
Efficiently Scrapping Boilerplate Code in OCaml

Dmitri Boulytchev Sergey Mechtaev
St.Petersburg State University

Saint-Petersburg, Russia
dboulytchev@gmail.com mechtaev@gmail.com

Introduction
We present an adaptation of a well-known generic programming

technique, often referred to as “Scrap Your Boilerplate”, or SYB,
to Objective Caml language. Since the original implementation for
Haskell essentially relies on the presence of type classes, the first
task in the course of adaptation is to express the main primitives of
this approach in a way natural for Objective Caml. Besides that we
make use of specialization and continuation-passing style (CPS) to
improve the performance of our implementation. CPS is used as
a common way to provide a tail-recursive implementation while
specialization allows us to lift type-discriminated computations
(natural to SYB) from the data level to the type level. As a result
the presented version of SYB demonstrates good performance in
comparison with non-generic hand-written code.

1. “Scrap Your Boilerplate”
“Scrap Your Boilerplate” is an attractive generic programming

pattern originally developed for Haskell [Lämmel and Peyton Jones
2003, 2004, 2005]. We describe this approach in a nutshell by a
simplified (and a bit artificial) example.

Consider the following definition for the type of simple arith-
metic expression:

type expr =
Add of expr ∗ expr

| Neg of expr

| Const of int

| Var of string

Suppose we need two transformations: the first increments each
constant in the expression, the second appends some suffix to the
name of each variable.

Hand-written versions of both transformations are given below:

l e t rec increment = function
Add (x , y) −> Add (increment x , increment y)

| Neg x −> Neg (increment x)
| Const x −> Const (x + 1)
| Var v −> Var v

l e t rec suffixize = function
Add (x , y) −> Add (suffixize x , suffixize y)

| Neg x −> Neg (suffixize x)
| Const x −> Const x

| Var v −> Var (v ˆ ”_suffix”)

It is easy to see that both these functions share the same pattern:
the traversal of a data structure. The specific actions performed by
each of these functions are discriminated according to the type of
some sub-value of traversed data structure.

SYB allows to encapsulate the common traversal code in a few
separate per-type generic functions. Both transformations of afore-
mentioned example can be expressed via the following function
(indexed by the type t):

gmapTt : (∀α.α → α) → t → t

Informally speaking, gmapT f x performs a shallow traversal
of the data structure specified by x and applies a function f to
each of its immediate successors. Since the argument and the result
of f both have the same type this allows to consider gmapTt as
transformer of type t into itself. For out example

gmapTexprf = function Add (x , y) −> Add (f x , f y)
| Neg x −> Neg (f x)
| Const i −> Const (f i)
| Var n −> Var (f i)

The first argument of gmapT is a polymorphic function; the
key feature of the approach in question is the way this function
is constructed. In the SYB settings this function is acquired by the
lifting a type-specific transformer. In abstract terms lifting can be
considered as an operator with the following type1

lift : (t → t) → ∀α.α → α

and the following semantics:

lift (f : t → t) = λx : α .

{
f x , α = t
x , otherwise

Informally, lifted function performs type-analysis at the run-
time: if the argument actually has the type t then f is applied; oth-
erwise the argument is returned unchanged.

The final component of the solution is the function which turns
the shallow traversal into the deep one:

everywhere f (x : t) = f (gmapTt (everywhere f) x)

Under these assumptions, both functions from our example can
be expressed in the following manner:

everywhere(lift(λx : int . x+ 1))

everywhere(lift(λx : string . x+ ” suffix”))

In more general terms SYB allows to propagate some type-
discriminated type-preserving transformations through arbitrary
data structures. For example, given lifted version of integer incre-
ment one can easily increment all integers within a data structure
regardless of its type (provided that that data structure implements
some conventional interface).

In the original implementation of SYB for Haskell all needed
functionality is encoded using Haskell-specific features like type
classes and rank-2 types. Besides generic transformations (ex-
pressed via functions gmapT/everywhere) the original imple-
mentation introduces their monadic version and generic queries

1 In the original paper lifting operators were denoted by mkT, mkQ etc.

gmapQ/everything which allow to collect or extract some data of
interest from the data structure. In the rest of this paper we concen-
trate on simple non-monadic transformations since all other func-
tionality of SYB can easily be reconstructed from their implemen-
tation.

2. Encoding SYB in OCaml
In this section we describe the direct implementation of SYB for

OCaml. This implementation almost directly follows the Haskell
version with the exception of type markers which encode type-safe
cast in a different manner.

2.1 Type Equality and Type Markers
We start from the well-known (weak) type equality encod-

ing [Baars and Swierstra 2002]. Such an encoding allows us to
express the equality of types in terms of OCaml values. Namely,
we utilize the following definitions:

type (’a , ’b) eq

val refl : unit −> (’a , ’a) eq

val symm : (’a , ’b) eq −> (’b , ’a) eq

val trans : (’a , ’b) eq −> (’b , ’c) eq −> (’a , ’c) eq

val coerce : (’a , ’b) eq −> ’a −> ’b

Here the type (’ a , ’b) eq witnesses the equality of types
’a and ’b. The first three functions encode the axioms of the
equivalence relation; the fourth one reifies a type equivalence into
a coercion function. We omit the standard implementation due to
space considerations.

Now, consider the following declarations:

type ’a marker

val make : unit −> ’a marker

val compare :
’a marker −> ’b marker −> (’a , ’b) eq option

Here ’a marker represents a type marker. We are going to
introduce a separate type marker — some dedicated value of the
type t marker — for each relevant type t:

l e t int_m : int marker = make ()
l e t string_m : string marker = make ()
l e t expr_m : expr marker = make ()

Now we can use the comparison function compare to decide
whether two type markers correspond to the same type. As a result
we either obtain type equality witness or nothing.

There are several possible design choices for the exact imple-
mentation of type markers and the comparison function; as for the
simplified case described above the following variant may be suffi-
cient:

type ’a marker = unit ref

l e t make () = ref ()
l e t compare x y =

i f x == y then Some (Obj .magic (refl ())) else None

Similarly to the original SYB implementation, which relies on
unsafeCoerce we have to use Obj .magic once.

In the actual implementation we extended the simplified version
in some way to support polymorphic type instantiations; for the
same reason we also had to replace the weak type equality with
Leibniz one. We omit the details for now.

2.2 Lifting
Next, we have to encode the lifted transformations, i.e. the trans-

formations obtained from some function by extending its domain:

type lifted = {f : ’a . ’a marker −> ’a −> ’a}

This definition utilizes the OCaml encoding for rank-2 functions
which are an essential prerequisite for SYB implementation. The
lifted function takes an argument of arbitrary type together with
marker of that type and performs type case analysis which we better
illustrate by the implementation of lifting primitive:

l e t lift (m : ’a marker) (f’ : ’a −> ’a) = {
f = fun n −>

match compare m n with
| None −>

fun x −> x

| Some e −>
l e t forward = coerce (symm e) in
le t backward = coerce e in
fun x −> backward (f’ (forward x))

}

When we lift a function f’ we supply as well the marker of
its actual argument type. This marker is kept in the closure of
lifted function and then used to compare with the type marker of
argument passed on invocation. Consider the following example:

l e t f = lift int_m (fun x −> x+1)
l e t a = f .f int_m 1
l e t s = f .f string_m ”abc”

Here we lift integer increment function; the lifted version then
can be applied to the arguments of arbitrary types. For all types
other than integer it operates as identity, so a equals “2” and s

equals ”abc”.
Note that one cannot go wrong by specifying the invalid type

information. Neither

f .f int_m ”abc”

nor

f .f string_m 1

would pass the typechecker.

2.3 Type Information and Transformers
To complete SYB implementation we have to supply a (per-

type) structure which encapsulates all functionality needed to per-
form generic transformations. This structure is represented by the
polymorphic type ’a typeinfo. To make it possible to perform
transformations with some type t one needs to provide a value of
type t typeinfo. The definition of ’a typeinfo is as follows:

type ’a typeinfo = {
marker : ’a marker ;
gmapT : transform −> ’a −> ’a

}
and transform = {
transform : ’a . ’a typeinfo −> ’a −> ’a

}

Type ’a typeinfo contains the type marker for the type ’a and
the function gmapT, which is similar to the corresponding function
from the original SYB. Since gmapT should as well transform all
subvalues of its argument, which can have different types, an ap-
propriate polymorphic traversal function should be provided. This
function has the type transform; it in turn performs a traversal us-
ing appropriate typeinfo. We illustrate this construction by pro-
viding an examples of type information for some typical cases.

For the shallow types the definitions are as follows:

l e t int = {
marker = int_m ;
gmapT = fun _ x −> x

}

l e t string = {
marker = string_m ;
gmapT = fun _ x −> x

}

Indeed, for these types no deep traversal is possible, so gmapT

operates trivially.
For non-recursive algebraic data types we should couple their

type markers with the function which performs pattern matching
and applies transformation to the matched subvalues, providing
appropriate type information. The following example illustrates
this case:

type t = A of int | B of string

l e t t_m : t marker = make ()
l e t t = {
marker = t_m ;
gmapT = fun t −>

l e t ti = t .transform i in
le t ts = t .transform string in
function
| A i −> A (ti i)
| B s −> B (ts s)

}

Finally, type information for the recursive types is provided by
a recursive function:

l e t expr =
l e t rec inner () = {
marker = expr_m ;
gmapT = (

fun t −>
l e t te = t .transform (inner ()) in
le t ti = t .transform int in
le t ts = t .transform string in
function
| Add (x , y) −> Add (te x , te y)
| Neg x −> Neg (te x)
| Const i −> Const (ti i)
| Var s −> Var (ts s)

)
}
in inner ()

Note that these definitions are fully type-driven; it is possible to
generate them directly from the type descriptions. We implemented
the syntax extension in the form

datatype typeid1 = type expr1
and typeid2 = type expr2
. . .

which generates type declarations as well as type information
and markers.

With these definitions it is possible to express the function
everywhere from SYB which combines generic traversal with the
“interesting function”:

l e t everywhere ti f =
l e t rec transform : ’a . ’a typeinfo −> ’a −> ’a =

fun ti x −> f .f ti .marker (ti .gmapT {transform} x)
in
transform ti

Now we can rewrite the example from the beginning of the
paper:

l e t increment = everywhere expr

(lift int_m (fun i −> i+1))

l e t suffixize = everywhere expr

(lift string_m (fun s −> s ˆ ”_suffix”))

The difference between this implementation and the original
one is that here one needs to specify the type information explicitly
while in Haskell the compiler infers it automatically. Nevertheless,
as we pointed out, invalid type specification would not pass the
typechecker. So from the user point of view the difference in im-
plementations is just as the difference between the type checking
and type inference.

3. Optimizations
The naı̈ve implementation described in the previous section

performs poorly by mean of both space and time consumption.
This deficiency is typical to the original SYB implementation as
well — according to some reports the slowdown of SYB-based
vs. hand-coded implementation can reach two orders of magni-
tude [Chakravarty et al. 2009]. We used two speed-up techniques:
CPS and specialization. Since conversion into the tail-recursive
form via CPS is rather a standard transformation we will not con-
sider it here.

The main reason for the slowdown is that in the course of a
generic traversal the lifted transformation function is applied to
the each element of the data structure. At the moment of each
application type markers are compared and a type-specific function
is selected. Moreover it is always possible to construct an artificial
example where the hand-coded implementation would outperform
the naı̈ve one with the arbitrarily chosen factor. To achieve this
result it would be enough to choose the data structure in such a
way that the “interesting” values would be distributed sufficiently
sparse. In a hand-coded version it is easy (and quite natural) to
avoid traversing datatypes which lack the interesting values while
in the naı̈ve implementation it is generally impossible.

In this section we present two specialization techniques which
overcome the both mentioned above deficiencies.

3.1 Specialization on Data Type
The idea of specialization of this kind explores the observation

that it is sufficient to pre-calculate all type-discriminated compar-
isons and selections by inspecting the type of a data structure in-
stead of the data structure itself. So generally we reduce the num-
ber of required type-discriminated decisions from the size of a data
structure to the size of its type.

Recall the definition of function everywhere from the previous
section:

l e t everywhere ti f =
l e t rec transform : ’a . ’a typeinfo −> ’a −> ’a =

fun ti x −> f .f ti .marker (ti .gmapT {transform} x)
in
transform ti

Clearly, this version performs the traversal of the data structure
(note the subexpression “ti .gmapT {transform} x”) and then
applies lifted function to the result. The idea of optimization is
to separate traversal function construction from the traversal itself.
The first attempt naturally would be as follows:

l e t compose f g x = f (g x)
l e t everywhere ti f =

l e t rec transform : ’a . ’a typeinfo −> ’a −> ’a =

fun ti −>
compose

(f .f ti .marker)
(ti .gmapT {transform})

in
transform ti

Here we first construct the traversal function using the traversal
functions for subvalues, lifted transformation and composition op-
erator and then return this function as a result. Unfortunately this
version loops on a recursive types so we need to act more accurate.
Namely, we utilize the properties of depth-first traversal to mem-
oize the transformations for those nodes of type graph which has
already been involved into the traversal. To implement this tech-
nique we introduce a mapping from type markers into traversal
functions. Note that in this mapping the type of the mapped value
depends on the type of the key. The mapping itself can easily be
implemented using type markers; we omit the details here. Un-
der these assumptions the specializing implementation of function
everywhere looks like the following:

l e t everywhere ti f =
l e t context = T .create () in
le t rec transform : ’a . ’a typeinfo −> ’a −> ’a =

fun ti −>
l e t m = ti .marker in
le t f = f .f m in
try

le t tr = T .find context m in
compose f (fun x −> !tr x)

with Not_found −>
l e t tr = T .stub () in
T .add context m tr ;
tr := ti .gmapT {transform};
T .remove context m ;
compose f !tr

in
transform ti

Here we create an empty mapping between type markers and
transformation functions and then start to traverse the graph of the
type in a depth-first order.

For each encountered type we first try to retrieve the associated
transformation from the context. If there is some mapping for the
given type marker then we just compose the acquired transforma-
tion with the lifted function. This situation corresponds to the event
of processing a backward edge in the graph of the type.

If there is no mapping for the given type marker yet then we
associate that type marker with the stub which is just a temporary
value of appropriate type. This value is then modified in-place
by the result of calculation of transformation function. Finally we
compose that transformation with the lifted function and remove
the association from the context.

The technique used here is in fact a version of witnessing fix-
point calculations [Karvonen 2007].

3.2 Specialization on Interesting Function
The next optimization allows to completely avoid the traversal

of a whole region of data structure if it can be proven that no values
of interest can occur within that region. To distinguish regions
of interest we again can use type information. Namely, we avoid
traversal of a data region if the type of interest does not have
occurrences in the type of that region. For example, if we have
function lift float_m (fun x −> x +. 1.0) then we can skip
traversal of the regions of type expr since no floats can appear
within data of that type.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 20.5 21 21.5 22 22.5 23 23.5 24

hand-coded
without specialization

type specialization
type and function specialization

Figure 1. suffixize benchmark

The implementation of this optimization is a bit cumbersome
since actually we do not have explicit representation of types
in the course of specialization. Nevertheless the definition of
everywhere can be rewritten to incorporate this optimization as
well; we do not present it here due to space considerations.

4. Results
We evaluated the performance of our implementation on the

following benchmarks:

• suffixize — appends a given suffix to all variable names in
an arithmetic expression;

• substitute — replaces all occurences of a given variable with
some constant value;

• increase— an implementation of canonical example of salary
increment from the original SYB paper.

Four implementations were compared for all three benchmarks:

• hand-coded — an ad-hoc handcoded implementation;

• without-specialization — the naı̈ve implementation of
SYB for OCaml;

• type-specialization — implementation with specializa-
tion on type;

• type and function specialization — implementation
with specializations on both type and function.

All these variants were implemented in a continuation-passing
style.

The results of the evaluation are shown on the Figures. 1-3. On
each graph horizontal direction corresponds to the size of trans-
formed data structure (in a logarithmic scale); vertical axis corre-
sponds to the transformation time in seconds.

The evaluation shows that our implementation of SYB with
both aforementioned optimizations performs almost as good as
handcoded.

5. Limitations and Drawbacks
The implementation we discussed in the previous sections suf-

fers from the following limitations.
First, it does not allow to process cyclic or shared data structures

properly. For example, an attempt to traverse an infinite list will
result in infinite loop. Similar problem will arise during processing

 0

 50

 100

 150

 200

 250

 300

 350

 20 20.5 21 21.5 22 22.5 23 23.5 24

hand-coded
without specialization

type specialization
type and function specialization

Figure 2. increase benchmark

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 20.5 21 21.5 22 22.5 23 23.5 24

hand-coded
without specialization

type specialization
type and function specialization

Figure 3. substitute benchmark

of shared data — each shared region will be processed multiple
times. Nevertheless, we believe that an ad-hoc solution, which we
consider as a future improvement, can be found.

Another problem arises from the fact that for testing the type
equivalence we use type marker equality that is stronger then the
type equivalence itself. This means that equal types may have dif-
ferent type markers. Even if all markers are provided transparently
to the end-used by the syntax extension, there are still some cases
when this drawback can affect the behavior. For example, our im-
plementation is functor-sensitive. Consider the following code:

module F (X : sig type t end) =
struct

datatype t = A of X .t | B

end
module A = F (struct type t = int end)
module B = F (struct type t = int end)

Despite the types A .t and B .t are equivalent, their type markers
are not equal, which can lead to a silent (and hard to detect)
misbehavior of a generic traversals. We consider this drawback as
unavoidable for the current implementation; as a weak workaround
an accurate case analysis can be provided for users to properly

describe the use cases when the genericity can be used with no
harm.

Acknowledgements
We thank Ilya Sergey for his comments and suggestions on the

draft version of this abstract.

References
Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing.

In Proceedings of the seventh ACM SIGPLAN international con-
ference on Functional programming, pages 157–166, 2002.

Manuel M. T. Chakravarty, Gabriel C. Ditu, and Roman Leshchin-
skiy. Instant generics: Fast and easy. 2009.

Vesa A.J. Karvonen. Generics for the working ml’er. In Proceed-
ings of the 2007 workshop on Workshop on ML, pages 71–82,
2007.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A
practical design pattern for generic programming. In Proc. of
the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003), pages 26–37, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. In Proceedings of the
ninth ACM SIGPLAN international conference on Functional
programming, pages 244–255, 2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate
with class: extensible generic functions. In Proceedings of the
tenth ACM SIGPLAN international conference on Functional
programming, pages 204–215, 2005.

