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ABSTRACT
We consider surveillance problems to be a set of system- ad-

versary interaction problems in which an adversary can be

modeled as a rational (selfish) agent trying to maximize his

utility. We feel that appropriate adversary modeling can pro-

vide deep insights into the system performance and also clues

for optimizing the system’s performance against the adver-

sary. Further, we propose that system designers should exploit

the fact that they can impose certain restrictions on the intrud-

ers and the way they interact with the system. The system de-

signers can find the assumptions under which the surveillance

system shall out-perform the intruder and then enforce those

assumptions over the system-intruder interaction as part of a

‘scenario engineering’ approach. We study both these aspects

using a game theoretic framework and undertake practical ex-

periments to verify the proposed enhancements.

1. INTRODUCTION

Recently a significant amount of research has been under-

taken by the visual surveillance community in areas like ad-

vanced detection, tracking and recognition etc [1]. However,

sensor-adversary interaction which is pivotal to surveillance

systems is very rarely studied. Very few works model the

adversary and the typical models have been poisson, equi-

probability distributions etc. over the entire possible action

sets. This is in stark contrast with the multimedia security/

cryptography studies where deep insights have been gained

by the modeling the performance of a ‘smart adversary’ against

the system [2].

Thus we propose to introduce the notion of a ‘smart adver-

sary’ into surveillance research. Such modeling can be used

for measuring the system performance and analysing the best

and the worst case performances. It can also be used to study

the effects of changing different surveillance attributes (sen-

sor positioning etc.) on the system performance.

We assert that another important concept missing from

surveillance research is that of ‘scenario engineering’. Typi-

cally the surveillance setup is assumed to be ‘given’ and ‘fixed’.

This may however not always be the case. For example, the

positioning of an ATM machine within a lobby can and should

be changed if it provides significant improvements in the surveil-

lance effectiveness. We propose using the appropriate adver-

sary and scenario modeling to find the assumptions and/or

enforcements which will improve the surveillance effective-

ness and then enforcing them over the scenario to help the

surveillance system outperform the adversary. The idea is

akin to exploiting the ‘Home Ground Advantage’ to benefit

your team wherever possible. This idea is also loosely related

to context based awareness works wherein certain system pa-

rameters can be adjusted based on user behavior [3], though

indeed our focus is very different.

In our proposed work, both adversary and scenario mod-

eling have been studied using a game theoretic framework.

We assume our adversary to be a rational selfish agent who

has a clear goal and utility gains/costs associated with each

of his actions. We model the interaction problem as that of

two selfish rational agents (system and the adversary), both

trying the maximize their utilities while being acutely aware

that the other agent is also trying to do the same. This fits in

very well under a game theoretic framework which have ex-

tensively been used to study similar interaction problems be-

tween multiple nations, competing firms and online bidders

over the last few decades [4, 5].

To summarize the key contributions of this paper are:

1. Modeling of rational selfish adversaries in surveillance

scenarios through a game theoretic framework.

2. Adoption of ‘scenario engineering’ concept to allow

modifications to the surveillance environment in order

to benefit the surveillance system rather than the adver-

sary.

To check the applicability of the proposed approaches in

practical surveillance scenarios we have considered a surveil-

lance scenario of an enclosed rectangular area such as that of

a museum subsection or an ATM lobby. We assume that the

adversary goal is to reach the important artifact (ATM ma-

chine or the expensive art-piece), while the system goal is to

capture the intruder’s facial images. We relax the often (tac-

itly) used assumption that the adversary does not know where

the camera is focusing. Rather, we assume that the adversary

knows where the camera is focusing and actively tries to avoid

getting his images captured.

To the best of our knowledge there have been no attempts

at using the game theory to model surveillance scenarios as

yet. Similarly there have been no attempts at explicit adver-

sary modeling or scenario engineering in Surveillance.
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Fig. 1. (a) Schematic- Original scenario (b) After enforcement 1 (c) Physical- Original scenario (d) After enforcement 1

2. PROPOSED WORK

While our proposed ideas of adversary modeling and scenario
engineering are generic, to understand their implications let

us consider a base case surveillance scenario of an enclosed

environment like a museum subsection or an ATM lobby. We

assume that the adversary goal is to reach the important arti-

fact (ATM machine or the expensive exhibit), while the sys-

tem goal is to capture the adversary’s facial images.

A typical surveillance setup in such a scenario looks sim-

ilar to as shown in figures 1 (a) and 1(c). The adversary can

move towards the goal by going towards left or right direc-

tion. Clearly, a surveillance camera can only focus in one of

the two directions, left or right. Hence, by purely random

selection(s) by the Adversary Alice (A) and the Surveillance

System Bob (B), B has a 50% probability of capturing A’s

image. Our claim is that through adversary modeling and sce-

nario engineering B can almost always outperform A.

We assume both Alice and Bob to be rational agents try-

ing to maximize their utilities. Their utilities for undertaking

various actions are shown in table 1. The rows represent the

direction of adversary’s motion while the columns represent

the direction being focused by the camera. ν represents the

gain for A in nearing the goal while σ is the cost incurred

upon image capture. The matrix only shows values for A as

the gains for her are considered the losses for B and vice-

versa (Zero Sum Game).

The matrix shown in table 1 has 2 best cases (for A),

no pure Nash Equilibrium and one impure Nash Equilibrium.

Please recall that an impure equilibrium exists when both the

players have no motivation in changing their adopted strate-

gies unilaterally. Consequently it signifies that each player

should become unbiased between his/her strategies. Thus

equating the utilities achievable through A’s two strategies:

(p2)(ν−σ)+ (1− p2)(ν) = (p2)(ν)+ (1− p2)(ν−σ) (1)

where p2 is the probability of B choosing strategy 1 i.e. Fo-

cusing Left.

Solving equation 1 we get p2= 0.5. Similarly we obtain

p1 i.e. probability of A choosing Left as 0.5 and Expected

Utility for A (EUA) is:

EUA = ν − 0.5σ (2)

Adversary
System Left Right

Left ν − σ ν
Right ν ν − σ

Table 1. Surveillance game between Adversary and System

Clearly, EUA is high as Bob cannot monitor both the fea-

sible options for Alice (Left and Right) at the same time.

Thus, using the ‘Home Ground Advantage’, we modify this

situation by our first enforcement.

Enforcement 1- Goal Placement: We enforce that the

entry point and the goal be placed as further apart as possible

in opposite directions as shown in figures 1(b) and 1(d). A’s

movement now (if at all possible) shall only take him further

away from the goal and thus the game matrix changes to table

2. Clearly, A does not gain much now by going towards Right.

Consequently there exists a pure Nash equilibrium at [Left,

Left], provided ν − σ ≥ 0. Thus the utility now changes to:

EUA = ν − σ (3)

This new value is clearly worse for Alice than earlier value

(in Eq 2). However we as system designers hope to push it

down further. We notice that this EUA value holds only when

ν ≥ σ i.e. when cost of detection/image capture is less than

the gain of nearing. This can only occur when images being

captured are of poor quality (cannot be used for identification)

or when the adversary is benign i.e. does not mind her images

being captured.

Enforcement 2- Quality of Sensing: We enforce that the

Quality of Sensing should be enough to act as a deterrence

to the prospective adversaries. Thus the images ought to be

captured at a minimum resolution required for identification.

With this enforcement, there is no more pure Nash Equilib-

rium in the game. The impure Nash Equilibrium occurs when:

(p2)(ν − σ) + (1− p2)(ν) = (p2)(0) + (1− p2)(−σ) (4)

and

(p1)(−ν + σ) + (1− p1)(0) = (p1)(−ν) + (1− p1)(σ) (5)

which give p1 as 0.5 and p2 as ν+σ
2σ and net utility for A as:

EUA = (1− ν + σ

2σ
)× (ν − σ) (6)
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Adversary
System Left Right

Left ν − σ ν
Right 0 −σ

Table 2. Modified Surveillance game between Adversary and

the System

Thus EUA depends on the ratio between ν and σ but clearly

shall be negative and worse than the earlier value (in Eq 3).

However, if we employ the ‘Theory of Moves’ [5] frame-

work to study the matrix there shall be continuous cycles no

matter what is the initial state. This means that B shall al-

ways try to focus on the side where A is, but she will change

her side as soon as B does so and such a process gets contin-

uously repeated. Recall that the ‘Theory of Moves’ promul-

gates that the a player in her 3rd best state should not try to go

to her 2nd best state if her opponent can undertake a counter-

action to push her to her 4th best state. Intuitively, this theory

states that in a game of chess you should not take your op-

ponents ‘pawn’, if doing so makes your ‘queen’ vulnerable.

Thus A and B can before-hand calculate their expected pay-

offs for various sequence of moves and then choose the best

possible one. Further it states that cycles of moves shall result

in some iteration loss for both players. Thus if we consider

the iteration losses, the considered game becomes Non Zero-

Sum as shown in table 3.

Enforcement 3- Power Play: We enforce that B’s iter-

ation loss (β) is negligible compared to A’s iteration loss α.

This makes sense as B can afford to be there for as long as

required but A cannot stay inside the premises for a long du-

ration. Thus instead of making continuous cycles of [Left]

[Right] [Left]... movements A shall have to accept the ‘best-

she-can-get’ situation of [Left, Left]. The [Left, Left] is the

‘best-she-can-get’ situation as the states [Left, Right] and [Right,

Left] are unstable (B can unilaterally change its strategy to

reduce A’s utility) and state [Right, Right] provides an even

lower utility value. If she does not undertake forward analysis

to choose one stable state she shall suffer from significant it-

eration losses which will make her net utility even worse than

the [Left, Left] state. Such a process of iteration between var-

ious possible utilities and eventual stabilization at [Left, Left]

state is illustrated in figure 2. Please note that the Expected

Utility for the A now becomes:

EUA = ν − σ (7)

which shall have a negative value and shall be even worse than

with enforcement 2 (Eq 6). Thus using a series of practically

enforceable assumptions we have been able to push the Alice

from having a 50% chance at best states to always getting her

third best state outcome.

Adversary
System Left Right

Left ν − σ − nα, ν − nα,
−ν + σ − nβ −ν − nβ

Right −nα,−nβ −σ − nα, σ − nβ

Table 3. Further modified surveillance game between Adver-

sary and the System

Fig. 2. Effect of powerplay enforcement

3. EXPERIMENTAL RESULTS

To check the veracity of our proposed approaches we con-

ducted multiple rounds of experiments simulating a scenario

where the adversary’s aim is to pick up a ‘precious object’

kept inside a room. The adversary aims to get as near as pos-

sible to the precious object without getting her facial images

captured while the system tries to get as many high resolution

facial images of her as possible.

We conducted 4 sets of experiments each consisting of 20

rounds. The experiments were conducted in an enclosed en-

vironment of 20ft by 15ft dimension using a Canon VC-C50i

Pan Tilt Zoom camera. The volunteer adversaries were Multi-

media Lab graduate students who were explained clearly the

purpose of the experiments and the ‘gains’ and ‘losses’ that

can be incurred by them. They were explicitly asked to beat

the system by changing their trajectory as and when required

but were asked to maintain a steady walking pace and not to

hide their faces. In the base case setup we kept the precious

object at the center of the room and allowed the adversaries

to enter from a ‘virtual’ door in the center as shown in figure

1(a) (and 1(c)). The camera was employed at 768 by 576 pixel

resolution with active Pan and Tilt (but no Zoom) to capture

adversary face. After this, we iteratively enforced the three

scenario engineering enforcements and checked their impact

Base case Enfo. 1 Enfo. 2 Enfo. 3

13 (65%) 8 (40%) 5 (25%) 2 (10%)

Table 4. Number of rounds with successful steals
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Fig. 3. Number of faces detected

on the number of ‘successful steals’ and the number of high

resolution facial images found. We define ‘successful steals’

as those cases in which the system cannot obtain at least three

high resolution facial images. We define high resolution im-

ages as those which capture facial information at minimum

100 by 100 px resolution (which can also be used for auto-

matic face recognition at an accuracy of around 90% [6]).

The underlying assumption here is that the adversary shall

lose enough utility to counter her gain upon reaching the pre-

cious object, if her three high resolution images are captured.

As shown in table 4 and figure 3, we found that in the

base case setup the adversaries were on average able to suc-

cessfully steal the precious object 65% of times. Also, the

average number of faces captured per stealing attempt was

2.1. To study enforcement 1: Goal Placement, we moved the

precious object to the extreme left position and changed the

virtual entry point to extreme right as shown in figures 1(b)

and 1(d). The results show that successful steals decreased

by 25% and the average number of facial images captured in-

creased to 3.2 by this enforcement. However, we noticed that

there were a significant number of frames with insufficient

resolution facial images. Thus we used enforcement 2: Qual-

ity of Sensing and added a feature to zoom towards adversary

faces upon detection. This reduced the number of successful

steals by another 15% and the average number of images cap-

tured increased to 5. We noticed that some adversaries were

able to counter the system by going away from the camera

and approaching it in an obtuse trajectory.

Lastly, we employed the Power Play enforcement by al-

lotting the intruders only 12 seconds to steal the precious ob-

ject. This duration was assumed to be enough for picking the

object as this was the average time taken by adversaries to

steal the object in round 2 (using just Enforcement 1). We no-

ticed that this enforcement further enhanced the system per-

formance and only 10% of adversaries were able to get away

without having 3 facial images captured. The average num-

ber of facial images captured also increased to 7.3. Those

adversaries which still managed to perform well were those

which constantly kept changing their trajectory and walked at

a ‘brisk’ pace.

Based on these 4 rounds of experiments we observed that

the 3 ‘scenario engineering’ based enforcements did indeed

help in increasing the surveillance system performance. We

also noticed many similarities in the way game theory pre-

dicted and the way people behaved to the various setups. For

example, multiple adversaries took a longer path to ensure

not getting captured after enforcement 2 (Quality of Sensing

to be good enough to act as deterrent) while they had taken

relatively simpler trajectories after enforcement 1. Indeed not

all behavior was consistent as what game theory predicted.

4. CONCLUSIONS

In this work, we have employed a game theoretic framework

to model selfish adversaries in surveillance applications. We

found that such a modeling of adversaries can provide us

with performance bounds for surveillance systems and also

provide prescriptive guidelines to improve the system perfor-

mance. We further employed the ‘scenario engineering’ ap-

proach to modify the scenario itself so that the surveillance

system can perform better against the adversary. Through

experimental results we have verified the impact of various

reasonable enforcements upon the system performance.

To demonstrate the key ideas we have modeled a simple

but practical scenario of an enclosed environment. We hope to

extend this work to more complex wide area scenarios in our

future work. We have also used a rational model to study self-

ish adversaries. In future, we want to study how non-rational
adversaries react in such scenarios and how we can handle

different types of adversaries (benign and malicious) within

the same system.
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