
1

Adaptive Marching Cubes

Renben Shu, Chen Zhou and Mohan S. Kankanhalli
Institute of Systems Science,

National University of Singapore
Kent Ridge, Singapore 0511

Abstract

The Marching Cubes algorithm (MC) is a powerful surface rendering technique which can pro-

duce very high quality images. However, it is not suitable for interactive manipulation of the 3D

surfaces constructed from high resolution volume data sets in terms of both space and time. In this

paper, we present an adaptive version of MC calledAdaptive Marching Cubes (AMC). It signifi-

cantly reduces the number of triangles representing the surface by adapting the size of the triangles

to the shape of the surface. This improves the performance of the manipulation of the 3D surfaces.

A typical example with the volume data set of size shows that the number of tri-

angles is reduced by 55%. The quality of images produced by AMC is similar to that of MC. One

of the fundamental problems encountered with adaptive algorithms is thecrack problem. Cracks

may be created between two neighboring cubes processed with different levels of subdivision. We

solve the crack problem by patching the cracks using polygons of the same shape as those of the

cracks. We propose a simple but complete method by first abstracting 22 basic configurations of

arbitrary sized cracks and then reducing the handling of these configurations to a simple rule. It

requires onlyO(n2) working memory for a volume data set.

Key words: Surface rendering, Surface construction, Interactive manipulation of 3D surface

1.0 Introduction

Surface rendering is a means of extracting meaningful and intuitive information from 3D data sets.

This is achieved by converting the volume data into a surface representation using an extraction

step and then using conventional computer graphics techniques to render the surface. The surface

extraction process is very important and several techniques have been developed (Kaufman 1990):

• A method using a cuberille model, in which the rectilinear faces of all nontransparent voxels

are used to form a polygon (square) mesh (Chen et al. 1985, Herman and Liu 1979).

• A surface tracking algorithm that creates a surface from exterior voxel faces by starting from a

seed on that surface and using a connectivity rule to form the rest of the surface (Artzy et al. 1981,

Gordon and Udupa 1989, Sobierajski et al. 1993, Trivedi et al. 1986, Udupa and Hung 1990).

256 256 113××

n n n××

2

• The Dividing Cubes algorithm that generates a cloud of points (Cline et al.1988).

• The Marching Cubes algorithm that creates a fine triangle mesh (Lorensen and Cline 1987).

Among them, the Marching Cubes algorithm (MC) is able to generate very high quality images by

generating a set of triangles which closely approximates a surface of interest. A lot of effort has

been devoted to improve the marching cubes algorithm in one way or another. The original MC

proposed in (Lorensen and Cline 1987) suffers from the hole problem, which is caused by ambigu-

ities in the method used to approximate the surface. This has been dealt with in Baker 1989, Cline

and Lorensen 1988, Durst 1988, Fuchs et al. 1990, Nielson and Hamann 1991, Wilhelms and Van

Gelder 1990. Another problem with the original MC is speed, which has been improved by using

the octree to reduce the number of cubes traversed (Wilhelms and Van Gelder 1992). However, the

result is still not adequate for interactive manipulation of 3D surfaces constructed from high reso-

lution data sets.

One solution is to store all the triangles representing the surface so that when the surface is manip-

ulated e.g. rotated, there is no need to regenerate the surface. But this approach faces both space

and time problems because of the large number of triangles generated by MC. For example, a 3D

surface constructed from a typical high resolution volume data set of requires

718 964 triangles, and these triangles need 25 MB memory for storage (each triangle requires 36

bytes). In addition, the large number of triangles implies that more time is needed for the render-

ing. Because of these problems, it is difficult to use MC for interactive applications in 3D visual-

ization. This is a serious problem in an application area such as medical visualization.

Recently, Turk (1992) uses a re-triangulation technique that introduces new points onto a polygo-

nal mesh, and then discards the old points to create a new mesh to reduce the number of triangles

representing the given surface. Schroeder et al. (1992) use an approach of vertex removal and local

re-triangulation for simplifying polygonal models. They remove vertices that are within a pre-

specified tolerance of a plane that approximates the surface near vertex. Their method also identi-

fies sharp edges and sharp corners and makes sure such features are retained in order to better rep-

resent the original data. Both methods post-process the triangulated surface generated by MC.

More recently, Muller and Stark (1993) propose a method which adaptively generates the surface,

i.e. adapts the size of triangles to the shape of surface. The problem with their method is that cer-

tain big objects could be ignored. This is because the method does not check the value of any sam-

ple point within a box or subbox. Their method also suffers from the crack problem. Cracks may

256 256 113××

3

be created between two neighboring processing units with different levels of subdivision. The

crack problem has been recognized as a very difficult problem for all adaptive algorithms such as

(Clay and Moreton 1988). Although Muller and Stark solve the crack problem, their method is at

the expense of losing certain features of objects, sometimes even big features. Their method deals

with the crack problem by processing the common faces of neighboring boxes in the same way,

but independently without storing additional context information. It does this by stretching a

curved polyline on a common MC face to a straight polyline. This method never checks under

what circumstance cracks may occur. This would lead to unnecessary modification of intersection

points on the common face which could result in loss of big features of the objects. In this paper,

we also propose an adaptive approach, but our approach is quite different from theirs in the way of

dividing up the volume data set and in the patching of cracks. More importantly, our method is free

from the problem underlying the Muller and Stark algorithm.

The remainder of this paper will be organized as follows: Section 2 briefly describes MC.and pre-

sents the basic idea of AMC. Then section 3 discusses the crack problem caused by adaptive sur-

face representation and its solution. After that section 4 gives the data structures for crack patching

and the results of our experiments on AMC, followed by section 5 which presents the conclusions.

2.0 Adaptive Marching Cubes

2.1 Background

We briefly summarize the MC algorithm here in order to simplify the presentation of our algo-

rithm. Marching cubes is a surface rendering algorithm that converts a volumetric data set into a

polygonal isovalued (user-specified) surface consisting of triangles whose vertices are on the

edges of the voxels (unit cubes) of the cuberille grid (see Figure 1). The method processes one

voxel at a time. The values of grid points and linear interpolation are used to determine where the

isovalued surface intersects an edge of a voxel. How the intersection points are assembled into tri-

Figure 1. Cuberille grid data.

Y

Z
X

4

angles depends on the number and configuration of the grid points with values above or below the

threshold used to compute the isovalued surface. The various configuration are shown in Figure 2,

where a grid point that is marked indicates its value being above the threshold. While there are

 possible configurations, there are only 15 shown in Figure 2. This is because some

configurations are equivalent with respect to certain operations. First, the number can be reduced

to 128 by assuming the two configurations are equivalent if marked grid points and unmarked grid

points are switched.This means that we only have to consider cases where there are four or fewer

marked grid points.Further reduction to 15 cases shown is possible by equivalence due to rota-

tions.

2.2 Basic AMC Strategy

Assume that the volumetric data set size is ,where (it

is easy to generalize AMC for an arbitrary size data set). As we mentioned in section 1.0, the basic

strategy in AMC is to adjust the shape of the approximating surface based on the curvature of the

actual surface within a cube. Initially, we partition the volumetric data set into cubes with equal

size of , which we call initial cubes, where , and then use the MC surface

configuration approach described in (Lorensen and Cline 1987) to triangulate the cubes, consider-

ing only the values of the 8 vertices of cubes. Then we recursively partition these cubes into

 Figure 2. Configurations of triangulated cubes.

2
8

256=

Nx Ny× Nz× Nx 2
i

Ny, 2
j

Nz, 2
k

= = =

2
m

m min i j k, ,()≤

5

smaller and smaller cubes based on the smoothness of the surface within these cubes. For each

cube, if the actual surface inside of it is flat enough, then the triangles of the MC surface configura-

tions are used to approximate it. Conversely, if the actual surface has high curvature, the cube will

be partitioned into 8 subcubes and the process will be repeated until all surfaces in the subcubes

are flat enough to be approximated with the MC configurations or the length of the subcube sides is

one. Figure 3 illustrates the basic adaptive idea for a 2D curve, where part of an ellipsePQR is to

be approximated to a set of straight lines. If the smallest squares containing the ellipse are of unit

length, then the 2D analog of MC would require 7 straight lines to approximate it. This is shown

by the dashed lines alongPQ. However if AMC is used, only 3 straight lines are needed as shown

alongQR.

Figure 3 shows that the curve segmentRS has normalsnR andnS that are not too different from

each other. This means that the curvature ofRS is small enough that we can approximate it with a

straight line. However, for the segmentQS, its normalsnQ andnS differ greatly which means that

the segment has a curvature that is too large to be approximated by a single straight line. Hencethe

big square with the side length of 4 containing ellipse QS is partitioned into 4 subsquares and two

lines are used to approximate it.

 Figure 3. How the AMC algorithm works in 2D.

unit length

un
it

le
ng

th

nR

R

S

nS

P

Q

nQ

6

This idea can be extended easily to the 3D case which we propose in this paper for AMC. Unfortu-

nately, the problem is not so simple since AMC suffers from the crack problem encountered by all

adaptive algorithms.

We now present the pseudocode of the AMC algorithm.

1 divide up volume data set into initial cubes of equal size

2 for each initial cube

3 call process_cube(initial cube)

4 if cracks existthen

5 patch cracks /* explained in Section 3.3 */

6 end if

7 end for

8 procedure process_cube(cube)

9 if (cube contains a surface)then

10 find intersections of the surface and cube edges ;

11 calculate intersection normals ;

12 if ((cube is of unit size) or

 (any triangles with normals n0, n1 and n2, ARCCOS()< for any

))

13 then

14 output triangles ;

15 store information for crack patching ;

ni n i 1+() mod3• δ
i 0 1 2, ,{ }∈

7

16 else

17 divide cube into 8 subcubes ;

18 for each subcube

19 call process_cube(subcube) ;

20 end for

21 end if

22 else

23 store information for crack patching ; /* described in Section 3.3 */

24 end if

25 end process_cube

Note: Statement 12 means given a small constant, which is used to measure the angle of two

normals, for any two normals of the triangle in question, their angle is less than. In our imple-

mentation, the value of was set to .

3.0 The Crack Problem

3.1 Definition

Consider an example to see how a crack is formed (see Figure 4). This shows two neighboring

cubes,C1(V1V2V3V4) andC2(V1
’V2

’V3
’V4

’), that have been “pulled apart” in order to show their

neighboring faces,F1 andF2, more clearly (F1 andF2 actually represent the common faceF of C1

and C2). For clarity, only part of the approximated surface within them is shown. A 1-vertex

(black) of cube is one that is “inside” the actual surface, while a 0-vertex (white)of cube is one that

is “outside” of the surface. The figure only shows the cube vertices forF1 andF2. The shaded

regions are partial approximated surfaces in cubes and . The linesAB andBC represent the

intersection edges of the surface triangles inC1 on faceF1 while PQ represents the intersection

edge of the surface triangles inC2 on faceF2. If C1 is joined toC2, then the thick line joiningA

and C is wherePQ meetsF1 while the thick polyline joiningP and Q is whereABC meetsF2. The

δ
δ

δ 30°

C1 C2

8

crack would then be the triangular region on face F. The crack can be seen along the direction of

the arrow.

As can be seen,C1 has been sub-divided whileC2 has not. This is because the surface inC1 has a

higher curvature than that inC2. As a result of this, the polyline approximations of the curve from

the two neighboring cubes,C1 andC2, on face F are different, resulting in the triangular crack

here.

Figures 5 and 6 show how cracks appear in a real data set. It can be clearly seen that cracks appear

around the upper left region of the human mouth in Figure 5. Whereas no cracks appear at the

same region in Figure 6. Other cracks can also be seen in Figure 5. Before we discuss the solution

to the crack problem in depth, we define the following terms:

B

A

C

Q

P

cubeC1

cubeC2

partial surface
in C2

partial surface
in C1

1-vertex

0-vertex

FaceF1
FaceF2

direction to
see crack

V1

V2

V3

V4

V1
’

V2
’

V3
’

V4
’

M

M ’

Figure 4. How a crack can arise.

9

 Figure 5. The occurrence of cracks caused by straightforward adaptive approach (skin surface).

10

 Figure 6. Image generated by MC (skin surface).

11

• patch face: The smallest face for crack patching. It is the common face of two neighboring

cubes of equal size, one divided and the other undivided. In Figure 4, face F is a patch face, a com-

mon face of two neighboring cubes, C1 (divided) andC2(undivided).

• intersection point: The approximate intersection point between the actual surface and a cube

edge with different colors at the two ends. e.g. in Figure4, A, B and C are intersection points.

• intersection edge: The linking line of two intersection points. e.g. in Figure4, AB, BC andPQ

are intersection edges.

The different sizes of neighboring cubes lead to different approximations of the curves, which are

formed by a 3D object intersecting the common face between the two neighboring cubes, on the

common face. For each curve, one approximation is a line, and the other is a polyline. Thus, these

two polylines (a line can be considered as a special polyline) of approximation form a closed

polyline or polygon, which is the crack of our concern.

It should be noted that the polyline can consist of patch face edge segments as well as intersection

edges. In addition, there is another reason for the occurrence of the crack problem. When a 3D

object in the undivided cube along the patch face is small enough, it would be neglected. While the

polyline contributed solely by the divided cubes alone the patch face is exactly a closed polyline,

which is the crack.

3.2 Solution

To solve the crack problem, we generate polygons with the same shape as those of the cracks and

then patch them. The shape of a crack depends on the number and configuration of all cube verti-

ces on the patch face with values above (1-vertex) or below (0-vertex) the threshold value for the

surface. Our idea is to reduce all possible cases of shapes to some basic configurations and then

design the crack-patching algorithm to cover all cases based on these relatively smaller configura-

tions. Because the size of a patch face may be arbitrary, we can not use the method in MC which

reduces the definite 256 cases to 15 basic configurations by making good use of certain symme-

tries. The key issue here is how to deal with the arbitrary size of a patch face.

The starting point is initially to focus only on the 4-vertex configurations (1-vertex or 0-vertex) of

a patch face. This makes the ‘arbitrary’ issue to a ‘definite’ one.

Case 1: Both 1-vertex and 0-vertex present.

12

In terms of topology there are only two cases of patch face shown in Figure 7 if we consider inter-

section edges contributed only by the undivided cube. Then for both cases we can add the intersec-

tion edges contributed by the divided cubes to the patch face to form the basic configurations of

cracks, classifying the subcases in terms of the number, N, of patch face edge segments which are

needed to form the polygon to patch cracks. Note that the case of two diagonally opposite 1-verti-

ces can be treated on the same basis as (a).

For case (a), we can reduce the number of cases of crack shapes by taking advantage of the sym-

metry along the diagonal of a patch face which passes through the 1-vertex, and the symmetry

along the intersection edge itself. These cases are shown in Figure 8.Note that a solid line repre-

sents an intersection edge contributed by the undivided cube along the patch face and, a dotted arc

represents a polyline which is made up of the consecutive intersection edges contributed by the

divided cubes. Any face edge segment between two intersection points can be substituted with the

polyline shown in Figure 9.

For example, the two cases in Figure 10 are treated equivalently:

The letter ‘C’ in each square in Figure 8 shows the region of a crack. All the subsequent figures in

this section also follow the above conventions.

(a) (b)

Figure 7. Patch faces.

…

Figure 9. Polyline.

Figure 10. Two equivalent cases.

13

Each case of the crack obeys the following rules. These rules are the basis for each case in Figure

8.

(1) With each end of a solid line, there is one dotted arc ending.

The above statement can be expressed in another way, i.e. each intersection point contributed by

the undivided cube along the patch face must also be the one contributed by the divided cube. For

example, in Figure 3, the positions of A and P are same. This is because to calculate an intersection

point for V1
’V3

’ , finally we reach to V3
’M ’ and calculate the intersection point just based on this

unit edge, which is the same as V3M. The further reason is that first we apply the way of bisection

to find the unit edge with different colors at two ends along the patch face edge. And then apply the

0

1

2

3

4

Ν

C

C C

C

C
C

C

C C

C

Figure 8. Cases of one 1-vertex on a patch face square.

14

method of intersection point location in MC to calculate the intersection point within that unit

edge. This approach ensures that the above statement is always true.

(2) Α patch face edge with different colored vertices at both ends has an odd number of intersec-

tion points on it. While a patch face edge with same colored vertices at both ends has an even num-

ber of intersection points on it.

To prove this, we make use of the fact that any patch face edge has 2n + 1 cube vertices on it for

some . Our proof is by induction on n.

PROOF:

When n = 0, the above is true.

Assume that it is true for some n = k.

Suppose n = k + 1.

Let Pmid represent the middle point of an edge E having M = 2k+1+ 1 points with the two ends P0

and PM. Then let E1 represent the edge with the two ends, P0 and Pmid, and E2 be the edge with the

two ends, Pmid and PM, each of which has 2k+ 1 points.

We need to consider two cases:

(a) E has vertices of the same color at both ends.

If Pmid has the same color with the two ends, then both E1 and E2 have same colored vertices at

both ends. Therefore by induction, they both have an even number of intersection points so giving

E an even number of points.

If Pmid has a different color from the two ends, then E1 and E2 have different colored vertices at

both ends. Therefore by induction, they both have an odd number of vertices and so E has an even

number of points.

(b) E has vertices of different colors at both ends.

No matter which color Pmid has, one of E1 and E2 has same colored vertices at both ends, and the

other has different colored vertices.

n 0≥

15

Then by induction, one edge has an even number of vertices and the other has an odd number, and

soE has an odd number of vertices.

For case (b) of the patch face, after intersection edges contributed by the divided cubes have been

added we can reduce the number of cases by making use of the symmetry along the axis across the

patch face edge with two 1-vertices, and the symmetry along the intersection edge itself. These

cases are shown in Figure 11. The same considerations with respect to the polyline substitution

apply here as well.

Case 2: Only 1-vertex or 0-vertex present.

The configurations are shown in Figure 12 with the same considerations as before on polyline sub-

stitution.

Multiple cracks on one patch face is possible. See Figure 13. For the case of patch face with two

diagonally opposed 1-vertices, there are at least two cracks on it. It is also possible that any case in

Ν

2

3

1

0

C

C
C

CC

C

Figure 11. Cases of two 1-vertices on a patch face square.

16

Figure 12 can be combined to form multiple cracks with any case in Figures 10, 11 and case of

patch face with two diagonally opposed 1-vertices.

0

1

2

3

4

Ν

C

C

C
C

C

C

Figure 13. Multiple cracks on one patch face.

Figure 12. Cases of all 0-vertices or all 1-vertices on a patch face square.

17

Based on the 22 basic configurations of arbitrarily sized cracks in Figure 8, 11, and 12, we can

extract the common features to form a simple rule for crack patching. The rule is that there is only

one polygon on each patch face, and it is formed by either patch face edge segments or intersection

edges. W e shall present this crack-patching algorithm in the following section.

It should be noted that we do some special treatment for the case when the isosurface intersects

exactly at a cube vertex. In such a case, the intersection point at a cube vertex is moved by a very

small distance along the 6 cube edges respectively. This results in 6 new intersection points instead

of the initial one. Then the newly formed cases can be treated in the usual way.

3.3 Crack-patching Algorithm

The information needed to be kept for crack patching includes:

• Position of a cube face which is used to identify multiple patch faces on the face of an initial

cube.

• Size of a cube face which is for finding a patch face and is coupled with the position informa-

tion to identify multiple patch faces on the face of an initial cube.

• Intersection edges on a cube face.

• Normals of each intersection points of those edges.

It should be noted that AMC travels cubes in a scan-line order, i.e. X-->Y-->Z, refer to Figure 14.

When AMC processes each cube, besides keeping record of the information of intersection edges

and normals on any face, for each of the left, lower and back faces of the cube it checks with the

size information of its neighboring cube to see if any crack occurs. If it does, both size and position

of the larger cube of the two neighboring cubes will be stored, which define a patch face. While for

each of the other 3 faces both size and position of current cube face will be stored.

The action of crack patching is taken after an initial cube has been processed. Cracks on the left,

lower and back faces of the initial cube and on the faces between smaller cubes within the initial

cube are patched. Because the intersection edges forming cracks within a certain patch face are not

necessarily stored consecutively due to the traversal sequence, it is necessary to keep the informa-

tion which defines the patch face so that we can correctly pick the intersection edges. For each

patch face on an initial cube face, polygons are formed to exactly cover all the cracks one by one.

A crack is sometimes formed by patch face edge segments as well as intersection edges.

18

The details of how cracks are patched on a patch face is in the following pseudocode:

1. select an intersection edge within the patch face ;

2. assign this intersection edge as preceding edge ;

3. specify one end of preceding edge as starting end and the other as terminal end ;

4. first push starting end into a polyline stack, and then push terminal end into the stack ;

5. assign polyline-closed-flag as non-closed ;

6. while (polyline-closed-flag == non-closed)

7. if (successfully find another intersection edge connected with preceding edge at terminal

end)

8. then

9. specify the connected end of preceding edge and this new intersection edge as starting end,

 and the other end of this new intersection edge as terminal end ;

10. assign this intersection edge as preceding edge ;

11. else /* successfully find another intersection edge, one end of which is on the same patch

 face edge as terminal end */

12. specify the end of this new intersection edge starting end, which is on the same patch face

 edge as terminal end, and the other end of this new intersection edge as terminal end ;

13. assign this new intersection edge as preceding edge ;

14. push starting end into the stack ;

15. end if

 /* check if the polyline is closed */

16. if (terminal end == the first point of the polyline)then

19

17. assign polyline-closed-flag as closed ;

18. else if (terminal end is on the same patch face edge as the first point of the polyline) then

19. push terminal end into the stack ;

20. assign polyline-closed-flag as closed ;

21. else /* polyline-closed-flag retained as non-closed */

22. push terminal end into the stack ;

23. end if

24. end if

25. end while

It can be seen that a closed polyline is in the stack. This method is correct only if multiple cracks

on a patch face are not interconnected. But this is always true, and we can prove it by reductio ad

absurdum.

Theorem: Multiple cracks on a patch face are not interconnected.

PROOF:

Assume that multiple cracks on a patch face are interconnected. Then there exists at least one

intersection point which belongs to two cracks simultaneously. There are three kinds of such a

point. Let’s consider them one by one.

(1) The intersection point is an internal one, i.e. it is not on a patch face edge.

Since this kind of intersection point is contributed only by the divided cubes along the patch face,

and the edge which the intersection point is on belongs to only two cubes, it means only two inter-

section edges pass through that intersection point. Thus there is no extra intersection edge passing

through that point to be contributed to cover another crack.

(2) The intersection point is on the patch face edge and also the one contributed by both divided

and undivided cubes alone the patch face.

20

In this case, the two intersection edges passing through that intersection point contributed by two

cubes can only belong to one crack.

(3) The intersection point is on the patch face edge and is not the one contributed by the undivided

cube.

One intersection edge passing through that intersection point contributed by one cube can only

belong to one crack.

It follows that the statement of the theorem is true.

The time complexity to locate all the participants in a single patch is , wheren is the num-

ber of intersection edges on a patch face, which depends on the difference between division level

of the two sides of the patch face.

4.0 Implementation and Results

4.1 Space Required for Crack Patching

As mentioned in the pseudocode of AMC algorithm in section 2.2, crack patching occurs when

AMC just finishes processing one initial cube. This is essential for an efficient data structure for

crack patching. The space for crack-patching information can be shared in the following way. All

the information on the faces of initial cubes for crack patching on X-Y plane share the common

space, whose size is just enough to store information for cracks on faces in one slice.All the infor-

mation on the faces of initial cubes on X-Z plane share the common space, whose size is just

enough for cracks on faces in one strip.All the information on the faces of initial cubes on Y-Z

plane share the common space, whose size is just enough for cracks on face in one initial cube.And

finally all the information on the faces within initial cubes can share the common space, whose

size is just big enough for cracks on faces within one initial cube.crack patching. As a result, Only

 working memory is needed for crack patching. Figure 14 shows the traversed initial

cubes, and Figure 15 shows the common space for crack patching.

4.2 Results

We implemented both original MC and our adaptive AMC on an IBM RS-6000/320 workstation.

Table 1, 2 and 3show the performance comparisons between them using different volumetric data

sets, and Figure 16, 17 and 18 are the corresponding images. Note that the time item includes both

the running time for surface extraction and rendering phases. It can be seen that the average time

O n
2

O n
2

21

as well as the number of triangles are reduced substantially, and the image quality is similar to that

of MC. Certain sharp features are however lost if too large a starting size is used.

We found an interesting effect when running the adaptive algorithm with initial cube size of two

using the volumetric data set of a CT scan of a human head. It was found that

Y

Z

X

Figure 14. An example of traveled cubes with initial cube size of 4
.and volumetric data set size of 16 x 16 x 16.

(b)(a) (c)

(d)

Figure 15. (a), (b) and (c) represent the common space for cracks
on plane X-Y,X-Z and Y-Z respectively, and (d) represents the
common space for cracks on faces within initial cube of size 4.
The size of volumetric data set is 16 x 16 x 16.

256 256 113××

22

Algorithm Time(seconds) % of AMC_X/MC Number of Triangles % of AMC_X/MC Image

MC

AMC-2

AMC-4

AMC-8

331 718,964 Fig. 17.a

230 69% 299,292 42% Fig. 17b

123 37% 181,230 25% Fig. 17.c

79 24% 110,602 15% Fig. 17.d

Table 1. Performance comparison (skin surface) using the data set of

a 256 x 256 x 113 CT scan of the human head.

Note: AMC-X denotes the AMC algorithm with the initial cube size of X.

Algorithm Time(seconds) % of AMC_X/MC Number of Triangles % of AMC_X/MC Image

MC

AMC-2

AMC-4

AMC-8

278 594,686 Fig. 18.a

213 77% 269,470 45% Fig. 18.b

124 45% 184,122 31% Fig. 18.c

96 35% 145,938 25% Fig. 18.d

Table2. Performance comparison (bone surface) using the data set of

a 256 x 256 x 113 CT scan of the human head.

Algorithm Time(seconds) % of AMC-X/MC Number of Triangles % of AMC-X/MC Image

MC

AMC-2

AMC-4

164 393,606 Fig. 19.a

 81 49% 102,868 26% Fig. 19.b

 39 24% 52,832 13% Fig. 19.c

Table3. Performance comparison using the data set of a 256 x 256 x 43

CT scan of a machine part.

23

Figure 16. Skin surface generated by using the data set of a 256 x 256 x 113 CT
scan of a human head.(a),(b),(c) and (d) are generated by algorithm MC, AMC-2,
AMC-4 and AMC-8 respectively.

(a) (b)

(c) (d)

24

(a) (b)

(c) (d)

Figure 17. Bone surface generated by using the data set of a 256 x 256 x 113 CT
scan of a human head. (a),(b),(c) and (d) are generated by algorithm MC, AMC-2,
AMC-4 and AMC-8 respectively.

25

(a) (b)

Figure 18. Images generated by using the data set of a 256 x 256 x 43 CT
scan of machine part.(a), (b) and (c) are generated by algorithm MC,AMC-2,
and AMC-4 respectively.

(c)

26

there existed about 10,000 cracks, but the number of cracks that were visible was much smaller

(see Figure 11).

5.0 Conclusions and discussions

A new high resolution 3D surface construction algorithm has been presented. The basic idea is to

adapt the size of triangles of representation to the shape of the surface. The speed of surface con-

struction is improved, and the number of triangles representing the surface is significantly reduced.

The latter is essential for interactive manipulation of 3D surfaces.

The image generated by AMC are almost as good as those generated by MC if the initial cube size

of two is chosen (Figure 16b, 17b, and 18b). The result of AMC is better with smoother surface

than with a surface with sharp features. The larger the size of an initial cube is, the better the result

can be achieved. It is true that the image quality drops with larger sizes of the initial cube (Figure

16b & 16c, 17b & 17c, and 18b). So the size of initial cube can be chosen based on requirements.

If image quality is of prime concern, the initial cube size of two can be chosen to get an image as

good as the one generated by MC. Alternatively, better time and space results can be obtained with

an initial cube of larger size at the expense of image quality, which may be acceptable in some

practical application situation. One such a scenario is in choosing the right threshold -- experimen-

tation can be done at low quality while the final image can be displayed at full resolution.

The major contribution of our adaptive algorithm is in the solution of the crack problem. We have

proposed a simple but complete method by first abstracting 22 basic configurations of arbitrary

size cracks and then reduce the handling of these configurations to a simple rule. We use only

O(n2) working memory for patching the cracks.

In terms of image quality, choosing initial cube size as two is suggested. Under such a choice, the

bounded error in the surface is almost 2 voxels. Another parameter that can control the image qual-

ity is , which is related to the angle of two triangle normals (see section 2.2). In our implementa-

tion the value of chosen is . It is possible that a part of an object is missed. This is because

only 8 corners of a non-unit cube are checked. A simple solution for this is to combine the octree

technique (Wilhelms J, Van Gelder A 1992) with this adaptive MC approach. The octree technique

is used to store summary information of any size of cubes, and thus it helps to see if any object

exists within a non-unit cube.

If the isosurface contains real cracks, i.e. the isosurface itself has some cracks, this should not be a

problem for our algorithm to obtain the correct representation. This is because our method is not

δ
δ 30°

27

based on the shape of the original surface. Instead, it is solely based on the specific configuration

of the cube in question. However, it is true that the isosurface produced by our AMC is discontinu-

ous in the region where cracks appear. This is because even though the crack is patched, there are

different levels of subdivision on the common face between the neighboring cubes. This problem

can be solved by post-processing the surface to smooth the discontinuous region of the surface, if

needed.

Recently, Ning and Bloomenthal (1993) evaluate the principal polygonization algorithms accord-

ing to topological issues, implementation complexity, and polygon count. Compared to the three

major algorithms they evaluate, i.e. tetrahedral decomposition, single-entry cubical, multi-entry

cubical, AMC produces the fewest polygon count with consistent topology, and belongs to high

implementation complexity range.

6.0 Acknowledgment

We would like to thank our colleague Chun Pong Yu for his help in writing this paper. We would

also like to thank the anonymous reviewers for the very detailed, helpful comments and sugges-

tions. The paper quality has significantly improved due to their inputs

28

References

Artzy E, Frieder G, Herman, GT (1981) The theory, design, implementation and evaluation of a

three-dimensional surface detection algorithm.,Computer Graphics and Image Processing, 15(1):1-

24.

Baker HH (1989) Building Surfaces of Evolution: The Weaving wall, InternationalJournal of

Computer Vision, 3(1):51-71.

Chen L, Herman, GT, Reynolds RA, Udupa JK (1985) Surface shading in the cuberille environ-

ment,IEEE Computer Graphics and Applications,5(12):33-43.

Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC (1988) Two algorithms for the three-

dimensional reconstruction of tomograms,Medical Physics,15(3):320-327.

Clay RD, Moreton HP (1988) Efficient adaptive subdivision of Bézier surfaces. In Proceedings of

the Eurographics’88 Conference, pages 357–371, North-Holland, Amsterdam.

Durst MJ (1988) Additional Reference to “Marching Cubes”.Computer Graphics. 22(2):72-73.

Fuchs H, Levoy M, Pizer SM (1989) Interactive Visualization of 3D Medical Data, Computer,

22(8):46-51.

Gordon B, Udupa JK (1989) Fast surface tracking in three-dimensional binary images,Computer

Vision, Graphics and Image Processing, 29(2):196-214.

Herman GT, Liu HK (1979) Three-dimensional display of human organs from computed tomo-

grams,Computer Graphics and Image Processing,9(1):1-21.

Kaufman A (1990) Chapter 1: Introduction to volume visualization.Volume Visualization.IEEE

Computer Society Press, Los Alamitos, California.

Lorensen WE, Cline HE (1987) Marching Cubes: a high resolution 3D surface construction algo-

rithm. Computer Graphics,21(4):163-169.

Muller H and Stark M 1993, Adaptive Generation of surfaces in Volume Data,The Visual Com-

puter, (1993)9:182-199.

29

Ning P and Bloomenthal J (1993) An Evaluation of Implicit Surface Tilers, IEEE Computer

Graphics & Applications, Nov. pp. 33-41

Nielson GM, Hamann B (1991) The Asymptotic Decider: resolving the ambiguity in Marching

Cubes. In Proceedings of Visualization’91Conference, pp. 83-91, San Diego, California.

Schroeder WJ, Zarge JA and Lorensen WE (1992), Decimation of Triangle Meshes, Computer

Graphics, 26(3): 65-70.

Sobierajski L., Kaufman A, Cohen D, Yagel R, Acker D (1993) A Fast Display Method for Volu-

metric Data, The Visual Computer, 10(2):116-124.

Trivedi SS, Herman GT, Udupa JK (1986) Segmentation into three classes using gradients. IEEE

Transactions on Medical Imaging,MI-5(2):116-119.

Turk G. (1992) Re-Tiling of Polygonal Surfaces, Computer Graphics, 26(3):55-64.

Wilhelms J, Van Gelder A (1990) Topological Considerations in Isosurface Generation, Computer
Graphics, 24(5):79-86.

Wilhelms J, Van Gelder A (1992) Octree for Faster Isosurface Generation, ACM Transaction on
Graphics, 11(3):201-227.

Udupa JK, Hung HM (1990) Surface versus volume rendering: a comparative assessment. In Pro-

ceedings of the First Conference on Visualization in Biomedical Computing,pp. 83-91, IEEE

Computer Society Press, Los Alamitos, California.

