < E[T^s_j] \]

\[E[T^r_j] < E[T^s_j] \quad \text{by Eqn. (76)} \]

\[E[T^h_j] < E[T^r_j] \quad \text{by Alg. 1} \]

In both cases (i) and (ii), we have shown that for all $j : 1 \leq j \leq k$

\[E[T^h_j] \leq E[T^r_j] \quad \text{and} \]

\[E[T^h_j] \leq E[T^s_j] \]

Thus,

\[\sum_{i=1}^{j} E[T^h_i] \leq \sum_{i=1}^{j} E[T^s_i] \]

\[E \left[\sum_{i=1}^{j} T^h_i \right] \leq E \left[\sum_{i=1}^{j} T^s_i \right] \quad \text{[by lin. of exp.]} \]

\[E[n_h(j)] \leq E[n_s(j)] \]

Similarly, we can show that $E[n_r(j)] \leq E[n_s(j)]$.

6 Simulation Experiments

While the efficiency of the systematic technique S_0 is independent of the distribution of partition size, the random technique R performs differently as p varies. Intuitively, R is likely to discover bigger partitions earlier than smaller ones. Using simulation, we study the impact of different distributions of p on the efficiency of R and the maximum cost c_0 of S_0 such that S_0 remains at least as efficient as R.

The efficiency of S_0 is independent of the distribution of partition size since i) we prove a linear increase of errors discovered / confidence achieved over time and ii) all partitions are discovered in kc time units.
Setup. All simulations were conducted in R on a MacBook Pro with 16GB of memory and a 2.3GHz i7 CPU. We compute the mean of 1000 repetitions of each experiment. The number of partitions was fixed at \(k = 1000 \). In total, we performed 24,000 simulation experiments (2 testing goals, 3 testing techniques, 4 distributions, and 1000 repetitions).

Testing Techniques. We implemented the three techniques discussed in this article. \(\mathcal{R} \) samples with replacement bigger partitions more likely than smaller partitions taking 1 time unit per sampling. \(\mathcal{S}_0 \) samples without replacement bigger partitions as likely as smaller partitions. In Col. 2 and 4, \(\mathcal{S}_0 \) takes \(c=5 \) time units per sampling. \(\mathcal{H} \) works similar as in Alg. 1. However, it switches when the actual time-since-last-discovery exceeds \(c \cdot c \), which might be slightly after the expected time when time-to-next-discovery exceeds \(c \).

Distributions of \(p_i \). We chose the uniform, a random, and two long-tail distributions for the size of the partitions \(\mathbb{P}(D_i = p_i | D) \). The histogram featuring the frequencies of partition sizes is shown for each distribution in the first row of Figure 6. The uniform distribution is computed as \(p_i = 1/k \) for every \(i : 1 \leq i \leq k \). The random distribution assigns each partition a random size. The long-tail distributions are instances of the Zipf distribution (for \(s = 0.5 \) and \(s = 2 \)). Intuitively, Zipf yields a very large number of very small partitions and a very small number of very large partitions.

Distributions of \(\theta_i \). There are a total of 20 error-revealing partitions that are selected without replacement from the set of all \(k = 1000 \) partitions where a partition \(D_i \) is selected with probability \(1 - p_i \). In other words, the smaller partitions are more likely to be error-revealing. The 980 remaining partitions do not reveal an error.

Results. Figure 6 shows for each distribution (Col. 1), the efficiency of \(\mathcal{R} \), \(\mathcal{S}_0 \), \(\mathcal{H} \) and the maximum cost of \(\mathcal{S}_0 \) if the goal is to achieve a given degree of confidence \(x \) in minimal time (Col. 2-3), and the efficiency of \(\mathcal{R} \), \(\mathcal{S}_0 \), \(\mathcal{H} \) and the maximum cost of \(\mathcal{S}_0 \) if the goal is to expose a maximal number of errors within a given time budget \(\hat{n} \) (Col. 4-5). We observe:

- **(O1)** The hybrid testing technique \(\mathcal{H} \) has a similar efficiency than the most efficient of both, \(\mathcal{R} \) or \(\mathcal{S}_0 \).

 Column 2: For all distributions, \(\mathcal{H} \) can establish the degree of confidence \(x = 1.0 \) significantly earlier than \(\mathcal{S}_0 \). Except for Long-tail 2, \(\mathcal{H} \) is always more efficient than both its constituent techniques, \(\mathcal{R} \) and \(\mathcal{S}_0 \), in terms of achieving a degree of confidence \(x \) in minimal time. Only for Long-tail 2 and for some period of time does \(\mathcal{H} \) achieve slightly less confidence than the most efficient of both \(\mathcal{R} \) or \(\mathcal{S}_0 \).

 Column 4: For all distributions except Long-tail 2, \(\mathcal{H} \) is more efficient than both its constituent techniques in terms of revealing a maximal number of errors in a given time. For Long-tail 2, at any time \(\mathcal{H} \) has a similar efficiency than the most efficient of \(\mathcal{R} \) or \(\mathcal{S}_0 \).

- **(O2)** The asymptotic bound on \(c_0 \) is not very tight if the goal is to achieve confidence \(x \) in minimal time.

 For instance, given degree of confidence \(x = 0.99 \), for all of the distributions the actual maximum cost \(c_0 \) of \(\mathcal{S}_0 \) never exceeds 7 units of time while our upper bound on \(c_0 \) gives about 37 units of time. In other words, for \(x > 0.99 \) our asymptotic bound allows \(\mathcal{S}_0 \) to be more than five times slower than it actually should be before it guarantees \(\mathcal{R} \) to be more efficient than \(\mathcal{S}_0 \). Consequently, our upper bound is not tight.
- (O3) \(c_0 \) increases with the skewness of the dist. of \(p_i \) if the goal is to expose max. errors in \(n \) time units. Specifically, random testing \(R \) performs poorest for the Long-Tail 2 distribution, where the majority of the \(10^{-3} \) partitions cover less than \(10^{-6} \)-th of the input space. \(R \) exposes less than 3 of 20 errors after 10,000 sampled test inputs, on average (Row 4, Col. 4). This allows \(S_0 \) to take up to \(c_0 = 100 \) times longer to sample a test input than \(R \) while still exposing at least the same number of errors in \(n = 10,000 \) time units (Row 4, Col. 5).\(^5\) Our theoretical bound is magnitudes higher than the actual value of \(c_0 \) for \(S_0 \).

7 Practical Implications
To analyze the efficiency of automated testing in general, we construct a mathematical, probabilistic model of automated testing that hinges upon assumptions made about the real world. After repeating these assumptions, we discuss (A) their validity for realistic testing techniques, and (I) the implications of our theoretical results on the real world.

- (A1) \(S_0 \) can prove the absence of errors eventually.

In practice, realistic systematic testing techniques \(T_0 \) are much less effective than our hypothetical, ideal technique \(S_0 \). For example, consider a (high quality) test suite that is 100% branch coverage, MCDC coverage, path coverage and mutation-adequate, and also executes successfully on the program. Can we conclude that the program is correct? – No, because the absence of a failing test case does not imply the absence of errors in the program [7]. This is because complete certainty about the “true” error-based partitioning is unattainable [20]. Consequently, \(T_0 \) with some degree of uncertainty samples some partitions several times and others not at all. The degree of uncertainty depends directly on the analysis cost. The more comprehensive the analysis, the more effective is the testing technique. It follows that

\[T_0 \text{ is likely less than the maximum sampling cost } c_0 \text{ that we give for } S_0. \]

In practice, to approach the effectiveness of \(S_0 \), we need to increase the analysis cost which in turn decreases the efficiency of the testing technique!

- (A2) \(S_0 \) takes constant time \(c \) to sample one test input.

In practice, the sampling cost for realistic systematic techniques \(T_0 \) may be a function that increases with testing time or program size. For example, consider coverage-based testing. It requires almost no analysis to sample an initial set of inputs that cover much of the source code. However, it becomes increasingly difficult to cover the remaining few uncovered code elements [30], [31]. So, the sampling of the test inputs takes increasingly longer. However, the average sampling cost for \(T_0 \) must remain below \(c_0 \) for \(S_0 \! \)

\[\text{Given the same sampling cost for the first test input, the maximum sampling cost for realistic techniques } T_0 \text{ is likely less than } c_0 \text{ for } S_0. \text{ The time to sample a test input for } T_0 \text{ likely increases as a function on time, number of tests generated, or the size of the program. In that case, } T_0 \text{ becomes less efficient over time while } S_0 \text{ remains just as efficient.} \]

- (A3) Input partitioning into error-based subdomains.

In Def. 1, we define error-based partitioning to set up our investigations of testing efficiency in terms of errors revealed and the confidence achieved in the program’s correctness. However, there is no reason why the partitioning should not be target-based, path-based, or differential, for example. Target-based partitioning yields subdomains for which all inputs either do or do not reach a certain target in the source. Differential partitions [15] are difference- and equivalence-revealing subdomains in the context of regression testing. Path-based partitioning [11], [32] groups all inputs into one partition that exercise the same path.

\[\text{For example, consider a (high quality) test suite that is } \]

\[\text{likely increases as a function on time, number of tests executed,}
\]

\[\text{and a random testing tool } R \text{ that takes } 10 \text{ms to generate and execute a test case. Finally, we only have one hour (} \text{time, chosen uniformly at random from paths not exercised}) \]

\[\text{and a random testing tool } R \text{ that takes } 10 \text{ms to generate and execute a test case. Finally, we only have one hour (} \text{time, chosen uniformly at random from paths not exercised}) \]

\[\text{generate and execute a test case. Finally, we only have one hour (} \text{time, chosen uniformly at random from paths not exercised}) \]

\[\text{In practice, finding } q_{\text{min}} \text{ while possible may not be viable; e.g., using symbolic execution and model counting the number of inputs exercising a certain path can be computed [32].} \]

- (A4) \(S_0 \) samples error-based partitions in random order.

In Definition 7, we define testing technique \(S_0 \) such that it samples each partition exactly once (cf. (A1)). However, we also specify that the partition that is sampled next is chosen uniformly at random. This assumption holds for instance for symbolic execution tools that exercise each path one at a time, chosen uniformly at random from paths not exercised. This assumption may not hold for other testing techniques that discover large partitions earlier than small partitions.

\[\text{In practice, finding } q_{\text{min}} \text{ while possible may not be viable; e.g., using symbolic execution and model counting the number of inputs exercising a certain path can be computed [32].} \]

- (A5) \(R \) samples from input space uniformly at random.

In our probabilistic analysis, we assume that \(R \) chooses an input uniformly at random from the set of all program inputs. In practice, it is unlikely that any existing random test generator satisfies this assumption [19]. For instance, there may be bias towards producing small inputs, or dependence among the sampled tests such that new inputs are produced from previous valid ones in a feedback-directed manner.

- (A6) Input space is bounded; errors are deterministic.

\[\text{Boundedness: In practice, no program can take infinite input.}
\]

\[\text{Hence, our assumption that the program’s input space is bounded is realistic. The input domain can be arbitrarily large with an arbitrarily large number of error-based partitions that may never all be discovered in any practical time.}
\]

\[\text{Yet, our bounds are applicable since } k \text{ and } |D| \text{ are finite.} \]
Determinism: We assume that executing a test case that failed once, does always fail for the tested (unmodified) program. This is also satisfied if a model that renders a test execution deterministic, like a specific thread schedule, is constituent of the test case (and input space, respectively). However, for many test generators indeterminism is an open problem.

- (A7) Works correctly for \(x\% \) of its valid, typical input. Consider a program that takes XML files as input. Then, 99.99 \(\cdots \) 99\% of random strings are effectively invalid input. It may seem that sampling even one test input using \(R \) achieves degree of confidence \(x > 0.999 \) suggesting that the program works correctly for more than 99.9\% of its input. However, as long as no program analysis is involved we can give both test generators the same power while retaining the validity of our efficiency analysis. If we assume \(S_0 \) to generate only valid input, then we should assume \(R \) to generate only valid input, too. After all, we have \(c \) of \(S_0 \) represent the additional time for program analysis and defined to be a factor of the time it takes \(R \) to sample a (valid, typical) input. Thus, our bound holds even if we want to establish that the program works correctly for \(x\% \) of its valid, typical input.

\[(15) \text{If we want to establish whether any program works correctly for } x = 99\% \text{ of its input, we can compute a bound } c_0 \text{ on the time that a realistic technique } T_0 \text{ takes on average to generate and execute a test case and check its outcome such that some random test generator tool } R \text{ is expected to achieve } x \text{ earlier than } T_0 \text{ if } T_0 \text{ exceeds } c_0 = 3^4 \text{ times the time that } R \text{ takes on average to generate and execute a test case and check its outcome. } T_0 \text{ has the same sampling scheme as } S_0 \text{ but may be less effective.}\]

The „class of nines” for a degree of confidence \(x \) is directly proportional to the magnitude of the maximum analysis cost. The class of nines for degree of confidence \(x \) is computed as \(\left\lfloor -\log_{10}(1 - x) \right\rfloor \), where \(\lfloor \cdot \rfloor \) is the floor function.

<table>
<thead>
<tr>
<th>confidence (x)</th>
<th>class of nines</th>
<th>bound on (c_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>1 nines</td>
<td>(c_0 < 4.1 \times 10^4)</td>
</tr>
<tr>
<td>99%</td>
<td>2 nines</td>
<td>(c_0 < 4 \times 10^4)</td>
</tr>
<tr>
<td>99.9%</td>
<td>4 nines</td>
<td>(c_0 < 4 \times 10^4)</td>
</tr>
<tr>
<td>99.99%</td>
<td>6 nines</td>
<td>(c_0 < 4 \times 10^4)</td>
</tr>
</tbody>
</table>

8 Conclusion

In this paper we presented strong, elementary, theoretical results about the efficiency of automated software testing. For thirty years [16], we have struggled to understand how automated random testing and systematic testing seem to be almost on par [4], [5], [7], [17], [18], [33], [34].

Researchers in Software Engineering have spent much time and effort developing highly effective testing techniques; in fact, so effective that we can use testing even to prove the correctness of a program [26], [35]. In practice however, companies develop very large programs and have only limited time for testing. Given the choice of two testing tools, the developer would choose that which produces good results faster. Efficiency is key for testing tools.

In this work, we have provided a uniform mathematical framework for modeling the efficiency of software testing which is elementary and intuitive. In this framework, we showed that even a highly effective systematic testing technique is inefficient compared with random testing if the time for program analysis and test generation execution is relatively too high. We explored two notions of testing efficiency that may be the main goals of automated software testing: i) to show in minimal time the correctness of a program for a given percentage of the program's input domain (Sec. 3) and ii) to discover a maximal number of errors within a given time bound (Sec. 4).

We defined a systematic testing technique \(S_0 \) that is most effective in terms of both the above notions. Subsequently, we explored the efficiency of \(S_0 \) again in terms of both the above notions. We also discussed how these results generalize, e.g., if the goal is to reach many targets, exercise many paths, or expose many differences, and how these results apply to realistic testing techniques (Sec. 7): Since realistic techniques with the same sampling scheme and cost as \(S_0 \) are certainly less effective, they are trivially also less efficient. We believe that our work can also provide the formal framework to explore the efficiency of testing techniques other than \(S_0 \).

For both goals of efficient software testing, we showed that there exists a bound on the time that \(S_0 \) can take per test case beyond which \(R \) performs better than \(S_0 \) on the average. Moreover, if the goal is to achieve degree of confidence \(x \) in minimal time, this bound depends asymptotically only on \(x \). This has implications on the scalability of \(S_0 \): If the time \(c \) to analyze the program increases with program size, for any testing technique there exists a program large enough that \(R \) is always expected to achieve \(x \) earlier.

Using insights from the above, we designed a hybrid testing technique \(H \) that starts with \(R \) but switches to \(S_0 \) at that precise moment when \(S \) is expected to discover the most number of partitions per unit time. It is different from earlier seeding techniques [36], [37] (e.g., run \(R \) for 60 sec, then run \(S \) in that \(H \) is clearly more systematic about when to switch to achieve optimal efficiency. We showed that \(H \) performs similarly or better than the most efficient of both. That \(H \) can be instantiated with techniques other than \(S_0 \) demonstrates that the technique is robust and generic.

Finally, we conducted 24,000 simulation experiments with varying parameters. We observed that i) \(H \) has a similar efficiency than the most efficient of both, \(R \) or \(S_0 \), ii) the asymptotic bound on \(c_0 \) is not very tight if the goal is to achieve confidence \(x \) in minimal time, and iii) \(c_0 \) can be significantly larger if the input space is partitioned such that there is a small number of huge and a very large number of very tiny partitions if the goal is to expose a maximal number of errors in \(\hat{t} \) time units.

Acknowledgments

We would like to thank our colleagues Abhijeet Banerjee and Dr. Konstantin Rubinov for the engaging discussions about this paper. We also thank the anonymous reviewers for their valuable feedback. This work was partially supported by Singapore’s Ministry of Education research grants MOE2010-T2-2-073 and MOE-2011-T2-2-012. The first author is funded by an ERC advanced grant ‘SPECMATE’.