
A Scalable and Nearly Uniform Generator of
SAT Witnesses?

Supratik Chakraborty1, Kuldeep S. Meel2, and Moshe Y. Vardi2

1 Indian Institute of Technology Bombay, India
2 Department of Computer Science, Rice University

Abstract. Functional verification constitutes one of the most challeng-
ing tasks in the development of modern hardware systems, and simulation-
based verification techniques dominate the functional verification land-
scape. A dominant paradigm in simulation-based verification is directed
random testing, where a model of the system is simulated with a set
of random test stimuli that are uniformly or near-uniformly distributed
over the space of all stimuli satisfying a given set of constraints. Uni-
form or near-uniform generation of solutions for large constraint sets is
therefore a problem of theoretical and practical interest. For boolean
constraints, prior work offered heuristic approaches with no guarantee
of performance, and theoretical approaches with proven guarantees, but
poor performance in practice. We offer here a new approach with theo-
retical performance guarantees and demonstrate its practical utility on
large constraint sets.

1 Introduction

Functional verification constitutes one of the most challenging tasks in the de-
velopment of modern hardware systems. Despite significant advances in for-
mal verification over the last few decades, there is a huge mismatch between
the sizes of industrial systems and the capabilities of state-of-the-art formal-
verification tools [6]. Simulation-based verification techniques therefore dominate
the functional-verification landscape [8]. A dominant paradigm in simulation-
based verification is directed random testing. In this paradigm, an operational
(usually, low-level) model of the system is simulated with a set of random test
stimuli satisfying a set of constraints [7,18,23]. The simulated behavior is then
compared with the expected behavior, and any mismatch is flagged as indica-
tive of a bug. The constraints that stimuli must satisfy typically arise from
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various sources such as domain and application-specific knowledge, architec-
tural and environmental requirements, specifications of corner-case scenarios,
and the like. Test requirements from these varied sources are compiled into a
set of constraints and fed to a constraint solver to obtain test stimuli. Develop-
ing constraint solvers (and test generators) that can reason about large sets of
constraints is therefore an extremely important activity for industrial test and
verification applications [13].

Despite the diligence and insights that go into developing constraint sets for
generating directed random tests, the complexity of modern hardware systems
makes it hard to predict the effectiveness of any specific test stimulus. It is there-
fore common practice to generate a large number of stimuli satisfying a set of
constraints. Since every stimulus is a priori as likely to expose a bug as any
other stimulus, it is desirable to sample the solution space of the constraints
uniformly or near-uniformly (defined formally below) at random [18]. A naive
way to accomplish this is to first generate all possible solutions, and then sample
them uniformly. Unfortunately, generating all solutions is computationally pro-
hibitive (and often infeasible) in practical settings of directed random testing.
For example, we have encountered systems of constraints where the expected
number of solutions is of the order of 2100, and there is no simple way of deriv-
ing one solution from another. It is therefore interesting to ask: Given a set of
constraints, can we sample the solution space uniformly or near-uniformly, while
scaling to problem sizes typical of testing/verification scenarios? An affirmative
answer to this question has implications not only for directed random testing,
but also for other applications like probabilistic reasoning, approximate model
counting and Markov logic networks [4,19].

In this paper, we consider Boolean constraints in conjunctive normal form
(CNF), and address the problem of near-uniform generation of their solutions,
henceforth called SAT Witnesses. This problem has been of long-standing theo-
retical interest [20,21]. Industrial approaches to solving this problem either rely
on ROBDD-based techniques [23] , which do not scale well (see, for example, the
comparison in [16]), or use heuristics that offer no guarantee of performance or
uniformity when applied to large problem instances3. Prior published work in this
area broadly belong to one of two categories. In the first category [22,15,12,16],
the focus is on heuristic sampling techniques that scale to large systems of con-
straints. Monte Carlo Markov Chain (MCMC) methods and techniques based on
random seedings of SAT solvers belong to this category. However, these methods
either offer very weak or no guarantees on the uniformity of sampling (see [16] for
a comparison), or require the user to provide hard-to-estimate problem-specific
parameters that crucially affect the performance and uniformity of sampling.
In the second category of work [5,14,23], the focus is on stronger guarantees of
uniformity of sampling. Unfortunately, our experience indicates that these tech-
niques do not scale even to relatively small problem instances (involving few tens
of variables) in practice.

3 Private communication: R. Kurshan



The work presented in this paper tries to bridge the above mentioned ex-
tremes. Specifically, we provide guarantees of near-uniform sampling, and of a
bounded probability of failure, without the user having to provide any hard-to-
estimate parameters. We also demonstrate that our algorithm scales in practice
to constraints involving thousands of variables. Note that there is evidence that
uniform generation of SAT witnesses is harder than SAT solving [14]. Thus,
while today’s SAT solvers are able to handle hundreds of thousands of variables
and more, we believe that scaling of our algorithm to thousands of variables is
a major improvement in this area. Since a significant body of constraints that
arise in verification settings and in other application areas (like probabilistic rea-
soning) can be encoded as Boolean constraints, our work opens new directions
in directed random testing and in these application areas.

The remainder of the paper is organized as follows. In Section 2, we review
preliminaries and notation needed for the subsequent discussion. In Section 3,
we give an overview of some algorithms presented in earlier work that come close
to our work. Design choices behind our algorithm, some implementation issues,
and a mathematical analysis of the guarantees provided by our algorithm are
discussed in Section 4. Section 5 discusses experimental results on a large set of
benchmarks. Our experiments demonstrate that our algorithm is more efficient
in practice and generates witnesses that are more evenly distributed than those
generated by the best known alternative algorithm that scales to comparable
problem sizes. Finally, we conclude in Section 6.

2 Notation and Preliminaries

Our algorithm can be viewed as an adaptation of the algorithm proposed by
Bellare, Goldreich and Petrank [5] for uniform generation of witnesses for NP-
relations. In the remainder of the paper, we refer to Bellare et al.’s algorithm
as the BGP algorithm (after the last names of the authors). Our algorithm also
has similarities with algorithms presented by Gomes, Sabharwal and Selman [12]
for near-uniform sampling of SAT witnesses. We begin with some notation and
preliminaries needed to understand these related work.

Let Σ be an alphabet and R ⊆ Σ∗ × Σ∗ be a binary relation. We say that
R is an NP-relation if R is polynomial-time decidable, and if there exists a
polynomial p(·) such that for every (x, y) ∈ R, we have |y| ≤ p(|x|). Let LR be
the language {x ∈ Σ∗ | ∃y ∈ Σ∗, (x, y) ∈ R}. The language LR is said to be in
NP if R is an NP-relation. The set of all satisfiable propositional logic formulae
in CNF is known to be a language in NP. Given x ∈ LR, a witness of x is a
string y ∈ Σ∗ such that (x, y) ∈ R. The set of all witnesses of x is denoted Rx.
For notational convenience, let us fix Σ to be {0, 1} without loss of generality.
If R is an NP-relation, we may further assume that for every x ∈ LR, every
witness y ∈ Rx is in {0, 1}n, where n = p(|x|) for some polynomial p(·).

Given an NP relation R, a probabilistic generator of witnesses for R is a
probabilistic algorithm G(·) that takes as input a string x ∈ LR and generates a
random witness of x. Throughout this paper, we use Pr [X] to denote the prob-



ability of outcome X of sampling from a probability space. A uniform generator
Gu(·) is a probabilistic generator that guarantees Pr [Gu(x) = y] = 1/|Rx| for
every witness y of x. A near-uniform generator Gnu(·) relaxes the guarantee of
uniformity, and ensures that Pr [Gnu(x) = y] ≥ c·(1/|Rx|) for a constant c, where
0 < c ≤ 1. Clearly, the larger c is, the closer a near-uniform generator is to be-
ing a uniform generator. Note that near-uniformity, as defined above, is a more
relaxed approximation of uniformity compared to the notion of “almost unifor-
mity” introduced in [5,14]. In the present work, we sacrifice the guarantee of
uniformity and settle for a near-uniform generator in order to gain performance
benefits. Our experiments, however, show that the witnesses generated by our
algorithm are fairly uniform in practice. Like previous work [5,14], we allow our
generator to occasionally “fail”, i.e. the generator may occasionaly output no
witness, but a special failure symbol ⊥. A generator that occasionally fails must
have its failure probability bounded above by d, where d is a constant strictly
less than 1.

A key idea in the BGP algorithm for uniform generation of witnesses for
NP-relations is to use r-wise independent hash functions that map strings in
{0, 1}n to {0, 1}m, for m ≤ n. The objective of using these hash functions is
to partition Rx with high probability into a set of “well-balanced” and “small”
cells. We follow a similar idea in our work, although there are important dif-
ferences. Borrowing related notation and terminology from [5], we give below a
brief overview of r-wise independent hash functions as used in our context.

Let n,m and r be positive integers, and let H(n,m, r) denote a family of

r-wise independent hash functions mapping {0, 1}n to {0, 1}m. We use h
R←−

H(n,m, r) to denote the act of choosing a hash function h uniformly at random
from H(n,m, r). By virtue of r-wise independence, for each α1, . . . αr ∈ {0, 1}m

and for each distinct y1, . . . yr ∈ {0, 1}n, Pr
[∧r

i=1 h(yi) = αi : h
R←− H(n,m, r)

]
=

2−mr.
For every α ∈ {0, 1}m and h ∈ H(n,m, r), let h−1(α) denote the set {y ∈

{0, 1}n | h(y) = α}. Given Rx ⊆ {0, 1}n and h ∈ H(n,m, r), we use Rx,h,α to
denote the set Rx ∩ h−1(α). If we keep h fixed and let α range over {0, 1}m, the
sets Rx,h,α form a partition of Rx. Following the notation of Bellare et al., we
call each element of such a parition a cell of Rx induced by h. It has been argued
in [5] that if h is chosen uniformaly at random from H(n,m, r) for r ≥ 1, the
expected size of Rx,h,α, denoted E [|Rx,h,α|], is |Rx|/2m, for each α ∈ {0, 1}m.

In [5], the authors suggest using polynomials over finite fields to generate r-
wise independent hash functions. We call these algebraic hash functions. Choos-
ing a random algebraic hash function h ∈ H(n,m, r) requires choosing a sequence
(a0, . . . ar−1) of elements in the field F = GF(2max(n,m)), where GF (2k) denotes
the Galois field of 2k elements. Given y ∈ {0, 1}n, the hash value h(y) can be
computed by interpretting y as an element of F , computing Σr−1

j=0ajy
j in F ,

and selecting m bits of the encoding of the result. The authors of [5] suggest
polynomial-time optimizations for operations in the field F . Unfortunately, even
with these optimizations, computing algebraic hash functions is quite expensive
in practice when non-linear terms are involved, as in Σr−1

j=0ajy
j ,



Our approach uses computationally efficient linear hash functions. As we
show later, pairwise independent hash functions suffice for our purposes. The
literature describes several families of efficiently computable pairwise indepen-
dent hash functions. One such family, which we denote Hconv(n,m, 2), is based
on the wrapped convolution function [17]. For a ∈ {0, 1}n+m−1 and y ∈ {0, 1}n,
the wrapped convolution c = (a•y) is defined as an element of {0, 1}m as follows:
for each i ∈ {1, . . .m}, c[i] =

⊕n
j=1(y[j]∧a[i+j−1]), where

⊕
denotes logical xor

and v[i] denotes the ith component of the bit-vector v. The family Hconv(n,m, 2)
is defined as {ha,b(y) = (a • y) ⊕m b | a ∈ {0, 1}n+m−1, b ∈ {0, 1}m}, where
⊕m denotes componentwise xor of two elements of {0, 1}m. By choosing a and
b, we can randomly choose a function ha,b(x) from this family. It has been
shown in [17] that Hconv(n,m, 2) is pairwise independent. Our implementa-
tion of a near-uniform generator of CNF SAT witnesses uses Hconv(n,m, 2).
For every m ∈ {1, . . . n}, the mth prefix-slice of h, denoted h(m), is a map from
{0, 1}|S| to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}n and for all
i ∈ {1, . . .m}. Similarly, the mth prefix-slice of α, denoted α(m), is an element
of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, . . .m}.

3 Related Algorithms in Prior Work

We now discuss two algorithms that are closely related to our work. In 1998,
Bellare et al. [5] proposed the BGP algorithm, showing that uniform generation
of NP-witnesses can be achieved in probabilistic polynomial time using an NP-
oracle. This improved on previous work by Jerrum, Valiant and Vazirani [14],
who showed that uniform generation can be achieved in probabilistic polynomial
time using a ΣP

2 oracle, and almost-uniform generation (as defined in [14]) can
be achieved in probabilistic polytime using an NP oracle.

Let R be an NP-relation over Σ. The BGP algorithm takes as input an
x ∈ LR and either generates a witness that is uniformly distributed in Rx, or
produces a symbol ⊥ (indicating a failed run). The pseudocode for the algorithm
is presented below. In the presentation, we assume w.l.o.g. that n is an integer
such that Rx ⊆ {0, 1}n. We also assume access to NP-oracles to answer queries
about cardinalities of witness sets and also to enumerate small witness sets.

Algorithm BGP(x) :
/* Assume Rx ⊆ {0, 1}n */
1: pivot← 2n2;
2: if (|Rx| ≤ pivot)
3: List all elements y1, . . . y|Rx| of Rx;
4: Choose j at random from {1, . . . |Rx|}, and return yj ;
5: else
6: l← 2dlog2 ne; i← l − 1;
7: repeat
8: i← i+ 1;
9: Choose h at random from H(n, i− l, n);



10: until (∀α ∈ {0, 1}i−l, |Rx,h,α| ≤ 2n2) or (i = n− 1);
11: if (∃α ∈ {0, 1}i−l, |Rx,h,α| > 2n2) return ⊥;
12: Choose α at random from {0, 1}i−l;
13: List all elements y1, . . . y|Rx,h,α| of Rx,h,α;
14: Choose j at random from {1, . . .pivot};
15: if j ≤ |Rx,h,α|, return yj ;
16: else return ⊥;

For clarity of exposition, we have made a small adaptation to the algorithm origi-
nally presented in [5]. Specifically, if h does not satisfy (∀α ∈ {0, 1}i−l, |Rx,h,α| ≤
2n2) when the loop in lines 7–10 terminates, the original algorithm forces a spe-
cific choice of h. Instead, algorithm BGP simply outputs ⊥ (indicating a failed
run) in this situation. A closer look at the analysis presented in [5] shows that
all results continue to hold with this adaptation. The authors of [5] use algebraic
hash functions and random choices of n-tuples in GF(2max(n,i−l)) to implement
the selection of a random hash function in line 9 of the pseudocode. The following
theorem summarizes the key properties of the BGP algorithm [5].

Theorem 1. If a run of the BGP algorithm is successful, the probability that
y ∈ Rx is generated by the algorithm is independent of y. Further, the probability
that a run of the algorithm fails is ≤ 0.8.

Since the probability of any witness y ∈ Rx being output by a successful run
of the algorithm is independent of y, the BGP algorithm guarantees uniform
generation of witnesses. However, as we argue in the next section, scaling the
algorithm to even medium-sized problem instances is quite difficult in practice.
Indeed, we have found no published report discussing any implementation of the
BGP algorithm.

In 2007, Gomes et al. [12] presented two closely related algorithms named
XORSample and XORSample′ for near-uniform sampling of combinatorial spaces.
A key idea in both these algorithms is to constrain a given instance F of the CNF
SAT problem by a set of randomly selected xor constraints over the variables
appearing in F . An xor constraint over a set V of variables is an equation of the
form e = c, where c ∈ {0, 1} and e is the logical xor of a subset of V . A probability
distribution X(|V |, q) over the set of all xor constraints over V is characterized
by the probability q of choosing a variable in V . A random xor constraint from
X(|V |, q) is obtained by forming an xor constraint where each variable in V is
chosen independently with probability q, and c is chosen uniformly at random.

We present the pseudocode of algorithm XORSample′ below. The algorithm
uses a function SATModelCount that takes a Boolean formula F and returns the
exact count of witnesses of F . Algorithm XORSample′ takes as inputs a CNF
formula F , the parameter q discussed above and an integer s > 0. Suppose the
number of variables in F is n. The algorithm proceeds by conjoining s xor con-
straints to F , where the constraints are chosen randomly from the distribution
X(n, q). Let F ′ denote the conjunction of F and the random xor constraints, and
let mc denote the model count (i.e., number of witnesses) of F ′. If mc ≥ 1, the



algorithm enumerates the witnesses of F ′ and chooses one witness at random.
Otherwise, the algorithm outputs ⊥, indicating a failed run.

Algorithm XORSample′(F, q, s)
/* n = Number of variables in F */
1: Qs ← {s random xor constraints from X(n, q)};
2: F ′ = F ∧ (

∧
f∈Qs f);

3: mc← SATModelCount(F ′);
4: if (mc ≥ 1)
5: Choose i at random from {1, . . .mc};
6: List the first i witnesses of F ′;
7: return ith witness of F ′;
8: else return ⊥;

Algorithm XORSample can be viewed as a variant of algorithm XORSample′ in
which we check if mc is exactly 1 (instead of mc ≥ 1) in line 4 of the pseudocode.
An additional difference is that if the check in line 4 fails, algorithm XORSample
starts afresh from line 1 by randomly choosing s xor constraints. In our ex-
periments, we observed that XORSample′ significantly outperforms XORSample
in performance, hence we consider only XORSample′ for comparison with our
algorithm. The following theorem is proved in [12]

Theorem 2. Let F be a Boolean formula with 2s
∗

solutions. Let α be such
that 0 < α < s∗ and s = s∗ − α. For a witness y of F , the probability with
which XORSample′ with parameters q = 1

2 and s outputs y is bounded below by

c′(α)2−s
∗
, where c′(α) = 1−2−α/3

(1+2−α)(1+2−α/3)
. Further, XORSample′ succeeds with

probability larger than c′(α).

While the choice of q = 1
2 allowed the authors of [12] to prove Theorem 2, the

authors acknowledge that finding witnesses of F ′ is quite hard in practice when
random xor constraints are chosen from X(n, 12 ). Therefore, they advocate using
values of q much smaller than 1

2 . Unfortunately, the analysis that yields the
theoretical guarantees in Theorem 2 does not hold with these smaller values of
q. This illustrates the conflict between witness generators with good performance
in practice, and those with good theoretical guarantees.

4 The UniWit Algorithm: Design and Analysis

We now describe an adaptation, called UniWit, of the BGP algorithm that scales
to much larger problem sizes than those that can be handled by the BGP al-
gorithm, while weakening the guarantee of uniform generation to that of near-
uniform generation. Experimental results, however, indicate that the witnesses
generated by our algorithm are fairly uniform in practice. Our algorithm can
also be viewed as an adaptation of the XORSample′ algorithm, in which we do
not need to provide hard-to-estimate problem-specific parameters like s and q.

We begin with some observations about the BGP algorithm. In what follows,
line numbers refer to those in the pseudocode of the BGP algorithm presented in



Section 3. Our first observation is that the loop in lines 7–10 of the pseudocode
iterates until either |Rx,h,α| ≤ 2n2 for every α ∈ {0, 1}i−l or i increments to
n−1. Checking the first condition is computationally prohibitive even for values
of i− l and n as small as few tens. So we ask if this condition can be simplified,
perhaps with some weakening of theoretical guarantees. Indeed, we have found
that if the condition requires that 1 ≤ |Rx,h,α| ≤ 2n2 for a specific α ∈ {0, 1}i−l
(instead of for every α ∈ {0, 1}i−l), we can still guarantee near-uniformity (but
not uniformity) of the generated witnesses. This suggests choosing both a random
h ∈ H(n, i− l, n) and a random α ∈ {0, 1}i−l within the loop of lines 7–10.

The analysis presented in [5] relies on h being sampled uniformly from a
family of n-wise independent hash functions. In the context of generating SAT
witnesses, n denotes the number of propositional variables in the input formula.
This can be large (several thousands) in problems arising from directed random
testing. Unfortunately, implementing n-wise independent hash functions using
algebraic hash functions (as advocated in [5]) for large values of n is computa-
tionally infeasible in practice. This prompts us to ask if the BGP algorithm can
be adapted to work with r-wise independent hash functions for small values of
r, and if simpler families of hash functions can be used. Indeed, we have found
that with r ≥ 2, an adapted version of the BGP algorithm can be made to gen-
erate near-uniform witnesses. We can also bound the probability of failure of the
adapted algorithm by a constant. Significantly, the sufficiency of pairwise inde-
pendence allows us to use computationally efficient xor-based families of hash
functions, like Hconv(n,m, 2) discussed in Section 2. This provides a significant
scaling advantage to our algorithm vis-a-vis the BGP algorithm in practice.

In the context of uniform generation of SAT witnesses, checking if |Rx| ≤ 2n2

(line 2 of pseudocode) or if |Rx,h,α| ≤ 2n2 (line 10 of pseudocode, modified as
suggested above) can be done either by approximate model-counting or by re-
peated invokations of a SAT solver. State-of-the-art approximate model counting
techniques [11] rely on randomly sampling the witness space, suggesting a cir-
cular dependency. Hence, we choose to use a SAT solver as the back-end engine
for enumerating and counting witnesses. Note that if h is chosen randomly from
Hconv(n,m, 2), the formula for which we seek witnesses is the conjunction of
the original (CNF) formula and xor constraints encoding the inclusion of each
witness in h−1(α). We therefore choose to use a SAT solver optimized for con-
junctions of xor constraints and CNF clauses as the back-end engine; specifically,
we use CryptoMiniSAT (version 2.9.2) [1].

Modern SAT solvers often produce partial assignments that specify values
of a subset of variables, such that every assignment of values to the remaining
variables gives a witness. Since we must find large numbers (2n2 ≈ 2 × 106 if
n ≈ 1000) of witnesses, it would be useful to obtain partial assignments from
the SAT solver. Unfortunately, conjoining random xor constraints to the original
formula reduces the likelihood that large sets of witnesses can be encoded as
partial assignments. Thus, each invokation of the SAT solver is likely to generate
only a few witnesses, necessitating a large number of calls to the solver. To make
matters worse, if the count of witnesses exceeds 2n2 and if i < n−1, the check in



line 10 of the pseudocode of algorithm BGP (modified as suggested above) fails,
and the loop of lines 7–10 iterates once more, requiring generation of up to 2n2

witnesses of a modified SAT problem all over again. This can be computationally
prohibitive in practice. Indeed, our implementation of the BGP algorithm with
CryptoMiniSAT failed to terminate on formulas with few tens of variables, even
when running on high-performance computers for 20 hours. This prompts us to
ask if the required number of witnesses, or pivot, in the BGP algorithm (see line
1 of the pseudocode) can be reduced. We answer this question in the affirmative,
and show that the pivot can indeed be reduced to 2n1/k, where k is an integer
≥ 1. Note that if k = 3 and n = 1000, the value of 2n1/k is only 20, while 2n2

equals 2 × 106. This translates to a significant leap in the sizes of problems for
which we can generate random witnesses. There are, however, some practical
tradeoffs involved in the choice of k; we defer a discussion of these to a later part
of this section.

We now present the UniWit algorithm, which implements the modifications
to the BGP algorithm suggested above. UniWit takes as inputs a CNF formula F
with n variables, and an integer k ≥ 1. The algorithm either outputs a witness
that is near-uniformly distributed over the space of all witnesses of F or produces
a symbol ⊥ indicating a failed run. We also assume that we have access to a
function BoundedSAT that takes as inputs a propositional formula F that is a
conjunction of a CNF formula and xor constraints, and an integer r ≥ 0 and
returns a set S of witnesses of F such that |S| = min(r,#F ), where #F denotes
the count of all witnesses of F .

Algorithm UniWit(F, k):
/* Assume z1, . . . zn are variables in F */
/* Choose a priori the family of hash functions H(n,m, r), r ≥ 2 to be used */

1: pivot← d2n1/ke; S ← BoundedSAT(F,pivot + 1);
2: if (|S| ≤ pivot)
3: Let y1, . . . y|S| be the elements of S;
4: Choose j at random from {1, . . . |S|} and return yj ;
5: else
6: l← b 1k · (log2 n)c; i← l − 1;
7: Choose h at random from H(n, n, r);
8: Choose α at random from {0, 1}n;
9: repeat
10: i← i+ 1;
11: S ← BoundedSAT(F ∧ (hi−l(z1, . . . zn) = αi−l),pivot + 1);
12: until (1 ≤ |S| ≤ pivot) or (i = n);
13: if (|S| > pivot) or (|S| < 1) return ⊥;
14: else
15: Let y1, . . . y|S| be the elements of S;
16: Choose j at random from {1, . . .pivot};.
17: if j ≤ |S|, return yj ;
18: else return ⊥;



Implementation issues: There are four steps in UniWit (lines 4, 9, 10 and 16
of the pseudocode) where random choices are made. In our implementation, in
line 10 of the pseudocode, we choose a random hash function from the family
Hconv(n, i− l, 2), since it is computationally efficient to do so. Recall from Sec-
tion 2 that choosing a random hash function from Hconv(n,m, 2) requires choos-
ing two random bit-vectors. It is straightforward to implement these choices
and also the choice of a random α ∈ {0, 1}i−l in line 10 of the pseudocode, if
we have access to a source of independent and uniformly distributed random
bits. In lines 4 and 16, we must choose a random integer from a specified range.
By using standard techniques (see, for example, the discussion on coin tossing
in [5]), this can also be implemented efficiently if we have access to a source of
random bits. Since accessing truly random bits is a practical impossibility, our
implementation uses pseudorandom sequences of bits generated from nuclear de-
cay processes and available at HotBits [2]. We download and store a sufficiently
long sequence of random bits in a file, and access an appropriate number of bits
sequentially whenever needed.

In line 11 of the pseudocode for UniWit, we invoke BoundedSAT with argu-
ments F ∧ (h(z1, . . . zn) = α) and pivot + 1. The function BoundedSAT is imple-
mented using CryptoMiniSAT (version 2.9.2), which allows passing a parameter
indicating the maximum number of witnesses to be generated. The sub-formula
(h(z1, . . . zn) = α) is constructed as follows. As mentioned in Section 2, a ran-
dom hash function from the family Hconv(n, i − l, 2) can be implemented by
choosing a random a ∈ {0, 1}n+i−l−1 and a random b ∈ {0, 1}i−l. Recalling the
definition of h from Section 2, the sub-formula (h(z1, . . . zn) = α) is given by∧i−l
j=1

((⊕n
p=1(zp ∧ a[j + p− 1])⊕ b[j]

)
⇔ α[j]

)
.

Analysis of UniWit: Let RF denote the set of witnesses of the input formula F .
Using notation discussed in Section 2, suppose RF ⊆ {0, 1}n. For simplicity of
exposition, we assume that log2 |RF |− (1/k) · log2 n is an integer in the following
discussion. A more careful analysis removes this assumption with constant factor
reductions in the probability of generation of an arbitrary witness and in the
probability of failure of UniWit.

Theorem 3. Suppose F has n variables and n > 2k. For every witness y of F ,
the probability that algorithm UniWit outputs y on inputs F and k is bounded
below by 1

8|RF | .

Proof. Referring to the pseudocode of UniWit, if |RF | ≤ 2n1/k, the theorem
holds trivially. Suppose |RF | > 2n1/k, and let Y denote the event that witness
y in RF is output by UniWit on inputs F and k. Let pi,y denote the probability
that the loop in lines 7–12 of the pseudocode terminates in iteration i with y
in RF,h,α, where α ∈ {0, 1}i−l is the value chosen in line 10. It follows from the
pseudocode that Pr [Y ] ≥ pi,y · (1/2n1/k), for every i ∈ {l, . . . n}. Let us denote
log2 |RF |−(1/k) · log2 n by m. Therefore, 2m ·n1/k = |RF |. Since 2n1/k < |RF | ≤
2n and since l = b(1/k)·log2 nc (see line 6 of pseudocode), we have l < m+l ≤ n.



Consequently, Pr [Y ] ≥ pm+l,y · (1/2n1/k). The proof is completed by showing

that pm+l,y ≥ 1−n−1/k

2m+1 . This gives Pr [Y ] ≥ 1−n−1/k

2m+2·n1/k = 1−n−1/k

4|RF | ≥
1

8|RF | , if

n > 2k.
To calculate pm+l,y, we first note that since y ∈ RF , the requirement “y ∈

RF,h,α” reduces to “y ∈ h−1(α)”. For α ∈ {0, 1}m and y ∈ {0, 1}n, we define

qm+l,y,α as Pr
[
|RF,h,α| ≤ 2n1/k and h(y) = α : h

R←− H(n,m, r)
]
, where r ≥ 2.

The proof is now completed by showing that qm+l,y,α ≥ (1 − n−1/k)/2m+1 for
every α ∈ {0, 1}m and y ∈ {0, 1}n. Towards this end, we define an indicator
variable γy,α for every y ∈ {0, 1}n and α ∈ {0, 1}m as follows: γy,α = 1 if h(y) =
α and γy,α = 0 otherwise. Thus, γy,α is a random variable with probability
distribution induced by that of h. It is easy to show that (i) E [γy,α] = 2−m, and
(ii) the pairwise independence of h implies pairwise independence of the γy,α
variables. We now define Γα =

∑
z∈RF γz,α and µy,α = E [Γα | γy,α = 1]. Clearly,

Γα = |RF,h,α| and µy,α = E
[∑

z∈RF γz,α | γy,α = 1
]

=
∑
z∈RF E [γz,α | γy,α = 1].

Using pairwise independence of the γy,α variables, the above simplifies to µy,α =
2−m(|RF | − 1) + 1 ≤ 2−m|RF | + 1 = n1/k + 1. From Markov’s inequality, we
know that Pr [Γα ≤ κ · µy,α | γy,α = 1] ≥ 1− 1/κ for κ > 0. With κ = 2

1+n−1/k ,

this gives Pr [ |RF,h,α| ≤ 2n1/k | γy,α = 1] ≥ (1 − n−1/k)/2. Since h is chosen
at random from H(n,m, r), we also have Pr [h(y) = α] = 1/2m. It follows that
qm+l,y,α ≥ (1− n−1/k)/2m+1. ut

Theorem 4. Assuming n > 2k, algorithm UniWit succeeds (i.e. does not return
⊥) with probability at least 1

8 .

Proof. Let Psucc denote the probability that a run of algorithm UniWit succeeds.
By definition, Psucc =

∑
y∈RF Pr [Y ]. Using Theorem 3, Psucc ≥

∑
y∈RF

1
8|RF |

= 1
8 . ut

One might be tempted to use large values of the parameter k to keep the
value of pivot low. However, there are tradeoffs involved in the choice of k. As
k increases, the pivot 2n1/k reduces, and the chances that BoundedSAT finds
more than 2n1/k witnesses increases, necessitating further iterations of the loop
in lines 7–12 of the pseudocode. Of course, reducing the pivot also means that
BoundedSAT has to find fewer witnesses, and each invokation of BoundedSAT is
likely to take less time. However, the increase in the number of invokations of
BoundedSAT contributes to increased overall time. In our experiments, we have
found that choosing k to be either 2 or 3 works well for all our benchmarks
(including those containing several thousand variables).
A heuristic optimization: A (near-)uniform generator is likely to be invoked
a large number of times for the same formula F when generating a set of wit-
nesses of F . If the performance of the generator is sensitive to problem-specific
parameter(s) not known a priori, a natural optimization is to estimate values of
these parameter(s), perhaps using computationally expensive techniques, in the
first few runs of the generator, and then re-use these estimates in subsequent



runs on the same problem instance. Of course, this optimization works only if
the parameter(s) under consideration can be reasonably estimated from the first
few runs. We call this heuristic optimization “leapfrogging”.

In the case of algorithm UniWit, the loop in lines 7–12 of the pseudocode starts
with i set to l−1 and iterates until either i increments to n, or |RF,h,α| becomes
no larger than 2n1/k. For each problem instance F , we propose to estimate a
lower bound of the value of i when the loop terminates, from the first few runs
of UniWit on F . In all subsequent runs of UniWit on F , we propose to start
iterating through the loop with i set to this lower bound. We call this specific
heuristic “leapfrogging i” in the context of UniWit. Note that leapfrogging may
also be used for the parameter s in algorithms XORSample′ and XORSample (see
pseudocode of XORSample′). We will discuss more about this in Section 5.

5 Experimental Results

To evaluate the performance of UniWit, we built a prototype implementation and
conducted an extensive set of experiments. Since our motivation stems primarily
from functional verification, our benchmarks were mostly derived from functional
verification of hardware designs. Specifically, we used “bit-blasted” versions of
word-level constraints arising from bounded model checking of public-domain
and proprietary word-level VHDL designs. In addition, we also used bit-blasted
versions of several SMTLib [3] benchmarks of the “QF BV/bruttomesso/ sim-

ple processor/” category, and benchmarks arising from “Type I” representations
of ISCAS’85 circuits, as described in [9].

All our experiments were conducted on a high-performance computing clus-
ter. Each individual experiment was run on a single node of the cluster, and the
cluster allowed multiple experiments to run in parallel. Every node in the cluster
had two quad-core Intel Xeon processors running at 2.83 GHz with 4 GB of phys-
ical memory. We used 3000 seconds as the timeout interval for each invokation
of BoundedSAT in UniWit, and 20 hours as the timeout interval for the overall
algorithm. If an invokation of BoundedSAT in line 11 of the pseudocode timed
out (after 3000 seconds), we repeated the iteration (lines 7–12 of the pseudocode
of UniWit) without incrementing i. If the overall algorithm timed out (after 20
hours), we considered the algorithm to have failed. We used either 2 or 3 for
the value of the parameter k (see pseudocode of UniWit). This corresponds to
restricting the pivot to few tens of witnesses for formulae with a few thousand
variables. The exact values of k used for a subset of the benchmarks are indicated
in Table 1. A full analysis of the effect of parameter k will require a separate
study. As explained earlier, our implementation uses the family Hconv(n,m, 2)
to select random hash functions in step 9 of the pseudocode.

For purposes of comparison, we also implemented and conducted experiments
with algorithms BGP [5], XORSample and XORSample′ [12], using CryptoMin-
iSAT as the SAT solver in all cases. Algorithm BGP timed out without producing
any witness in all but the simplest of cases (involving less than 20 variables). This
is primarily because checking whether |Rx,h,α| ≤ 2n2 for a given h ∈ H(n,m, n)
and for every α ∈ {0, 1}m, as required in step 10 of algorithm BGP, is compu-



tationally prohibitive for values of n and m exceeding few tens. Hence, we do
not report any comparison with algorithm BGP. Of the algorithms XORSample
and XORSample′, algorithm XORSample′ consistently out-performed algorithm
XORSample in terms of both actual time taken and uniformity of generated
witnesses. This can be largely attributed to the stringent requirement that al-
gorithm XORSample be provided a parameter s that renders the model count
of the input formula F constrained with s random xor constraints to exactly 1.
Our experiments indicated that it was extremely difficult to predict or leapfrog
the range of values for s such that it met the strict requirement of the model
count being exactly 1. This forced us to expend significant computing resources
to estimate the right value value for s in almost every run, leading to huge perfor-
mance overheads. Since algorithm XORSample′ consistently outperformed algo-
rithm XORSample, we focus on comparisons with only algorithm XORSample′ in
the subsequent discussion. Note that our benchmarks, when viewed as Boolean
circuits, had upto 695 circuit inputs, and 21 of them had more than 95 inputs
each. While UniWit and XORSample′ completed execution on all these bench-
marks, we could not build ROBDDs for 18 of the above 21 benchmarks within
our timeout limit and with 4GB of memory.

Table 1 presents results of our experiments comparing performance and uni-
formity of generated witnesses for UniWit and XORSample′ on a subset of bench-
marks. The tool and the complete set of results on over 200 benchmarks are avail-
able at http://www.cfdvs.iitb.ac.in/reports/reports/CAV13/. The first

UniWit XORSample′

Benchmark #var Clauses k

Range

(i)

Average

Run Time (s)
Var-
iance

Average

Run Time (s)
Var-
iance

case 3 b14 779 2480
2 [34,35] 49.29+5.27

1.58 15061.85+59.31 3.47
3 [36,37] 19.32+1.44

case 2 b14 519 1607 3 [38,39] 22.13+2.09 0.57 18005.58+0.73 9.51

case203 214 580 3 [42,44] 16.41+1.04 8.98 18006.85+2.78 230.5

case145 219 558 3 [42,44] 19.84+1.42 1.62 18007.18+2.99 2.32

case14 270 717 2 [44,45] 54.07+2.33 0.65 18004.8+0.9 28.16

case61 289 773 3 [44,46] 30.39+5.49 1.33 18009.1+4.4 11.92

case9 302 821 3 [45,47] 25.64+1.54 2.07 18004.79+0.87 46.15

case10 351 946 2 [60,61] 204.93+17.99 6.1 18008.42+4.85 10.56

case15 319 842 3 [61,63] 91.84+14.64 0.82 18008.34+5.08 11.04

case140 488 1222 3 [99,101] 288.63+23.53 3.4 21214.85+200.64 6.71

squaring14 5397 18141 3 [28,30] 2399.19+1243.81 7089.6+2088.46

squaring7 5567 18969 3 [26,29] 2358.45+1720.49 4841.4+2340.84

case39 590 1789 2 [50,50] 710.65+85.22 18159.12+138.22

case 2 ptb 7621 24889 3 [72,73] 1643.2+225.41 22251.8+177.61

case 1 ptb 7624 24897
2 [70,70] 17295.45+454.64

22346.64+204.07
3 [72,73] 1639.16+219.87

Table 1. Performance comparison of UniWit and XORSample′

 http://www.cfdvs.iitb.ac.in/reports/reports/CAV13/


three columns in Table 1 give the name, number of variables and number of
clauses of the benchmarks represented as CNF formulae. The columns grouped
under UniWit give details of runs of UniWit, while those grouped under XORSample′

give details of runs of XORSample′. For runs of UniWit, the column labeled “k”
gives the value of the parameter k used in the corresponding experiment. The
column labeled “Range (i)” shows the range of values of i when the loop in lines
7–12 of the pseudocode (see Section 4) terminated in 100 independent runs of
the algorithm on the benchmark under consideration. Significantly, this range is
uniformly narrow for all our experiments with UniWit. As a result, leapfrogging
i is very effective for UniWit.

The column labeled “Run Time” under UniWit in Table 1 gives run times
in seconds, separated as time1 + time2, where time1 gives the average time
(over 100 independent runs) to obtain a witness and to identify the lower bound
of i for leapfrogging in later runs, while time2 gives the average time to get
a solution once we leapfrog i. Our experiments clearly show that leapfrogging
i reduces run-times by almost an order of magnitude in most cases. We also
report “Run Time” for XORSample′, where times are again reported as time1 +
time2. In this case, time1 gives the average time (over 100 independent runs)
taken to find the value of the parameter s in algorithm XORSample′ using a
binary search technique, as outlined in a footnote in [12]. As can be seen from
Table 1, this is a computationally expensive step, and often exceeds time1 under
UniWit by more than two to three orders of magnitude. Once the range of the
parameter s is identified from the first 100 independent runs, we use the lower
bound of this range to leapfrog s in subsequent runs of XORSample′ on the same
problem instance. The values of time2 under “Run Time” for XORSample′ give
the average time taken to generate witnesses after leapfrogging s. Note that
the difference between time2 values for UniWit and XORSample′ algorithms is
far less pronounced than the difference between time1 values. In addition, the
time1 values for XORSample′ are two to four orders of magnitude larger than the
corresponding time2 values, while this factor is almost always less than an order
of magnitude for UniWit. Therefore, the total time taken for n1 runs without
leapfrogging, followed by n2 runs with leapfrogging for XORSample′ far exceeds
that for UniWit, even for n1 = 100 and n2 ≈ 106. This illustrates the significant
practical efficiency of UniWit vis-a-vis XORSample′.

Table 1 also reports the scaled statistical variance of relative frequencies of
witnesses generated by 5×104 runs of the two algorithms on several benchmarks.

The scaled statistical variance is computed as K
N−1

N∑
i=1

(
fi −

(∑N
i=1 fi
N

))2
, where

N denotes the number of distinct witnesses generated, fi denotes the relative
frequency of the ith witness, and K (1010) denotes a scaling constant used to
facilitate easier comparison. The smaller the scaled variance, the more uniform
is the generated distribution. Unfortunately, getting a reliable estimate of the
variance requires generating witnesses from runs that sample the witness space
sufficiently well. While we could do this for several benchmarks (listed towards
the top of Table 1), other benchmarks (listed towards the bottom of Table 1) had



too large witness spaces to conduct these experiments within available resources.
For those benchmarks where we have variance data, we observe that the variance
obtained using XORSample′ is larger (by upto a factor of 43) than those obtained
using UniWit in almost all cases. Overall, our experiments indicate that UniWit
always works significantly faster and gives more (or comparably) uniformly dis-
tributed witnesses vis-a-vis XORSample′ in almost all cases. We also measured
the probability of success of UniWit for each benchmark as the ratio of the num-
ber of runs for which the algorithm did not return ⊥ to the total number of runs.
We found that this exceeded 0.6 for every benchmark using UniWit.

Fig. 1. Sampling by UniWit (k=2) Fig. 2. Sampling by XORSample′

As an illustration of the difference in uniformity of witnesses generated by
UniWit and XORSample′, Figures 1 and 2 depict the frequencies of appearance of
various witnesses using these two algorithms for an input CNF formula (case110)
with 287 variables and 16, 384 satisfying assignments. The horizontal axis in each
figure represents witnesses numbered suitably, while the vertical axis represents
the generated frequencies of witnesses. The frequencies were obtained from 10.8×
106 successful runs of each algorithm. Interestingly, XORSample′ could find only
15, 612 solutions (note the empty vertical band at the right end of Figure 2),
while UniWit found all 16, 384 solutions. Further, XORSample′ generated each of
15 solutions more than 5, 500 times, and more than 250 solutions were generated
only once. No such major deviations from uniformity were however observed in
the frequencies generated by UniWit. We also found that 15624 out of 16384 (i.e.
95.36%) witnesses generated by UniWit had frequencies in excess of Nunif/8,
where Nunif = 10.8 × 106/16384 ≈ 659. In contrast, only 6047 (i.e. 36.91%)
witnesses generated by XORSample′ had frequencies in excess of Nunif/8.

6 Concluding Remarks

We described UniWit, an algorithm that near-uniformly samples random wit-
nesses of Boolean formulas. We showed that the algorithm scales to reasonably
large problems. We also showed that it performs better, in terms of both run



time and uniformity, than previous best-of-breed algorithms for this problem.
The theoretical guarantees can be further improved with higher independence of
the family of hash functions used in UniWit (see http://www.cfdvs.iitb.ac.

in/reports/reports/CAV13/ for details).
We have yet to fully explore the parameter space and the effect of pseudo-

random generators other than HotBits for UniWit. There is a trade off between
failure probability, time for first witness, and time for subsequent witnesses. Dur-
ing our experiments, we observed the acute dearth of benchmarks available in
the public domain for this important problem. We hope that our work will lead
to development of benchmarks for this problem. Our focus here has been on
Boolean constraints, which play a prominent role in hardware design. Extending
the algorithm to handle user-provided biases would be an interesting direction of
future work. Yet another interesting extension would be to consider richer con-
straint languages and build a uniform generator of witnesses modulo theories,
leveraging recent progress in satisfiability modulo theories, c.f., [10].
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