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An audio-mixing
artist usually adds
the musical
accompaniment to
video. Employing
such artists is
expensive and not
feasible for a home
video presentation.
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audio-video mixing
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for home videos. It
uses a pivot vector
space mapping
method that
matches video shots
with music segments
based on aesthetic
cinematographic
heuristics.
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udio mixing is an important aspect
of cinematography. Most videos
such as movies and sitcoms have
several segments devoid of any
speech. Adding carefully chosen music to such
segments conveys emotions such as joy, tension,
or melancholy. It also acts as a mechanism to
bridge scenes and can add to the heightened
sense of excitement in a car chase or reflect the
somber mood of a tragic situation. In a typical
professional video production, skilled audio-
mixing artists aesthetically add appropriate audio
to the given video shots. This process is tedious,
time-consuming, and expensive.

With the rapid proliferation in the use of digi-
tal video camcorders, amateur video enthusiasts
are producing a huge amount of home video
footage. Many home video users would like to
make their videos appear like professional produc-
tions before they share it with family and friends.
To meet this demand, companies such as Muvee
Technologies (http://www.muvee.com) produce
software tools to give home videos a professional
look. Our work is motivated by similar goals.

The software tool available from Muvee lets a
user choose a video segment, audio clip, and
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mixing style (for example, music video or slow
romantic). The Muvee software automatically
sets the chosen video to the given audio clip
incorporating special effects like gradual transi-
tions, the type of which depends on the chosen
style. If a user chooses an appropriate audio and
style for the video, the result is indeed impres-
sive. However, a typical home video user would
lack the high skill level of a professional audio
mixer needed to choose the right audio clip for a
given video. It’s quite possible to choose an
inappropriate audio clip (say the one with a fast
tempo) for a video clip (one that’s slow with
hardly any motion). The result in such a case
would certainly be less than desirable.

Our aim is to approximately simulate the
decision-making process of a professional audio
mixer by employing the implicit aesthetic rules
that professionals use. We have developed a
novel technique that automatically picks the
best audio clip (from the available database) to
mix with a given video shot. Our technique uses
a pivot vector space mixing framework to incor-
porate the artistic heuristics for mixing audio
with video. These artistic heuristics use high-
level perceptual descriptors of audio and video
characteristics. Low-level signal processing tech-
niques compute these descriptors. Our tech-
nique’s experimental results appear highly
promising despite the fact that we have current-
ly developed computational procedures for only
a subset of the entire suite of perceptual features
available for mixing. Many open issues in the
area of audio and video mixing exist and some
possible problems in computational media aes-
thetics' need future work.

Aesthetic aspects

We initially tackled the problem of mixing
music and moving images together by searching
the existing artistic literature related to movies
and cinematography. According to Andrew,’
movies comprise images (still or moving); graph-
ic traces (texts and signs); recorded speech,
music, and noises; and sound effects. Prince
highlights Aaron Copland’s categorization of dif-
ferent roles of music in movies:’

I setting the scene (create atmosphere of time
and place),

I adding emotional meaning,

I serving as a background filler,
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Table 1. Corresponding pairs of video and audio aesthetic features.

Video Feature Extractable/Used Audio Feature Extractable/Used
Light type No/no Rhythm Yes/no
Light mode Yes/no Key No/no
Light falloff Yes/yes Dynamics Yes/yes
Color energy Yes/yes Dynamics Yes/yes
Color hue Yes/yes Pitch Yes/yes
Color saturation Yes/yes Timbre No/no
Color brightness Yes/yes Dynamics Yes/yes
Space screen size No/no Dynamics Yes/yes
Space graphic weight No/no Chords and beat No/no
Space general shape No/no Sound shape No/no
Object in frame No/no Chord tension No/no
Space texture Yes/no Chords No/no
Space field density/frame No/no Harmonic density No/no
Space field density/period No/no Melodic density No/no
Space field complexity/frames No/no Melodic density No/no
Space graphic vectors No/no Melodic line No/no
Space index vectors No/no Melodic progression No/no
Space principal vector Yes/no Sound vector orientation No/no
Motion vectors Yes/yes Tempo Yes/yes
Zooms Yes/no Dynamics Yes/yes
Vector continuity Yes/no Melodic progression No/no
Transitions Yes/no Modulation change No/no
Rhythm No/no Sound rhythm No/no
Energy vector magnitude No/no Dynamics Yes/yes
Vector field energy Yes/no Sound vector energy No/no

I creating continuity across shots or scenes, and

I emphasizing climaxes (alert the viewer to cli-
maxes and emotional points of scenes).

The links between music and moving images
are extremely important, and the juxtaposition
of such elements must be carried out according
to some aesthetic rules. Zettl" explicitly defined
such rules in the form of a table, presenting the
features of moving images that match the fea-
tures of music. Zettl based these proposed mix-
ing rules on the following aspects: tonal
matching (related to the emotional meaning
defined by Copland), structural matching (relat-
ed to emotional meaning and emphasizing cli-
maxes defined by Copland), thematic matching
(related to setting the scene as defined by
Copland), and historical-geographical matching
(related to setting the scene as defined by
Copland). In Table 1, we summarize the work of
Zettl by presenting aesthetic features that corre-
spond in video and music. For instance, in the
third row of Table 1, the light falloff video feature

relates to the dynamics musical feature. The table
also indicates extractable features (because many
video and audio features defined by Zettl are
high-level perceptual features and can’t be
extracted by the state of the art in computation-
al media aesthetics), as well as we present the fea-
tures that we use in our work.

Video aesthetic features

Table 1 shows, from the cinematic point of
view, a set of attributed features (such as color and
motion) required to describe videos. The compu-
tations for extracting aesthetic attributed features
from low-level video features occur at the video
shot granularity. Because some attributed features
are based on still images (such as high light
falloff), we compute them on the key frame of a
video shot. We try to optimize the trade-off in
accuracy and computational efficiency among the
competing extraction methods. Also, even though
we assume that the videos considered come in the
MPEG format (widely used by several home video
camcorders), the features exist independently of a
particular representation format.
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Light falloff

Light falloff refers to the brightness contrast
between the light and shadow sides of an object
and the rate of change from light to shadow. If
the brightness contrast between the lighted side
of an object and the attached shadow is high, the
frame has fast falloff. This means the illuminat-
ed side is relatively bright and the attached shad-
ow is quite dense and dark. If the contrast is low,
the resulting falloff is considered slow. No falloff
(or extremely low falloff) means that the object
is lighted equally on all sides.

To compute light falloff, we need a coarse back-
ground and foreground classification and extrac-
tion of the object edges. We adapt a simplified
version of the algorithm in Wang et al.’ that
detects the focused objects in a frame using mul-
tiresolution wavelet frequency analysis and statis-
tical methods. In a frame, the focused objects (in
home video, this often means humans) have more
details within the object than the out-of-focus
background. As a result, the focused object regions
have a larger fraction of high-valued wavelet coef-
ficients in the high frequency bands of the trans-
form. We partition a reference frame of a shot into
blocks and classify each block as background or
foreground. The variance of wavelet coefficients
in the high-frequency bands distinguishes back-
ground and foreground. The boundary of the
background-foreground blocks provides the first
approximation of the object boundary.

The second step involves refining this bound-
ary through a multiscale approach. We perform
successive refinements at every scale’ to obtain
the pixel-level boundary. After removing the
small isolated regions and smoothing the edge,
we calculate the contrast along the edge and lin-
early quantize the values. The falloff edge often
has the highest contrast along the edge, so we
select the average value in the highest bin as the
value of light falloff in this frame.

Color features

The color features extracted from a video shot
consist of four features: saturation, hue, bright-
ness, and energy. The computation process is
similar for the first three as follows:

1. Compute the color histogram features on the
frames, set of intraframes: if we use the hue,
saturation, and intensity (HSI) color space,
the three histograms hist,, hist, and
histy,messm are respectively based on the H, S,
and I components of the colors. We then

obtain the dominant saturation, hue, and
brightness in a shot.

2. Choose the feature values V,, V,, and V, that
correspond respectively to the dominant bin
of each of hist,, hist;, and hist;. All these
value are normalized in [0, 1].

The values V,;, V,, and V; define a shot’s hue, sat-
uration, and brightness. The aesthetic color ener-
gy feature relates to the brightness, saturation,
and hue features and is defined as (V,; + Vi +
V)/3, which scales to the range [0, 1].

Motion vectors

To measure the video segments’ motion inten-
sity, we use descriptors from Pecker, Divakaran,
and Papathomas.6 They describe a set of auto-
matically extractable descriptors of motion activ-
ities, which are computed from the MPEG motion
vectors and can capture the intensity of a video
shot’s motion activity. Here we use the max2
descriptor, which discards 10 percent of the
motion vectors to filter out spurious vectors or
very small objects. We selected this descriptor for
two reasons: The extraction of motion vectors
from MPEG-1 and -2 compressed video streams is
fast and efficient. Second, home videos normally
have moderate motion intensity and are shot by
amateur users who introduce high tilt up and
down so that camera motion isn’t stable. So, if we
use the average descriptors, the camera motion'’s
influence will be high. If we use the mean descrip-
tor, the value will be close to zero, which will fail
to capture the object’s movement. Interestingly,
max2 is also the best performing descriptor.

Aesthetic attributed feature formation

The descriptions discussed previously focus on
features extraction, not on the attributed feature
definitions. However, we can determine such
attributed features. We collected a set of 30 video
shots from two different sources: movies and
home videos. We used this data set as the train-
ing set. A professional video expert manually
annotated each shot from this training set,
ascribing the label high, medium, or low for each
of the aesthetic features from Table 1. Next, we
obtained the mean and standard deviation of the
assumed Gaussian probability distribution for the
feature value of each label. We subsequently used
these values, listed in Table 2, for estimating the
confidence level of the attributed feature for any
test shot.



Table 2. The mean and variance for the video and audio attributed features.

Video Feature  Attribute m s Audio Feature  Attribute m s
Light falloff High 0.3528  0.1323 Dynamics High 0.7513 0.0703
Medium  0.1367  0.0265 Medium 0.5551 0.0579
Low 0.0682  0.0173 Low 0.3258 0.0859
Color energy High 0.6515 0.1026 Dynamics High 0.7513 0.0703
Medium 0.4014  0.0819 Medium 0.5551 0.0579
Low 0.1725 0.7461 Low 0.3258 0.0859
Color hue High 0.7604  0.0854 Pitch High 0.4650 0.0304
Medium 0.552 0.0831 Medium 0.3615 0.0398
Low 0.1715 0.1005 Low 0.0606 0.0579
Color brightness  High 0.8137 0.0954 Dynamics High 0.7513 0.0703
Medium 0.4825 0.1068 Medium 0.5551 0.0579
Low 0.2898  0.0781 Low 0.3258 0.0859
Motion vector High 0.6686 0.0510 Tempo High 0.808 0.1438
Medium 0.4683 0.0762 Medium 0.3873 0.0192
Low 0.2218  0.0361 Low 0.0623 0.0541

Audio aesthetic features

Music perception is an extremely complex
psycho-acoustical phenomenon that isn’t well
understood. So, instead of directly extracting the
music’s perceptual features, we can use the low-
level signal features of audio clips, which can pro-
vide clues on how to estimate numerous
perceptual features. In general, we found that per-
ceptual label extraction for audio clips is a diffi-
cult problem and much more research is needed.

Low-level features
We describe here the required basic features
that are extracted from an audio excerpt.

Spectral centroid (brightness). The spectral
centroid is commonly associated with the mea-
sure of a sound’s brightness. We obtain this mea-
sure by evaluating the center of gravity using the
frequency and magnitude information of Fourier
transforms. The individual centroid C(n) of a
spectral frame is the average frequency weighted
by the amplitude, divided by the sum of the
amplitude:”’

]im{Fn(a))Fda)
C(n)=2

I

where F (o) represents the short-time Fourier
transform of the nth frame, and the spectral
frame is the number of samples that equals the
size of the fast Fourier transform.

Fn(w)|2dw

Zero crossing. In the context of discrete-time
signals, a zero crossing is said to occur if two suc-
cessive samples have opposite signs. The rate at
which zero crossings occur is a simple measure of
the frequency content of the signal. This is par-
ticularly true of the narrowband signals. Because
audio signals might include both narrowband
and broadband signals, the interpretation of the
average zero-crossing rate is less precise.
However, we can still obtain rough estimates of
the spectral properties using a representation on
the short-time average zero-crossing rate, as
defined below:

1
ZCR = ﬁz | sgn[s(m)]
m

—sgn[s(m-1)] | w(m)

where, sgn(x) ={1if x>0, and -1ifx<0,
m
and w(m) ={0.5(1 - cos(2r 7y _7))
if0<m<N-1,
and 0 otherwise

Note that w(m) is the Hamming window, s(n) is
the audio signal, and N is the frame length.

Volume (loudness). The volume distribution
of audio clips reveals the signal magnitude’s tem-
poral variation. It represents the subjective mea-
sure, which depends on the human listener’s
frequency response. Normally volume is approx-
imated by the root mean square value of the sig-
nal magnitude within each frame. Specifically,

>
5
3.
I
c
5
®
N
S
S
W




S
S
]
=
=
S
=
[NN]
w
w

we calculate frame n’s volume by

v(n)=

where §,(i) is the ith sample in the nth frame of
the audio signal, and N is the frame length. To
measure the temporal variation of the audio clip’s
volume, we define two time domain measures
based on the volume distribution. The first is the
volume standard deviation over a clip, normal-
ized by the maximum volume in the clip. The sec-
ond is the volume dynamic range, given by

max(v)—min(v)

VDR()= max(v)

Perceptual features extraction

We can relate the low-level audio features
described previously with Table 1’s perceptual
labels required for our matching framework.

Dynamics. Dynamics refers to the volume of
musical sound related to the music’s loudness or
softness, which is always a relative indication,
dependent on the context. Using only the audio
signal’s volume features isn't sufficient to capture
music clip dynamics because an audio signal
could have a high volume but low dynamics.
Thus, we should incorporate the spectral cen-
troid, zero crossings, and volume of each frame
to evaluate the audio signal’s dynamics. We use
a preset threshold (which we empirically choose
using a training data set) for each feature to
decide whether the audio clips’ dynamics is high,
medium, or low.

Tempo features. One of the most important
features that makes the music flow unique and
differentiates it from the other types of audio sig-
nal is temporal organization (beat rate). Humans
perceive musical temporal flow as a rhythm relat-
ed to the flow of music with the time. One aspect
of rhythm is the beat rate, which refers to a per-
ceived pulse marking off equal duration units."’
This pulse is felt more strongly in some music
pieces than others, but it's almost always present.
When we listen to music, we feel the regular rep-
etition of these beats and try to synchronize our
feelings to what we hear by tapping our feet or
hands. In fact, using certain kinds of instruments
like bass drums and bass guitars synchronizes the
rhythm flow in music.

Extracting rhythmic information from raw
sound samples is difficult. This is because there’s
no ground truth for the rhythm in the simple mea-
surement of an acoustic signal. The only basis is
what human listeners perceive as the rhythmical
aspects of the musical content of that signal.
Several studies have focused on extracting the
rhythmic information from the digital music rep-
resentations such as the musical instrument digi-
tal interface (MIDI), or with reference to a music
score.' Neither of these approaches is suited for
analyzing raw audio data. For the purpose of our
analysis, we adopted the algorithm proposed by
Tzanetakis."” This technique decomposes the audio
input signal into five bands (11 to 5.5, 5.5 to 2.25,
2.25 to 1.25, 1.25 to 0.562, and 0.562 to 0.281
KHz) using the discrete wavelet transform (DWT),
with each band representing a one-octave range.
Following this decomposition, the time domain
envelope of each band is extracted separately by
applying full wave rectification, low pass filtering,
and down sampling to each band. The envelope of
each band is then summed together and an auto-
correlation function is computed. The peaks of the
autocorrelation function correspond to the various
periodicities of the signal envelope. The output of
this algorithm lets us extract several interesting fea-
tures from a music sample. We use DWT together
with an envelope extraction technique and auto-
correlation to construct a beat histogram. The set
of features based on the beat histogram—which
represents the tempo of musical clips—includes

I relative amplitudes of the first and second
peaks and their corresponding periods,

I ratio of the amplitude between the second
peak divided by the amplitude of the first
peak, and

I overall sum of the histogram (providing an
indication of overall beat strength).

We can use the amplitude and periodicity of
the most prominent peak as a music tempo fea-
ture. The periodicity of the highest peak, repre-
senting the number of beats per minute, is a
measure of the audio clips’ tempo. We normal-
ized the tempo to scale in the range [0, 1]. From
the manual preclassification of all audio clips in
the database and extensive experiments, we real-
ized a set of empirical thresholds to classify
whether the audio clips have a high, medium, or
low tempo.



Perceptual pitch feature. Pitch perception
plays an important role in human hearing, and
the auditory system apparently assigns a pitch to
anything that comes to its attention.”’ The seem-
ingly easy concept of pitch in practice is fairly
complex. This is because pitch exists as an acoustic
property (repetition rate), as a psychological per-
cept (perceived pitch), and also as an abstract sym-
bolic entity related to interval and keys.

The existing computational multipitch algo-
rithms are clearly inferior to the human auditory
system in accuracy and flexibility. Researchers
have proposed many approaches to simulate
human perception. These generally follow one of
two paradigms: place (frequency) theory or tim-
ing periodicity theory. In our approach, we don't
look for accurate pitch measurement; instead we
only want to approximate whether the level of
the polyphonic music’s multipitch is high, medi-
um, or low. This feature’s measurement has a
highly subjective interpretation and there’s no
standard scale to define the pitch’s highness. For
this purpose, we follow the simplified model for
multipitch analysis proposed in Tero and Matti."*
In this approach, prefiltering preprocesses the
audio signal to simulate the equal loudness curve
sensitivity of the human ear and warping simu-
lates the adaptation in the hair cell models. The
frequency of the preprocessed audio signal is
decomposed into two channels. The autocorrela-
tion directly analyzes the low frequencies (below
1 KHz) channel, while a half-wave rectifier first
rectifies the high frequencies (above 1 KHz) chan-
nels and then passes through a low pass filter.
Next, we compute the autocorrelation of each
band in a frequency domain by using the discrete
Fourier transform as corr(t) = IDFT{ | DFT{s(t)} | 2}.

The sum of the two channel’s autocorrelation
functions represents the summary of autocorrela-
tion functions (SACF). The peaks of SACF denote
the potential pitch periods in the analyzed signal.
However, the SACF include redundant and spuri-
ous information, making it difficult to estimate
the true pitch peaks. A peak enhancement tech-
nique can add more selectivity by pruning the
redundant and spurious peaks. At this stage, the
peak locations and their intensity estimate all
possible periodicities in the autocorrelation func-
tion. However, to obtain more robust pitch esti-
mation, we should combine evidence at all
subharmonics of each pitch. We achieve this by
accumulating the most prominent peaks and
their corresponding periodicities in a folded his-
togram over a 2,088-sample window size at a

22,050-Hz sampling rate, with a hop window size
of 512 samples. In the folded histogram, all notes
are transposed into a single octave (array of size
12) and mapped to a circle of fifths, so that the
adjacent bins are spaced a fifth apart, rather than
in semitones. Once the pitch histogram for an
audio file is extracted, it’s transformed to a single
feature vector consisting of the following values:

I bin number of maximum peaks of the his-
togram, corresponding to the main pitch class
of the musical piece;

I amplitude of the maximum peaks; and
I interval between the two highest peaks.

The amplitude of the most prominent peak
and its periodicity, can roughly indicate whether
the pitch is high, medium, or low. To extract the
pitch level, we use a set of empirical threshold
values and the same procedures as for tempo fea-
tures extraction.

Audio aesthetic attributed feature formation

We collected a set of music clips from differ-
ent music CDs, each with several music styles.
Our data set contained 50 samples (each music
excerpt is 30 seconds long). In our experiments,
we sampled the audio signal 22 KHz and divided
it into frames containing 512 samples each. We
computed the clip-level features based on the
frame-level features. To compute each audio
clip’s perceptual features (dynamics, tempo, and
pitch as mentioned previously), a music expert
analyzes the audio database and defines the high,
medium, and low attributes for each feature, in a
similar manner as with video shots. We eventu-
ally obtain the mean and variance of the
Gaussian probability distribution to estimate the
confidence level of the ternary labels for any
given music clip. Table 2 lists the mean and vari-
ance parameters for each feature.

Pivot representation

We aim to define a vector space P that serves
as a pivot between the video and audio aesthet-
ics representations. This space is independent of
any media, and the dimensions represent the aes-
thetic characteristics of a particular media. Pivot
space P is a space on IR’ and is defined with the
p set of aesthetic features in which the music and
videos are mapped. The initial spaces V (for
video) and M (for music) are respectively spaces
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on IR" and IR"”, with v being the number of tuples
(video feature, description) extracted for the
video, and m the number of tuples (audio feature,
description) extracted for the music excerpts.

Media representation of base vector spaces V
and M

Once we define the aesthetic features, we con-
sider how to represent video and audio clips into
their aesthetic spaces V or M. In the two spaces, a
dimension corresponds to an attributed feature.
Instances of such attributed features for video
data include brightness_high, brightness_low,
and so on. One video shot is associated with one
vector in the V space. Obtaining the values for
each dimension resembles handling fuzzy lin-
guistic variables, with the aesthetic feature play-
ing the role of a linguistic variable and the
attribute descriptor acting as a linguistic value,”
as presented in Figure 1. In this figure, we repre-
sent sharp boundaries between fuzzy member-
ship functions in a manner that removes
correlation between them. The x-axis refers to the
actual computed feature value and the y-axis
simultaneously indicates the aesthetic label and
the confidence value. Figure 1 shows an attrib-
uted feature value a, which has the medium label
with a fuzzy membership value of 0.3.

Using a training collection for each linguistic
value obtains the membership function. As
described previously, we assume that each attrib-
uted feature follows a Gaussian probability distri-
bution function, that is, we compute the mean
W_ij and standard deviation ¢_ij on the samples so
the probability density function f,, ; 5 ;(x) becomes
available for each aesthetic feature i and attribute
j in (low, medium, high). We next translate each
Gaussian representation into a fuzzy membership
function, which can compute labels for the video
or musical parts. Because we consider three kinds
of attributes for each feature—namely high, medi-
um, and low—one membership function repre-

sents each attribute, as shown in Figure 1. The fol-
lowing steps define the membership functions for
M’ for each aesthetic feature i and attribute j in
(low, medium, high):

1. Thresholding the Gaussian distributions to
ensure that the membership function fits into
the interval [0, 1].

2. Forcing the membership function for the low
attributes to remain constant and equal to the
minimum of 1 and the maximum of the
Gaussian function for values smaller than the
mean L.

3.Forcing the membership function for the
high attributes to remain constant and equal
to the minimum of 1, and the maximum of
the Gaussian function for values greater than
the mean p.

4.Removing cross correlation by defining strict
separation between the fuzzy membership
functions of the different attributes for the
same feature.

Formally, the membership functions M *™"
defined for the linguistic values that correspond
to low attributes is M *™"'(x) = min(1, f, smu
c_iSmall(lJ')) for x e [0, uJ; min(1, fp_iSmall, c_iSmall(X)) for x

€ ]ur y ]l Y SO that fu_iSma]l, c_iSmall(y) = fp_Mediuslm,(ly I'Medium(y);
and 0 otherwise. We assume for M' " that no

negative values occur for the base variable.

The membership function M "™ for attrib-
utes corresponding to medium is defined as M’
Medium .

() =min(1, f, jedium, o Meam(®)) fOr X € ]y, 1],
¥ 0 that £, sman, o sman(¥) = fu_ntedium, o Meaium (V); MIN(T,
£ Medium, o_ivedium (X)) fOT X € [W, 2], Z 5O that £, nedium,
o Medium(Z) = Ly itrign, o_imign(2); and O otherwise.

For the attribute that corresponds to high, the
membership function M™*" is M""*"(x) = min(1,
£y itign, o mign(%)) fOr x € ]y, ul, y so that f, ieqium,
o Medium(Y) = £ intigh, o inign(V); TIN(L, £, ign, o imign(1))
for x > ; and 0 otherwise.

So, for each feature i (in the video or music
space), we compute the M ", M or M ™"
fuzzy membership functions using the previous
equations. We then express the values obtained
after a video shot or music excerpt analysis in the
aesthetic space using the linguistic membership
function value. So the dimension space v (respec-
tively m) of V (respectively M) equals three times
the number of video (respectively music) aes-
thetic features.



We represent one video shot as a point S; in the
space V. Each of the coordinates s;; of S, is in [0,1],
with values close to 0 indicating that the corre-
sponding aesthetic attributed feature doesn’t prop-
erly describe Shot;, and values close to 1 indicating
that the corresponding aesthetic attributed feature
well describes Shot,. Similar remarks hold for the
music excerpts represented as E, in the space M.
Table 2 presents the mean and variance obtained
for each attributed feature that we used.

Pivot space mapping

The mapping going from the IR" (respectively
IR") to the IR space is provided by a p x v (respec-
tively p x m) matrix T, (respectively T,,) that
expresses a rotation or projection. Rotation
allows the mapping of features from one space to
another. Several features of the IR" space might
be projected in one feature of IR’; it's also possi-
ble that one feature of IR" might be projected
onto several features of IR”. The mapping is sin-
gle stochastic, implying that the sum of each col-
umn of T, and T,, equals 1. This ensures that the
coordinate values in the pivot space still fall in
the interval [0, 1] and can be considered fuzzy
values. The advantage of the mapping described
here is that it’s incremental. This is because if we
can extract new video features, the modification
of the transformation matrix T, preserves all the
existing mapping of music parts. We directly
extrapolated the transformation matrices T, and
T,, from Table 1 and define links between video-
and music-attributed aesthetic features and
pivot-attributed aesthetic features. Figure 2 shows
the mapping process.

The fundamental role of the pivot space is
allowing the comparison between video- and
music-attributed aesthetic features. We compute
the compatibility between the music described
with V1 and the music described as M1 as the rec-
iprocal of the Euclidian distance between V’1 and
M’1. For instance, the cosine measure (as used in
vector space textual information retrieval ) isn’t
adequate because we don’t seek similar profiles in
terms of vector direction, but on the distance
between vectors. The use of Euclidean distance is
meaningful; when the membership values for one
video shot and one music excerpt are close for the
same attributed feature, then the two media parts
are similar on this dimension, and when the val-
ues are dissimilar, then the attributed feature for
the media are different. Euclidean distance holds
here also because we assume independence
between the dimensions.

Video-attributed
aesthetic feature space

IR?

Pivot-attributed

Music-attributed
aesthetic feature space

aesthetic feature space

In our work, the dimension p is 9, because we
assign one dimension of P for the three attributes
high, medium, and low related to the following:

I Dynamics (related to light falloff, color energy,
and color brightness for video and dynamics for
music). Without any additional knowledge, we
only assume that each of the attributed features
of dynamics in the pivot space are equally based
on the corresponding attributed video features.
For instance, the high dynamics dimension in
P comprises one-third each of the high light
falloff, color energy, and color brightness.

I Motion (related to motion vectors of video
and tempo of music).

1 Pitch (related to the color hue of video and
pitch of music).

In the following, we'll represent a music excerpt
or a video shot in the pivot space using a 9-
dimensional vector corresponding respectively to
the following attributed features: low_dynamics,
medium_dynamics, high_dynamics, low_motion,
medium_motion, high_motion, low_pitch,
medium_pitch, and high_pitch.

We now illustrate the mapping with one
example taken from the file LGERCA_LISA_1.mpg
that belongs to the MPEG-7 test collection. The
selected shot, namely L0O1_39, is between the
frame 22025 and 22940. Table 3 (next page) pre-
sents the extracted features and the mapping into

Figure 2. Pivot vector
representation.
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Table 3. Initial feature values and attributed features for the video shot LO1_39 in the video space.

Features

Light Falloff Color Hue

Color Brightness

Color Energy Motion Vector

Feature value

0.658 0.531

0.643

0.413 0.312

High falloff

1.0

Medium falloff

0.0

Low falloff

0.0

High hue

0.0

Medium hue

1.0

Low hue

0.0

High brightness

0.0

Medium brightness

1.0

Low brightness

0.0

High energy

0.0

Medium energy

0.0

Low energy

0.701

High motion

0.0

Medium motion

0.638

Table 4. Attributed features for the video shot LO1_39 in the pivot vector space.

Low motion

0.0
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0.701

0.0 0.0 0.638

the video space. Table 4 shows the mapping into
the pivot space.

Media sequence matching

From a retrieval point of view, the approach
presented in the previous section provides a rank-
ing of each music excerpt for each video shot and
vice versa, by computing the Euclidean distances
between their representatives in the pivot space.
However, our aim is to find the optimal set of
music excerpts for a given video where the com-
patibility of the video and music (as defined in
Table 1) determines optimality.

One simple solution would be to only select
the best music excerpt for each shot and play
these music excerpts with the video. However,
this approach isn’t sufficient because music
excerpt duration differs from shot duration. So,
we might use several music excerpts for one
shot, or have several shots fitting the duration
of each music excerpt. We chose to first define
the overall best match value between the video
shots and the music excerpts. If we obtain sev-
eral best matches, we take the longest shot,
assuming that for the longer shots we'll have
more accurate feature extraction. (Longer shots

0.0 0.0 1.0 0.0

are less prone to errors caused by small pertur-
bations.) Then we use media continuity heuris-
tics to ensure availability of long sequences of
music excerpts belonging to the same music
piece.

Suppose that we obtained the best match for
Shot; and the music excerpt I from music piece k,
namely M, ,. Then we assign the music excerpts
M, ,, (with m <) to the part of the video before
Shot;, and the music excerpts M, , (n > 1) to the
parts of the videos after Shot;. Thus, we achieve
musical continuity. If the video is longer than
the music piece, we apply the same process on
the remaining part(s) of the video, by placing pri-
ority on the remaining parts that are contiguous
to the already mixed video parts, ensuring some
continuity. The previous description doesn’t
describe the handling of all the specific cases that
could occur during the mixing (for example, sev-
eral music parts might have the same matching
value for one shot), but it gives a precise enough
idea of the actual process.

Experiments
We tested our approach on 40 minutes of edit-
ed home videos (109 shots) taken from the
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Figure 3. (a) Matching between the video L02_30 and the music T01_5. (b) A sample frame from the video.
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Figure 4. (a) Matching between the video L02_31 and the music T06_5. (b) A sample frame from the video.

MPEG-7 test collection (LGERCA_LISA_1.mpg
from the CD no. 31 and LGERCA_LISA_2.mpg
from the CD no. 32) and considered 93 minutes
(186 excerpts of 30 seconds each) of music com-
posed of instrumental rock, blues, and jazz styles.
We defined the video excerpts according to the
sequence list provided for the MPEG-7 evaluation.

Elemental shot-excerpt mixing results

We first present the matching of one music
excerpt to one video shot. We chose three shots
of the LGERCA_LISA_2.mpg (from frames 16044
to 17652), namely LO2_30, L02_31, and LO2_32.
The first shot presents two girls dancing indoors
with a dim light. Because the girls are dancing,
there’s motion, but no close-ups, so the motion

b L02_30
W T01_5

(b)

O L02_31
W T06_5

(b)

is medium. The video’s pitch (related to the hue
of the colors presents in the shot) is also medium
because the girls’ clothes have some colors.
Figure 3 presents nine dimensions of the pivot
space for LO2_30 and the best matching obtained
with the music excerpt TO1_S, extracted from the
music piece “Slow and Easy” (from the music
album Engines of Creation by Joe Satriani, Epic
Records, 2000). This music is a medium- to slow-
tempo rock piece, with medium dynamics and
medium pitch. As Figure 3 shows, the matching
is perfect and the distance is 0.

Figure 4 presents the features of the shot
L02_31 in the pivot space. This shot is also dark,
but less than L02_32, which is why the
low_dynamics dimension has a value equal to

€00z dunf-judy
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Figure 5. (a) Matching between the video L0O2_32 and the music T19_1. (b) Sample frame from the video.
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0.66. In this shot the two girls dancing are closer
to the camera, generating much more motion.
Also, the dresses’ colors are more visible, gener-
ating high_motion and high_pitch. The mini-
mum distance value obtained is 0.071 for the
music excerpt T6_5 (medium tempo rock,
“Motorcycle Driver” from the album The
Extremist by Joe Satriani, Relativity Records, 1992)
with high pitch and low energy. The matching
isn’t perfect because the motion doesn’t match,
but this match is the best one we obtained.
Consider now the shot L02_32, taken outdoors.
In this case, the images are brighter than in the pre-
vious two cases, and the feature med_dynamics
equals 1. There isn’t much motion because the
focus point (a girl driving a small pink car) is far
away. The pitch is also medium because there are
only natural colors. The shot L02_32 best matches
at a distance of 1.414 with the music excerpt
T19_01 (“Platinum” from the eponymous album
of Mike Oldfield, Virgin Records, 1979), as present-
ed in Figure 5. This music excerpt is of medium
tempo, with medium dynamics and high pitch.

Full audio-video mixing results

We matched a sequence of shots, which corre-
spond to a “Kids Dancing on Stage and After
Play” segment in the video LGERCA_LISA_2.mpg.
We numbered the shots from L02 44 to LO1_51.
The segment shows children coming onto a stage,
and then a prize nomination. This sequence lasts
2 minutes and 33 seconds. We obtained the best
match for shot LO2_48 (vector [0, 1,0, 1, 0, 0, O,

1, 0]) with the music excerpt T19_1, described

previously; the match is perfect. The shot L02_48
has small motion activity, medium bright colors,
and medium hue colors.

According to our rule to ensure media conti-
nuity, we mixed the same music for shots L02_49,
L02_50, and LO2_51. We then considered shot
L02_47 (vector [0.95, 0, 0,0, 1, 0, 0, O, 1]), mixed
with the music excerpt T0O6_1 (medium tempo
rock, “Motorcycle Driver,” from The Extremist
album by Joe Satriani, Relativity Records, 1992)
with a vector of (1,0, 0, 0, 1, 0, O, O, 1). The dis-
tance between their respective vectors is 0.041.
This shot contains not very bright images and not
much motion but a lot of high hue colors, and we
mixed it with medium tempo rock music with
high pitch and low energy.

Because shot L02_47 is longer than the music
excerpt, we mix it with music part TO6_2. We
continue to mix shots going backward from shot
L02_47. Shot L02_46 (vector [0.97,0,0,0, 1,0, 0,
1, 0]) contains less high hue colors because it
focuses on a girl wearing black clothes. We mixed
it with its best music match, TO5_2 (medium
rock, “S.M.F,” from Joe Satriani by Joe Satriani,
Relativity Music, 1995), with a distance value of
0.024. By back propagating the music, we can mix
the remaining shots L02_44 and L02_45 with
music excerpt TO5_1, which is the preceding part
of TO5_2 in the same song. Figure 6 shows the
mixing obtained.

Conclusions
Our novel audio-video mixing algorithm
picks the best audio excerpts to mix with a video



Web Extras

Our experiments obtained aesthetically
pleasing mixing results. One example each of
elemental (elem.mpg and elem.wmv) and full
(full.mpg and full.wmv) audio-video mixing is
available for viewing on [EEE MultiMedia’s Web
site at http://computer.org/multimedia/
mu2003/u2toc.htm.

clip according to perceptual cues of both video
and audio. Our work represents initial steps
toward developing automatic audio-video mix-
ing that rivals that of a skilled human mixing
artist. Many interesting and challenging prob-
lems remain for future study.

We provided computational procedures for
only a subset of the video features, but we need
computational procedures for all video and
audio descriptors. Table 1 lists a total of 43 attrib-
uted features, but only 16 of them are
extractable, and we’ve only used 10 of them so
far. Future research will develop procedures for
all the attributed features so we can use the
heuristics of Table 1 for audio-video mixing.
While video processing seems relatively easier,
hardly any corresponding work has occurred for
music. The literature on digital audio processing
is overwhelmingly skewed toward speech pro-
cessing and scant work exists on nonspeech
audio processing.

We essentially used the mixing heuristics as
given in Zettl.* Perhaps better mixing heuristics
are possible, and we need to understand better
the aesthetic decision process of mixing artists.

Table 1 doesn’t explicitly address music genre.
It's obvious that while perceptual features of two
audio clips of two different genres might be sim-
ilar, their appropriateness for a particular video
clip might differ. Because we use a Euclidean
pivot space, it’s possible to define clustering
methods to make the matching faster when con-
sidering compatible music and videos. For
instance, if we define different genres of music,
it’s possible in the IR” space to define a vector
that’s the center of the vector mass of each genre.
We would then base the matching first on genre
representatives, and once we obtained the best
matching genre for a particular video, we could
limit the aesthetic matching to that musical gen-
re’s vectors. The influence of music genre would
improve the mixing algorithm.

If we incorporate musical genre into the mix-

""'.L02_44 L02_46 L02_48 L02_50

I L0=2_4=5 : L02_47 : =L02_49 : L02=_=51
TO5_1 T06_1 T06_2 . T09_2 .

: TO!5 I2 I ITO9 1 T093I
|\/|u5|c R Tn;

ing framework, then we’ll need automatic genre
classification to process large audio collections.
This appears to be a challenging problem.12

After matching at the video shot and music
segment level, we presented a heuristic procedure
based on media continuity for the overall mix-
ing. We could improve this procedure by devel-
oping some overall measures of optimality over
and above media continuity. Thus, a second-best
match for a particular shot might lead to the
overall best match for the whole clip, which isn't
possible with our algorithm. As a result, we need
to formally pose the audio-video mixing as an
optimization problem.

We could introduce special effects such as cuts
and gradual transitions in the video to better
match and synchronize shots with the matched
audio. Thus, we could define an appropriate mix-
ing style based on the attributed features of the
mixed media.

Using gradual transitions is a well understood
concept for videos, but not much work has
occurred around aesthetically pleasing gradual
transitions for blending two disparate audio clips.

We aim to work on many of these problems
in the future. MM
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