
Efficient License Validation in MPML DRM Architecture

Amit Sachan, Sabu Emmanuel
School of Computer Engineering
Nanyang Technological University

Singapore
{amit0009, asemmanuel}@ntu.edu.sg

Mohan S. Kankanhalli
School of Computing

National University of Singapore
Singapore

mohan@comp.nus.edu.sg

ABSTRACT
Multiparty multilevel DRM architecture (MPML-DRM-A)
involves multiple parties such as owner, multiple levels of
distributors and consumers. The owner issues redistribu-
tion licenses to its distributors, who in turn generate and
issue variations of these redistribution licenses to their sub-
distributors. Also the distributors generate and issue usage
licenses to the consumers to consume the contents. But,
these variations of the redistribution licenses and usage li-
censes generated and issued by each distributor must be
validated by a validation authority against the redistribu-
tion licenses that it has received. In MPML-DRM-A, there
may exist multiple, different types of redistribution licenses
for a content. Validation using multiple redistribution li-
censes may become difficult in real time. Further, storage
of multiple redistribution licenses for validation presents a
challenge of reducing storage space requirements. Hence, in
this paper we propose a bit-vector transform based license
organizing structure, and present a method to do the vali-
dation of issued licenses in the bit-vector transform domain
efficiently. Experimental results show that our license orga-
nization structure helps to achieve low validation time and
storage space complexity.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscel-
laneous; K.5.1 [Hardware/Software Protection]: Met-
rics—Licensing

General Terms
Algorithms, Security

Keywords
Digital Rights Management (DRM), License Organization,
License Validation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-779-0/09/11 ...$10.00.

1i
DL 2i

DL 3i
UL1i

UL 2i
UL

r
DL

1r
DL 2r

DL 3r
DL

(a) (b)

1i
DL 2i

DL 3i
UL1i

UL 2i
UL

rL :Received License

iL :Issued License

DL

UL
:Redistribution License

:Usage License

Figure 1: (a). Single, and (b). Multiple received
redistribution license cases

1. INTRODUCTION
Traditional two party digital rights management (DRM)

architectures [12][13][20] involving the seller and buyer may
not be sufficient to provide the business scalability for all
regions and cultures. So, as an alternative to the two party
DRM architectures, multiparty multilevel DRM architecture
(MPML-DRM-A) is proposed in [16][8][10][4]. The term
’multiparty’ refers to the involvement of multiple parties
such as owner, distributors, sub-distributors and consumers.
The term ’multilevel’ refers to multiple levels of distribu-
tors/ sub-distributors. In MPML-DRM-A the owner issues
rights for redistribution of contents to distributors by is-
suing redistribution license. The distributors in turn can
use the received redistribution license to generate and is-
sue new different types of redistribution licenses to their
sub-distributors, and also generate and issue new usage li-
censes to consumers, as shown in figure 1(a). A redistribu-
tion license allows a distributor to redistribute the content
to sub-distributors and consumers, according to the permis-
sions and constraints specified in the redistribution license
that it has received. Thus, as part of the rights violation
detection[5][6], it is then necessary to validate these newly
generated licenses against the redistribution license that the
distributor has received.

Both redistribution and usage licenses for a content K can
represented with the following structure: L = {K; P1, P2, ...,
PM ; C1, C2, ..., CM}. Where P , and C represent permis-
sions, and set of constraints respectively, and M is the num-
ber of permissions in the license. The set Cq for a per-
mission Pq with nq constraints can be expanded as: Cq =
{Cq,1, Cq,2, ..., Cq,nq}. Permissions (P) in the usage licenses
′L′

U are the actions such as copy, play, rip, etc. those can be

performed on the content. Redistribution licenses ′L′

D also
have similar permissions as those in the usage licenses but
the purpose is to distribute them in further redistribution
and usage licenses. Constraints [5] [17]in usage licenses, such
as number of plays, expiry date of license, region allowed to
play, etc. are restrictions on the content usage and are in
form of single values. Constraints in the redistribution li-
censes such as the region allowed for distribution, minimum
and maximum number of play permission allowed to issue
in each usage licenses, etc. are the restrictions associated
with content redistribution and these are in form of ranges.
Ranges of constraints in the further generated redistribu-
tion licenses using a redistribution license must be subsets of
the respective constraint ranges in the redistribution license.
Thus, in figure 1(a), the constraint ranges the issued redis-
tribution licenses, Li1

D , and Li2
D must be subset of respective

constraint ranges in the received redistribution license Lr
D.

Values of constraints in usage licenses generated using a re-
distribution license must be inside the respective constraint
ranges in the redistribution license. Thus, the constraint
values in Li1

U , Li2
U , and Li3

U must be within the respective
constraint ranges in the received redistribution license Lr

D.
A validation authority validates all the newly generated li-

censes before the licenses are finally issued to the requesters.
Newly generated licenses are validated for the constraint val-
ues/ranges with the redistribution license used to generate
them . The purpose of validation is to determine whether a
new license can be generated using the respective received
redistribution license after satisfying the constraints in the
received redistribution license.

For business flexibility, distributors may need to obtain
multiple redistribution licenses for the same content as shown
in figure 1(b). Different pricing structure for different range
of constraints may not be handled with a single redistri-
bution license. For example, for promotional purpose per
unit play permission cost may be lower if a consumer pur-
chases play permission counts in the range [11, 20] rather
than [1, 10], or price of a media may be different in Asia
and America. In both the cases discussed above distribu-
tors are required to have different redistribution licenses for
different constraint ranges. Or, it may happen that for dif-
ferent types of permissions and constraints the distributor
might get better deal from different distributors and hence
the distributor might buy them from different distributors
at different time. In case of multiple received redistribu-
tion licenses the validation time and storage requirements
grow proportionally with the number of licenses present. It
presents challenges of reducing the validation time and stor-
age space requirements. This is firstly because all the vali-
dation requests need to be handled in real time. Secondly,
in a large and distributed DRM architecture like MPML-
DRM-A there can be a large number distributors and sub-
distributors and each distributor might be generating a large
number licenses and validation requests per unit time. And
thirdly, validation of each newly generated license needs to
be done with multiple constraints in multiple received redis-
tribution licenses. Thus, for this purpose, we propose bit-
vector transform based license organization technique and
present a method to do the validation the newly generated
licenses in the bit-vector transform domain. The license or-
ganization technique, firstly, removes the redundancy by uti-
lizing the fact that in practical scenarios, number of ranges
for most of the constraints are limited irrespective of num-

ber of licenses present. For example, number of countries in
the redistribution licenses of a South Asia distributor cannot
exceed a maximum fixed number of countries. Secondly, as
we explain in section 4, the data after the transform can be
represented using efficient data structures.

Thus, in this paper, we present a bit-vector transform
based license organization technique and secondly we pro-
pose a validation method that uses the data in the bit-vector
transform domain to do the validation efficiently. To the
best of our knowledge, the work presented in this paper is
the first for the license validation and license organization
for DRM systems.

Rest of this paper is organized as follows. In section 2,
we discuss related work. In section 3, we discuss about the
problem of license validation. Section 4 describes our pro-
posed license organization method. In section 5, we present
our method of license validation in transformed domain. In
section 6, we discuss the performance of our method. Fi-
nally, section 7 concludes the paper.

2. RELATED WORK
In this section we discuss the work and important issues

in the area of digital rights management (DRM) which are
related to our work.

In [9] Jamkhedkar and Heileman analyzed the importance
of shift of DRM industry more towards user friendly rights
expression. The MPML-DRM-A can be much useful for ful-
filling user needs as distributor can deal with regionally and
culturally sensitive manner. In [2] and [3] Arnab and Hutchi-
son discussed different contract and negotiation scenarios
between DRM vendors and clients. In [2] the authors pro-
posed a technique for negotiation of rights with the license
server in a two level DRM system. In the technique clients
negotiate with the license server for the requested rights.
The license server (LS) presents the types of licenses closely
resembling with the requested license. Then the client se-
lects one out of those licenses to purchase. However, in
MPML-DRM-A an LS cannot do such negotiations as the
LS is a party different than distributors. This is in contrast
to the two level architectures in which only the owner dis-
tributes the contents by maintaining his own LS. Thus, we
are using a model of distribution that enables the distribu-
tors to directly negotiate with the consumers.

In [18] describes a way of rights assignment to the content
distributors by the owner. In the model anybody can act as
a potential distributor, and distribute the rights to others
without any constraint. The rights issued by each level of
distributors are verified at the client device. The DRM agent
verifies that each right issued is compliant to the upper level
rights. The scheme presented is technically sound but in case
if some distributor has distributed rights wrongly finally the
consumer will be penalized which is unacceptable in most
of the practical scenarios. So, if the rights can be checked
at each level then it would be better for end users. In this
paper we consider the model that verifies rights in form of
licenses at every level.

Nair et al.[14] discussed and modeled using different types
of DRM system modeling such as ’pay per use’, ’use N
times’, and ’metered payment’ in their architecture. How-
ever, the most popular is the ’use N times’ model. In this
model constraints modeled have some maximum limit asso-
ciated with them. After expiry of the constraints associated
with a permission, such as play, copy, etc, the permission

cannot be used. This model is also most suitable in case
of MPML-DRM-A. In MPML-DRM-A the permissions and
constraints to each distributor and consumers can be given
with the help of redistribution and usage licenses respec-
tively. The redistribution licenses can be used to further
distribute the redistribution and usage licenses.

In this work, we consider all the issues discussed above
while defining the problem of license validation and carry-
ing out the license validation. To the best of our knowledge,
there is no existing work tackling the DRM license valida-
tion.

3. PRELIMINARIES
In this section, first we present a list of notations we use

in this paper. Then we discuss in detail about structure
and generation redistribution and usage licenses using the
redistribution licenses. In the end of this section we discuss
about the process of validation when multiple redistribution
licenses are present.

3.1 Notations
We use the following notations in this paper.

• Structure of a license(details about redistribution and
usage licenses are given in the next sub-section):
L = {K; P1, P2, ..., PM ; C1, C2, ..., CM}

• Pq : qth permission in the license.

• Cq: Set of constraints for the permission Pq.

• nq : Total number of constraints in the set of con-
straints Cq.

• Lr
D : A redistribution license received by a distributor

D.

• Li
D: A redistribution license issued by a distributor(D)

to another distributor.

• Li
U : A usage license issued by a distributor(D) to a

consumer.

• N : Number of received redistribution licenses for a
media.

• Bje

Pq
: Bit-vector for the eth elementary range along the

jth constraint’s dimension of a permission Pq.

• BPq : Resultant bit-vector obtained after validation.

• rj : Number of maximum possible elementary ranges
along jth constraint dimension.

3.2 Generation of New Licenses
Received redistribution licenses are used by distributors to

redistribute the contents to their sub-distributors and con-
sumers. Distributors do it by generating further redistribu-
tion licenses and usage licenses for the sub-distributors and
consumers respectively. Redistribution licenses contain per-
missions and constraints related to further distribution of
contents. Constraints in redistribution licenses generally al-
low a distributor to distribute over a range of allowed values
for the constraints. For example, if a distributor is allowed
to distribute in Asia at country level, then range of allowed
values will be countries in Asia. Or, the owner may limit

the distribution such that a distributor cannot issue more
than 20 play permission counts in further usage licenses,
then range of allowed values for this constraint is (0, 20].
Or, maximum number of days a usage or redistribution li-
cense generated using a redistribution license can be used.
Thus, we assume the constraints in redistribution licenses to
be in form of ranges (there can be multiple ranges for each
constraint but for the sake of simplicity we discuss only the
case for single range). Below, we discuss procedures for gen-
eration of redistribution licenses and usage licenses using a
redistribution license in detail.

3.2.1 Redistribution License Generation
In an issued redistribution licenses, each constraint must

be a subset of the same constraint in the received redistribu-
tion license, using which the license is issued. For instance,
a received redistribution license that is allowed to issue fur-
ther redistribution and usage licenses in Asia cannot be used
to issue a redistribution license that is allowed to distribute
in a country in Europe. Thus, if in a newly generated redis-

tribution license Li′

D, for a permission Pq, the jth constraint
has a range [x′

j , y
′

j]; and it is generated using a received

redistribution license Lr
D with the jth constraint for a per-

mission Pq with the range as [xj , yj] then [x′

j , y
′

j] ⊆ [xj , yj],
and this condition must be valid for all j ≤ nq , where nq is
the number of constraints for the permission Pq . The above
condition must also hold for all the permissions.

3.2.2 Usage License Generation
A usage license allows a consumer to consume a media

according to the permissions and constraints in it. In usage
licenses, constraints can be in form single values or in form of
ranges. For example, if a usage license allows to play a me-
dia for 20 days in Asia, then 20 can be considered in form of
single value and Asia can be considered as range of allowed
countries. However, the constraints which are in form of
ranges, during validation, can be dealt in similar manner as
that of constraints in redistribution licenses(which we dis-
cuss separately). Thus, for ease of explanation we assume
each constraint in a usage license in the form of single value.
For generation of a new usage license the value of each con-
straint must be within the range of respective constraint in
the redistribution license that is used to generate it. Thus,
for a permission Pq, if the jth constraint value in a usage
license is Cj then Cj must be within the respective range
[xj , yj] in the redistribution license used to generate it.

Example 1: Consider the received redistribution license
Lr1

D to distribute the play permissions according to three
constraints(validity period T (in days) of usage licenses gen-
erated using redistribution licenses, region allowed for distri-
bution R, and range of number of maximum play permission
counts A in the usage licenses generated using the redistri-
bution license). Redistribution license Li1

D and usage license

Li1
U shown below can be generated using it.
Lr1

D = {K; P lay;Cr1

Play : T = [10, 30], R = [Asia, Africa],

A = [10, 50]}
Li1

D = {K; P lay;Ci1
Play : T = [12, 30], R = [SouthAsia],

A = [10, 45]}
Li1

U = {K; P lay;Ci1
Play : T = [15], R = [Country ′X ′],

A = [35]}
Where, Li1

U can be interpreted as license allowed to play
the content for at most 12 days, in the country ′X ′ (in Asia)
and maximum allowed play permission counts are 35.

3.3 Validation of Newly Generated Licenses
A distributor in MPML DRM architecture is a different

party than the owner. The licenses generated by these dis-
tributors may not be according to the redistribution licenses
they acquired. Thus, as a part of rights violation detec-
tion[5], it is required to do the validation of all the licenses
generated by all the distributors. And the licenses can only
be redirected to the sub-distributors and consumers after
the validation. A validation authority does the validation of
all the licenses generated by all the distributors.

As discussed in section 1, due to business flexibility rea-
sons multiple received redistribution license for the contents
may be present with the distributors. Validation of each li-
cense generated by a distributor for a content is done using
all the received redistribution licenses for the content with
the distributor. The validation authority stores a copy of all
received redistribution licenses by all distributors and vali-
dates a newly generated license using stored received redis-
tribution licenses. A newly generated redistribution license
is valid if all the constraints for each permission are subset
of constraints in at least one of the received redistribution
licenses. Let a distributor has N number of received redis-
tribution licenses Lr1

D , Lr2

D , ..., LrN

D for the content K, as
represented below:

Lrn

D = {K, P rn
1

, P rn
2

, ..., P rn

M , Crn
1

, Crn
2

, ..., Crn

M }, 1 ≤ n ≤
N .

and the distributor generates a new redistribution license

Li
′

D for the same content:

Li
′

D = {K, P i
′

1 , P i
′

2 , ..., P i
′

M , Ci
′

1 , Ci
′

2 , ..., Ci
′

M}.

Li
′

D is a valid redistribution license if each constraint in

each the set Ci
′

j is subset of the respective constraint in the
set C

rk
j for at least one n, where 1 ≤ j ≤ M , and 1 ≤ n ≤ N .

The validation process for a usage licenses is similar to the
validation of redistribution licenses except constraints in us-
age licenses are in form of single values and we need to find
at least one received redistribution license, for which all the
constraint values in the usage license are within the respec-
tive constraint range in the received redistribution license.

Example 2: Let three received redistribution licenses
(N = 3), Lr1

D , Lr2

D , and Lr3

D , shown below are obtained by a
distributor.

Lr1

D = {K; P lay;Cr1

Play : T = [10, 30], R = [Asia, Africa],

A = [10, 50]}
Lr2

D = {K; P lay; Cr2

Play : T = [20, 40], R = [America], A =

[10, 50]}
Lr3

D = {K; P lay;Cr3

Play : T = [15, 30], R = [Asia], A =

[15, 60]}
Now, if the distributor generates a new usage license Li1

U

Li1
U = {K; P lay;Ci1

Play : T = [15], R = [America], A =

[26]}
Now, for validation purpose the validation authority checks

all the constraints in the issued licenses one by one using the
received redistribution licenses Lr1

D , Lr2

D , and Lr3

D . Since all
three constraints in the issued license are not within the re-
spective constraints in any received redistribution license,
hence the license Li1

U is not valid and cannot be issued.

4. LICENSE ORGANIZATION FOR EFFI-
CIENT VALIDATION

In this section, first we discuss about the requirement of

an efficient method of license validation. Then, we propose
the bit-vector transform based license organization approach
and associated data structure to do the validation of newly
generated licenses efficiently.

4.1 Requirement of Efficient Validation Method
As discussed in the previous section, a validation author-

ity does the validation of all the licenses generated by all
the distributors. In a geographically distributed DRM ar-
chitecture like MPML DRM architecture there can be a large
number of distributors. Each distributor might be generat-
ing a large number of redistribution and usage licenses per
unit time. Every time a new license is generated by a dis-
tributor, a validation request is send by the distributor to
the validation authority. Thus, validation authority needs to
handle a large number of validation requests per unit time.
It may be difficult for the validation authority to handle
such a large number of validation requests per unit time as
all the validations need to be done in real time.

The problem of validation becomes even more difficult
when we consider the validation using multiple received re-
distribution licenses, as discussed in section 3.3, for the con-
tent by a distributor. Multiple received redistribution li-
censes complicate the problem in two ways. First, the vali-
dation time increases several times as each newly generated
license, now, needs to be validated using multiple received
redistribution licenses. Second, for validation purpose, the
validation authority needs to store a copy of all the received
redistribution licenses for each media. Hence, multiple re-
ceived redistribution licenses for each media may increase
the storage space requirements drastically.

Thus, we propose a bit-vector transform based license or-
ganization method. The license organization method helps
to achieve low validation time and storage space required for
storing redistribution licenses.

4.2 Bit-vector Transform
The bit-vector transform converts received redistribution

licenses into the bit-vectors. The transform is applied sepa-
rately for each permission. In the transform presented each
constraint for a permission Pq can be seen as representing
one dimension in a d dimensional hyperspace, where d is
the number of constraints for the permission Pq(same as
nq). Each constraint dimension is divided into non overlap-
ping elementary constraint ranges based on the respective
constraint ranges in the received redistribution licenses, as
we discuss in the sub-sections below. For example, in fig-
ure 2(a) there are three elementary ranges along constraint
1 dimension:(0, 100), [100, 200], (200,∞). Each elementary
range represents a bit-vector. Let the bit vector for the eth

elementary range along the jth constraint dimension for a
permission Pq is represented by Bje

Pq
. If there are N received

redistribution licenses then the length of bit-vector is N bits,
and the nth bit in the bit-vector Bje

Pq
represents the nth re-

ceived redistribution license. A bit equal to 1 in a bit vector
shows presence of the elementary constraint range and a bit
equal to 0 shows absence of the elementary constraint range
in the corresponding (to the bit) received redistribution li-
cense. Next, we discuss the process to obtain the bit-vectors
from multiple received redistribution licenses. For better un-
derstanding, first we start with transform of a single received
redistribution license. Later we generalize it for the case of
multiple received redistribution licenses.

C
on

st
ra

in
t 2

10

100 200

10

5

15

100 200

(156, 12)

],[21 r
D

r
D LL

][1r
DL

][1r
DL

][2r
DL

][2r
DL

Constraint 1 Constraint 1
C

on
st

ra
in

t 2

10

5

15

(a)

1

01

0

11

10

00

(b)

0 01 10 11 00

Figure 2: Representation of Redistribution licenses

4.2.1 Transform for a Single license
Initially, when there is no redistribution license, the orig-

inal elementary range in each constraint dimension is as-
sumed from 0 to ∞. When the distributor obtains the first
redistribution license, the elementary range along each con-
straint dimension is divided into several elementary ranges
according to the respective constraint range in the first re-
ceived redistribution license. If the jth constraint range for
a permission Pq in the first license is represented by [aj , bj]
then the constraint range along jth constraint dimension are
divided into elementary ranges(0, aj), [aj , bj], and (bj ,∞).
Each elementary range represents a 1 bit length bit-vector(as
only 1 redistribution license is present). Since only the ele-
mentary range [aj , bj] is present in the received redistribu-
tion license so the bit-vectors for the ranges (0, aj), [aj , bj],
and (bj ,∞) would be 0, 1 and 0 respectively.

Example 3: Consider a received redistribution license
with two constraints and respective constraint ranges as
[100, 200] and (0, 10] along the constraint 1 and constraint 2
dimensions respectively. Figure 2(a) illustrates the insertion
of new elementary ranges along constraint 1 and constraint
2 dimensions respectively.

4.2.2 Transform for multiple licenses
Let L − 1 received redistribution licenses are present and

the Lth redistribution license is just obtained, two steps are
needed. In the first step, new elementary ranges are inserted
along each constraint dimension. In the second step, L − 1
length bit-vectors are modified to obtain L length bit vec-
tors.

Let [aj , bj] be a new constraint range in the jth constraint
dimension in a new license. First a search is made for aj

along the jth constraint dimension. If aj is present on the
axis then no action is taken. Else, it is added in the numeri-
cal order on the axis (Each non-numeric constraint such as,
region allowed for distribution, can also be easily converted
into range of numbers). It forms two elementary constraint
ranges by dividing an existing elementary constraint range,
the same bit-vector as of the original range is assigned to
both ranges. The similar process is used to insert bj on
the jth constraint axis. In the next step, the Lth bit is ap-
pended (to LHS) to the bit-vectors corresponding to all the
elementary ranges. A bit value equal to 1 is appended to
all the elementary ranges between aj and bj along the jth

axis and bit 0 is appended otherwise. Figure 2(b) illustrates
the transformed space after inserting a new received redis-
tribution license Lr2

D having constraint ranges (0, 200] and
[5, 15].

0

10

1

0

0

10

1

0

5
1

0

10

1

5
1

15

0

0

0

10

01

5
11

15

00

10

(a) (b) (c) (d)

Figure 3: Transform for Multiple Licenses

Example 4: Let for the case of figure 2(a), the distribu-
tor acquired another license with constraint ranges (0, 200]
and [5, 15] along the constraint dimensions 1 and 2 respec-
tively. In figure 3 we show the steps 1 and 2 in above al-
gorithm for the constraint dimension 2. According to above
algorithm, first, the end point 5 is searched along the con-
straint dimension 2. Since it is not found so the point 5
is inserted along constraint dimension 2 as shown in fig-
ure 3(b). Since the point 5 divides the range (0,10] so a
bit-vector same as that of the range (0,10] in figure 3(a) is
assigned to both (0,5) and [5, 10]. Similarly, the point 15 is
inserted, as represented in figure 3(c). Finally, in bit-vector
modification step, a bit equal to 1 is appended to all bit
vectors between 5 and 15, and a bit equal to 0 is appended
to other bit-vectors. This step is illustrated in figure 3(d)
with newly inserted bits in bigger font.

The transform gains efficiency,firstly, by taking advantage
of redundancy in representation of licenses. If there is some
common end point of a constraint range between multiple
licenses then it is represented only once in the transformed
domain. For example, in figure 2(b), end point 100 along
constraint 1 axis is shared between Lr1

D and Lr2

D , it is in both
licenses but in the transform domain it is represented only
once. Secondly, in contrast to the direct representation of
licenses, data in the transformed domain can utilize efficient
data structures, as discussed in the next sub-section.

4.3 Efficient Data Structure to Represent Con-
straint Dimensions

In bit-vector transform elementary ranges are present in
increasing order along each constraint dimension. Thus, the
elementary ranges along each constraint dimension can be
represented with a search efficient data structure such as
BST, AVL trees [15] [1], etc. AVL trees are the most effi-
cient in searching. So, we use AVL trees to represent each
constraint dimension.

An AVL tree has a property that right subtree of a node
stores all the nodes with value greater than the value in the
node and left subtree stores the nodes with value less than
the value in the node. Thus, in figure 4, if each A, B,...,
and F represent a numerical value then A< B< C... <F
is true. In our case, we use two types of nodes: internal
nodes and leaf nodes. Internal nodes store end points of
constraint ranges in received redistribution licenses and leaf
nodes represent an elementary range and store a bit-vector
corresponding to the elementary range. As shown in figure
4, each leaf node stores a unique elementary range. The

Figure 4: Representation of an AV L tree

readers may refer to [1] to get more details about AVL trees.
A separate AVL tree is designed for each constraint in the

licenses, and represented by AV Lj for the jth constraint di-
mension. Internal nodes in the AV Lj store the start or end
points of the jth constraint range in the received redistribu-
tion licenses. Whereas each leaf nodes represents a unique
range R (i.e. elementary ranges) determined by the values
stored in internal nodes and stores the bit vector correspond-
ing to its elementary range. Next, we discuss the process of
insertion of new licenses in AVL trees.

4.3.1 Insertion of a New Received License
Insertion of a new received redistribution license in an

AVL trees is done in two steps. In the first step, AVL tree
for jth dimension AV Lj is modified by inserting jth con-
straint range in the received redistribution licence in it. In
the second step, bit-vector corresponding to each elemen-
tary constraint range is modified. Each step corresponds
to the respective step(i.e. elementary range insertion and
bit-vector modification) in section 4.2.2.

(A) Constraint Range Insertion. AV Lj is created
when the first redistribution license for some content is re-
ceived by a distributor. Let in the first received redistribu-
tion license the jth constraint range is given by [a1

jr
, b1

jr
]. An

internal node corresponding to a1

jr
is created along with an

internal node with b1

jr
as its right child and a leaf node with

the bit vector 0 as its left child. The node corresponding to
b1

jr
has both left and right child nodes as leaf nodes. The

left child node stores the bit-vector 1 and the right child
node stores the bit-vector 0. Figure 5(a) shows an AVL tree
formed by insertion of a constraint range [0, 10].

For the insertion of jth constraint range in an arbitrary
kth received redistribution license, [ak

jr
, bk

jr
], except the first

received redistribution license following process is followed.

1. A search is made for ak
jr

in the internal nodes of AV Lj .

If an internal node containing ak
jr

is found then no
modification is done in AV Lj .

2. If no exact match is found then an internal node with
value equal to ak

jr
is inserted and both its child leaf

nodes are created by copying the leaf node previously
at the position, where the new node is inserted.

3. Rotation is performed, if needed to balance the tree.

4. Insertion of bk
jr

is done using a similar process that was

used for the insertion of ak
jr

.

5. Go to step B for bit-vector modification.

Insertion of the constraint range [5, 15] in the AVL tree in
figure 5(a), using the above process is shown in figures 5(b)
to 5(d).

(B) Bit-vectors modification. All the bit vectors in
the in the modified AVL tree need to be modified by ap-
pending them with a bit. So, we perform in-order traversal
(Nodes are processed recursively by processing the left sub-
tree, then processing the root, and finally the right sub-tree)
in the AV Lj and process each internal node traversed one
by one. If the value stored in the traversed internal node is
in the range (0, ak

jr
), [ak

jr
], (ak

jr
, bk

jr
), [bk

jr
], and (bk

jr
,∞) then

the node is processed using one of the steps from the step 1
to 5 respectively.

1. If the node has any child node(s) as a leaf node(s)
then the bit 0 is appended (to the LHS) to the bit-
vector(s) corresponding to the child node(s). If the
node traversed has no child node as leaf node then no
action is performed.

2. If the node has a left child as leaf node then append 0
to the bit-vector corresponding to the left child. If the
node has a right child as leaf node then append 1 to
the bit-vector corresponding to the right child.

3. If the node has any child node(s) as a leaf node(s)
then the bit 1 is appended (to the LHS) to the bit-
vector(s) corresponding to the child node(s). If the
node traversed has no child node as leaf node then no
action is performed.

4. If the node has a left child as leaf node then append 1
to the bit-vector corresponding to the left child. If the
node has a right child as leaf node then append 0 to
the bit-vector corresponding to the right child.

5. If the node has any leaf nodes then append a value 0
to the bit-vector corresponding to that node.

According to above algorithm, in figure 5(d), the nodes con-
taining value 0, 5, 10, and 15 are processed using the steps
1, 2, 3, and 4 respectively for modification of bit-vectors to
obtain the AVL tree shown in figure 5(e).

4.3.2 Search in AVL Trees
For validation purpose, as we discuss in section 5, we need

to search bit-vectors corresponding to the constraint values
in newly generated licenses. Following steps are required for
searching the bit-vector corresponding to a value v in AV Lj .

1. Make the ROOT node as current node.

2. Compare the value v with the value stored in the cur-
rent node. If v is greater than the value stored in the
current node then assign the right child of the current
node as current node. Else assign the left child of the
current node as current node.

3. If current node is a leaf node then bit-vector stored in
the node is the bit-vector required. Else go to step 2.

5

0 10

0 1 1

0 0

15

5

0 10

00 01 11

10 00

15

0

10

0

1

0

5

1

ROTATION

5

0 10

0 1 1 0

(a) (b) (c) (d)

0

10

01

0

(e)

Figure 5: Operations on AV L tree

5. VALIDATION IN TRANSFORMED DO-
MAIN

In this section, we discuss our method of validation of is-
sued usage and redistribution licenses in the bit-vector trans-
formed domain. To make a better understanding, first, we
discuss the basis we are using for validation of licenses.

5.1 Basis of Validation
In the transformed domain, we define a similar problem

along each constraint dimension. For the jth constraint di-
mension for a permission Pq , the problem is to determine
the set Sj of received redistribution licenses such that the
jth constraint in the newly generated license is a subset of
jth constraint range in each redistribution license in the set
Sj . And once we determine the set of received redistribution
licenses for all d constraints for the permission Pq, the next
step is to determine the set S; where S is the set of received
redistribution licenses such that all the constraints in the
generated license are subset of the respective constraint in
all the redistribution licenses in the set S. It can be obtained
by taking intersection of the individual sets obtained for all
d constraint dimensions i.e.

S = S1 ∩ S2 ∩ ∩ Sd. (1)

The generated license will be a valid license if the set S con-
tain at least one received redistribution license. This basis
of validation can be efficiently applied using bit-vectors, as
shown below.

5.2 Validation of Usage Licenses
Let the value of jth constraint for a permission Pq in a

usage licenses be Cj . For validation, first we find the ele-
mentary constraint range along the jth constraint dimension
to which the constraint value Cj belongs, and this is done
for all values of j i.e. all d constraints. Let the constraint
value Cj belongs to the eth

j elementary range with bit-vector

B
jej

Pq
. In the bit-vector transformed domain each bit-vector

has a unique position for each particular redistribution li-
cense. So, performing the logical ′AND′ operation between
them for all d values of j is equivalent to intersection op-
eration performed between Sj values in equation (1). The
resultant bit-vector (BPq) after ′AND′ operation is given
as:

BPq = B
1e1

Pq
∧ B

2e2

Pq
∧ ... ∧ B

ded
Pq

(2)

The bit corresponding to a received redistribution license
in the bit-vector BPq will be 1 in equation (2) if that received
redistribution license can be used to generate the new li-
cense. Thus, if no received redistribution license can be used
to generate the given license then all bits will be 0 in BPq .
Hence for validation purpose, we calculate numerical value
of the resultant bit-vector BPq ; if it is 0 then the license is-
sued is not valid, else it is a valid license. For instance, a new
license with the constraint values 156 and 12 is generated us-
ing the redistribution licenses Lr1

D and Lr2

D . In this case, as
we can observe from figure 2, the point 156 belongs to the el-
ementary range (100, 200]along constraint dimension 1, thus

B
1e1

Pq
= 11. The point 12 belongs to elementary range (10,

15] along constraint dimension 2, thus B
2e2

Pq
= 10. Accord-

ing to equation (2), BPq = B
1e1

Pq
∧ B

2e2

Pq
= 11 ∧ 10 = 10. As

the numerical value of BPq is not zero, therefore it is a valid
license. And, the value equal to 1 of the bit correspond-
ing to the license Lr2

D shows that the issued license can be
generated using the received redistribution license Lr2

D .

5.3 Validation of Redistribution Licenses
Let the range of jth constraint in a received redistribution

license Lr
D be [ajr , bjr] . A newly generated redistribution

license belongs to Lr
D if each constraint range in the gen-

erated license is a subset of respective constraint ranges in
Lr

D. Let the jth constraint range in the issued redistribu-
tion license be [aji

, bji
], it will be a subset of the constraint

range [ajr , bjr] if aji
≤ ajr , and bji

≤ bjr . Thus the bit
corresponding to the license Lr

D will be 1 in the bit-vectors
corresponding to the both end points of jth constraint range
in the license (aji

and bji
). So, we can perform an ′AND′

operation between the bit vectors corresponding to both end

points (aji
and bji

) to obtain the bit-vector B
jej

Pq
. Once we

obtain the bit-vector for all d constraint dimensions, equa-
tion (2)can be used to validate the redistribution license in
the same manner as used for validation of usage licenses.

6. PERFORMANCE OF THE METHOD
The proposed validation method using bit-vector trans-

form outperforms the direct approach of validation, in which
each issued license needs to be validated through received
redistribution licenses one by one, significantly because of
following reasons:

1. The proposed method utilizes the fact that most of the
constraint dimensions can have fixed maximum num-
ber of elementary ranges in practical scenarios. If there
are large number of possible values for a constraint
then the owner can limit the maximum possible ele-
mentary ranges for each constraint using a granularity
value. For example, the owner may limit the range of
a constraint between 10 and 60 in further redistribu-
tion licenses with a granularity of 5 (i.e. end points of
this constraint in further issued redistribution licenses
must be a multiple of 5). So, in this case maximum
12 elementary ranges are possible, including 0 to 10,
and 60 to ∞. Further a distributor might only be in-
terested in constraint range value between 10 and 30.
This further reduces number of elementary ranges for
the distributor.

2. The proposed method can utilize the AVL trees for rep-
resentation of constraint dimension. AVL trees have a
logarithmic searching time [19][7][11] and hence can
search faster along each constraint dimension during
the validation process.

6.1 Mathematical Performance Analysis
We analyze the performance on the basis of validation

time complexity and Storage space complexity.

(A) Validation Time Complexity..
According to figure 4, rj elementary ranges along the jth

constraint dimension (for a permission Pq) can be repre-
sented with the help of rj − 1 internal nodes in an AVL
tree. So, the average searching time in the AVL tree will be
proportional to log

2
(rj − 1) + 0.25 along the jth constraint

dimension (if there are n nodes present in an AVL tree, then
the average number of comparisons [19] is log

2
(n) + 0.25

). This leads to average number of operations equal to
∑d

j=1
(log

2
(rj − 1) + 0.25) for searching in the elementary

ranges along all d constraint dimensions, where d is the num-
ber of constraints for the permission Pq . Then we need to
perform ′AND′ operations between the bit-vectors obtained
for all constraint dimensions (equation (2)). For performing
one ′AND′ operation between two bit-vectors of length N
(represented in computer using k bit integers), the complex-
ity is C = ⌈N/k⌉, where ⌈⌉ is the ceiling operator. And a
total of d − 1 ′AND′ operations (′AND′ operation is per-
formed between d bit vectors) are needed to do the valida-
tion. So, the total validation time complexity will be pro-
portional to

∑d

j=1
(log

2
(rj − 1) + 0.25) + (d− 1) ∗C number

of operations. The method gains efficiency due to the use
of logarithmic and ceiling operators, whose value increases
relatively much slower as compared to N , as N grows.

(B) Storage Space Complexity..
Along the jth constraint dimension there are rj elemen-

tary ranges. k bits are needed to represent each elementary
range, and each elementary range represents a bit-vector of
length N (In computer, it will take k ∗ ⌈(N/k)⌉ bits). Fur-
thermore, considering that we represent each dimension with
an AVL tree so 2*k number of bits are needed to represent
left and right child pointers in each internal node. This leads
to storage space requirement of

∑d

j=1
rj ∗(k∗⌈(N/k)⌉+3∗k)

bits, where d is the number of constraints for the permission
Pq .

6.2 Results and Discussion
We performed experiments (in MATLAB) for different

values of number of received redistribution licenses, N , to
compare the performance of our approach with the direct
approach for validation time and storage space complexity.
For each value of N , we performed experiments 10,000 times;
in each experiment we generated N number of received re-
distribution licenses, and issued licenses using them. The
received redistribution licenses were generated by randomly
choosing a random number of constraints(5 to 10 from to-
tal 15) for each permission(number of permissions is chosen
randomly between 3 to7). All the constraints were defined
with a minimum value, maximum value and granularity ac-
cording to practical scenario. The range of constraints in
received redistribution licenses were chosen randomly from
all possible ranges. We selected value of k = 32, as most of
the modern computers use 32 bit integer format. The ap-
proaches used to calculate the performance of direct method,
and our method are discussed below.

A) Direct Method. In direct method, as discussed in
section 3, all the constraints in a newly generated licenses
need to be compared with the respective constraint ranges
in the received redistribution licenses one by one until we
find a received redistribution such that all the constraints in
the generated license are within the respective constraints
the received redistribution license.

For comparison purpose, we modify the direct method to
make it more search efficient by storing a pointer to the next
redistribution license license with all the constraint in all the
distribution licenses. Using the pointers, we can terminate
the comparison with a redistribution license as soon as we
find a constraint value such that its value is not within the
respective constraint range in the redistribution license. And
can go to the next redistribution license for comparison with
the help of the pointer stored.

In both direct method and modified direct method, each
comparison with a constraint range is counted as two oper-
ations. And for each N , number of operations are averaged
over all the issued licenses for that N . Computation of stor-
age space is done by averaging the storage space taken by
all the received redistribution licenses generated during all
10,000 experiments for each N . Storage space for each redis-
tribution license is the space required to store permissions,
constraints, and pointers to the next redistribution license.

B) Our Method. We calculated the number of elemen-
tary ranges for all constraints using N redistribution licenses
generated in each experiment. Thus, in case of N = 3, if the
jth constraint ranges for a permission in three licenses are
[10, 20], [15, 25], and [20, 25] then rj will be 5. Then, we

simulate the equations:
∑d

j=1
(log

2
(rj−1)+0.25)+(d−1)∗C

, and
∑d

j=1
rj ∗ (k ∗⌈(N/k)⌉+3∗k) for validation time stor-

age space complexity using different values of elementary
ranges (these act as random variables) calculated in each
experiment.

The comparison between direct method, modified direct
method and our method for validation time (per issued li-
cense) and storage space (for N licenses) is shown in fig-
ure 6(a) and 6(b) respectively. We can observe that for our
method both validation time and storage space requirements
does not change by big amount as N grows to a large value,
which is one of the most important requirement for smooth
running of system. Our method gives validation time perfor-

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Number of received redistribution licenses (N)

N
um

be
r o

f o
pe

ra
tio

ns
 (P

er
 is

su
ed

 li
ce

ns
e)

Direct Approach

Modified direct Approach
Our Algorithm

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

Number of received redistribution licenses (N)

S
to

ra
ge

 s
pa

ce
(in

 K
B

)

Direct Approach

Modified direct Approach

Our Algorithm

(a) (b)

Figure 6: Case of single range for each constraint

mance comparable to the direct and modified direct methods
for small number(N<10 in this experiment) of redistribu-
tion licenses and outperforms both the methods for most of
the practical values of N for business requirements. Storage
space requirement becomes constant (except abrupt change
at N=32, and N=64) for higher values of N because of
the fixed maximum possible elementary ranges for each con-
straint. As N increases, the number of elementary ranges for
each constraint tend towards its fixed maximum value and
thus the probability of increase in elementary rages becomes
lesser. And, once the number of elementary rages reaches
its maximum value then there is no further possibility of
increase in elementary ranges. Abrupt changes in both the
curves observed at N=32, and N=64 are due to the ceiling
operator.

In the above analysis, we considered only single range for
each constraint in the redistribution licenses. But, in reality
there may exist multiple ranges for the constraints. The rel-
ative performance of our method with respect to the direct
and modified direct approach will become even better in this
case. As the number of ranges for each constraint increase,
the validation time required for the direct and modified di-
rect methods would also increase proportionally. But in our
case, for each individual N , value of the term containing
ceiling operator ((d − 1) ∗ C) in the validation time com-
plexity equation does not change and for the other term
(
∑d

j=1
(log

2
(rj − 1) + 0.25)) the increase will only be log-

arithmic as compared to linear in case of direct method.
We performed experiments for the case of multiple licenses
by generating by generating multiple ranges for each con-
straints with the following probabilities- single range: 0.40,
two ranges: 0.25, three ranges: 0.20 and four ranges: 0.15.
Comparison between all three approaches in case of multiple
ranges for constraints is shown in figure 7(a) and 7(b). We
can observe, our method always performs much better than
the direct and modified direct method in terms of validation
time and gains much more efficiency relatively in terms of
storage space too.

7. CONCLUSION
In this paper, we proposed the bit-vector transform based

license organization technique and a method to do the li-
cense validation in bit-vector transform domain. We per-
formed mathematical and experimental analysis for the pro-
posed bit-vector transform based validation method. Both
mathematical and experimental results show that the our
proposed method performs better than the direct method
and modified version of direct method in terms of both val-
idation time and storage space. This makes our proposed
Bit-vector transform based license organization method a
good choice for representation of licenses.

Acknowledgement. Thanks to the Agency for Science,
Technology and Research (A ∗ STAR), Singapore for sup-
porting this work under the project ′Digital Rights Viola-
tion Detection for Digital Asset Management′ (Project No:
0721010022).

8. REFERENCES
[1] A. Andersson. General balanced trees. Journal of

Algorithms, 30(1):1–18, 1999.

[2] A. Arnab and A. Hutchison. Fairer usage contracts for
drm. In Proceedings of the 5th ACM workshop on

Digital rights management, pages 1–7, 2005.

[3] A. Arnab and A. Hutchison. Drm use license
negotiation using odrl v2. 0. In Proceedings of the 5th

International Workshop for Technical, Economic and

Legal Aspects of Business Models for Virtual Goods,
2007.

[4] L. Chiariglione. A walkthrough in the dmp phase ii
specification, 2006. Available at:
http://www.chiariglione.org/docs/idp-2 overview.htm.

[5] S. Emmanuel and M. S. Kankanhalli. Digital rights
management issues for video. Multimedia Security

Handbook, 8(6):759–787, 2003.

[6] S. Emmanuel and M. S. Kankanhalli. A digital rights
management scheme for broadcast video. Multimedia

Systems, 8(6):444–458, 2003.

[7] C. C. Foster. Information retrieval: information

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

Number of received redistribution licenses (N)

N
um

be
r

of
 o

pe
ra

tio
ns

 (
P

er
 is

su
ed

 li
ce

ns
e)

Direct Approach

Modified direct Approach

Our Algorithm

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Number of received redistribution licenses (N)

S
to

ra
ge

 s
pa

ce
(in

 K
B

)

Direct Approach

Modified direct Approach

Our Algorithm

(a) (b)

Figure 7: Case of multiple ranges for each constraint

storage and retrieval using avl trees. In Proceedings of

the 1965 20th national conference, pages 192–205.
ACM New York, NY, USA, 1965.

[8] S. O. Hwang, K. S. Yoon, K. P. Jun, and K. H. Lee.
Modeling and implementation of digital rights. The

Journal of Systems and Software, 73(3):533–549, 2004.

[9] P. A. Jamkhedkar and G. L. Heileman. The role of
architecture in drm vendor economics. In
International Conference on e-Commerce, Porto,
Portugal, 2005. IADIS.

[10] P. A. Jamkhedkar and G. L. Heileman. Digital rights
management architectures. Computers and Electrical

Engineering, 35(2):376–394, 2009.

[11] B. Jon Louis and H. F. Jerome. Data structures for
range searching. ACM Comput. Surv., 11(4):397–409,
1979.

[12] Q. Liu, R. Safavi-Naini, and N. P. Sheppard. Digital
rights management for content distribution. pages
49–58. Australian Computer Society, Inc.
Darlinghurst, Australia., 2003.

[13] X. Liu, T. Huang, L. Huo, and L. Mou. A drm
architecture for manageable p2p based iptv system. In
IEEE International Conference on Multimedia and

Expo, 2007, pages 899–902, 2007.

[14] S. K. Nair, A. S. Tanenbaum, G. Gheorghe, and
B. Crispo. Enforcing drm policies across applications.
In Proceedings of the 8th ACM workshop on Digital

rights management, pages 87–94, 2008.

[15] B. Pfaff. Performance analysis of bsts in system
software. ACM SIGMETRICS Performance

Evaluation Review, 32(1):410–411, 2004.

[16] A. Sachan, S. Emmanuel, A. Das, and M. S.
Kankanhalli. Privacy preserving multiparty multilevel
drm architecture. In Workshop on Digital Rights

Management, 6th IEEE Consumer Communications

and Networking Conference, 2009., pages 1–5, 2009.

[17] R. Safavi-Naini, N. P. Sheppard, and T. Uehara.
Import/export in digital rights management. In
Proceedings of the 4th ACM workshop on Digital rights

management, pages 99–110. ACM New York, NY,
USA, 2004.

[18] T. Sans, F. Cuppens, and N. Cuppens-Boulahia. Opa:
Onion policy administration model-another approach
to manage rights in drm. International Federation for

Information Processing, 232:349, 2007.

[19] A. M. Tenenbaum and M. J. Augenstein. Data

structures using Pascal. Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1986.

[20] Y. Zheng, D. He, H. Wang, and X. Tang. Secure drm
scheme for future mobile networks based on trusted
mobile platform. In Wireless Communications,

Networking and Mobile Computing, 2005. Proceedings.

International Conference on, volume 2, 2005.

	Introduction
	Related Work
	Preliminaries
	Notations
	Generation of New Licenses
	 Redistribution License Generation
	Usage License Generation

	Validation of Newly Generated Licenses

	License Organization for Efficient Validation
	Requirement of Efficient Validation Method
	Bit-vector Transform
	 Transform for a Single license
	 Transform for multiple licenses

	Efficient Data Structure to Represent Constraint Dimensions
	Insertion of a New Received License
	Search in AVL Trees

	Validation in Transformed Domain
	Basis of Validation
	Validation of Usage Licenses
	Validation of Redistribution Licenses

	Performance of the Method
	Mathematical Performance Analysis
	Results and Discussion

	Conclusion
	References

