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Abstract. ‘Coopetitive’ interaction strategy has been shown to give
better results than similar strategies like ‘only cooperation’, ‘only com-
petition’ etc [7]. However, this has been studied only in the context of vi-
sual sensors and for handling non-simultaneous events. In this paper, we
study this ‘coopetitive’ strategy from a multimedia surveillance system
perspective, wherein the system needs to utilize multiple heterogeneous
sensors and also handle multiple simultaneous events. Applying such an
interaction strategy to multimedia surveillance systems is challenging
because heterogeneous sensors have different capabilities for perform-
ing different sub-tasks as well as dissimilar response times. We adopt a
merit-cum-availability based approach to allocate various sub-tasks to
the competing sensors which eventually cooperate to achieve the speci-
fied system goal. Also, a ‘coopetition’ based strategy is adopted for ef-
fectively utilizing the information coming asynchronously from different
data sources. Multiple simultaneous events (e.g. multiple intrusions) are
handled by adopting a predictive strategy which estimates the exit time
for each intruder and then uses this information for enhanced scheduling.
The results obtained for two sets of surveillance experiments conducted
with two active cameras and a motion sensor grid are promising.

1 Introduction

Recently a fair amount of interest has been generated on devising effective inter-
action and feedback mechanisms for multisensor surveillance[7,3,1]. For example,
Singh and Atrey [7] propose the use of ‘coopetitive’ interaction approach for sen-
sor interaction. Coopetition is a process in which the sensors compete as well as
cooperate with each other to perform the designated task in the best possible
manner. Intuitively, the process is similar to that of two partners in the card
game of ‘bridge’ trying to outbid each other (compete), even though they are
doing so for the benefit of the team (cooperate) in a bigger context. Such an
interaction mechanism helps in improving the system performance by employ-
ing the best sensor for each (sub) task and also makes available the remaining
sensors for undertaking other tasks if required.

While the above mentioned coopetitive strategy promises to be an effective
interaction approach it has so far been studied for interaction between cameras
alone. Similarly, other sensor interaction works like [3,1] have also focused on
interaction mechanisms between cameras only.

T.-J. Cham et al. (Eds.): MMM 2007, LNCS 4352, Part II, pp. 343–352, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



344 V.K. Singh, P.K. Atrey, and M.S. Kankanhalli

On the other hand, effective surveillance often requires multi-modal infor-
mation which is obtained from more than one type of sensors. Hence, while
adopting the salient features of coopetitive interaction as described in [7], in this
paper we tackle the problems from a heterogeneous sensor perspective. Our key
contributions are :

1. Applying the ‘coopetitive’ interaction strategy to multimedia surveillance
systems wherein multiple heterogenous sensors are employed which may have
different functional capabilities as well as dissimilar response times.

2. Enhancing the system capability to handle multiple simultaneous events e.g.
handling multiple simultaneous intruders in monitored space.

In heterogeneous sensor environments each sensor has a different capability
for handling the different sub-tasks i.e. divisible components of the system goal.
While some sensors may be able to accomplish multiple types of sub-tasks, others
may be able to do only one such type of sub-task. We adopt a suitability-cum-
availability strategy for appropriately allocating the various sub-tasks to each of
these sensors. Firstly, for each sub-task, a list of suitable sensors is made. Sensors
are then allocated from this suitability list based on their availability.

Also, dissimilar sensors may have different response times. For example in
a typical surveillance setup, a camera could be working at 4 frames/sec but
a motion sensor may be providing information 6 times per second. Thus, to
effectively utilize the information arriving asynchronously from such disparate
sources, we adopt a ‘coopetition’ based strategy. The sensors ‘compete’ to pro-
vide information about newer events of interest. However, only the genuinely
‘new’ information is accepted by the system and the rest is termed as recur-
rent. Thus only the ‘winning’ sensor is allowed to trigger responses required for
handling newer events of interest.

Handling multiple events which lead to concurrent sub-tasks is also a non-
trivial issue as the system must decide an order for handling them such that the
global output is maximized. To resolve this issue we employ a predictive strategy
which allows us to estimate the deadlines for completing each sub-task beyond
which they can not be completed satisfactorily. For example, in a multi-intruder
scenario, the system evaluates the estimated time of exit for each intruder and
then checks if the currently focused intruder shall still remain in monitored area
even if it focuses on a newer intruder first. This additional information opens
the doors to various predictive scheduling strategies which can in turn help to
maximize the system performance.

To measure the effectiveness of our proposed approach we conduct experi-
ments using two cameras and a grid of motion-sensors. However, it may be worth
noting that we currently connect all the sensors to a central computer which acts
as central coordinator/controller. Thus, we presently circumvent many complex-
ities of distributed decision making like network delay, coordination cost etc.
which are beyond the scope of the current work.

We define the system goal for the experiments as obtaining atleast three high
resolution frontal facial images of any intruder entering the monitored premises.
Hence the two major sub-tasks are localizing the intruder and focusing on him
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(for obtaining his facial images). The motion sensor grid provides the localization
information about the intruder while the cameras can provide both localization
information as well as the facial data. The requirements for effective sub-task
allocation among dissimilar sensors as well as the need to handle multiple simul-
taneous intrusion events makes these surveillance scenarios quite challenging.

Garcia et al in [3] described coordination and conflict resolution between
cameras. Collins group [1] has done some pioneering work in multi-camera cooper-
ation strategies. However, both of these works do not employ the use of competition
which is we advocate as an integral part of coordination together with cooperation.
Also, they deal only with cameras while we we want to be able to handle heteroge-
nous sensors. We have earlier described ‘coopetitive’ interaction strategy with a
homogeneous sensor (cameras) perspective in [7]. However, in that work we do not
handle the issues posed by dissimilarity between sensors and also do not handle
multiple simultaneous events e.g. multiple intrusions which we do in this work.

Doran et al [2] have described different types of cooperation from an artificial
agent perspective. Murphy et al [6] illustrate cooperation between heterogeneous
robots based on ‘emotions’. Hu et al [4], discuss the relationships between lo-
cal behaviors of agents and global performance of multi-agent systems. While
these works provide insights into different types of cooperation from an agent
perspective they do not discuss the practical issues which are faced in imple-
mentation of such interactive strategies across heterogeneous sensors. Lam et al
[5] have described a predictive method for scheduling tasks on panning cameras.
Their intention is to schedule resource intensive tasks at a time when the sys-
tem load is least. While their idea of scheduling is interesting, this work does
not deal with the either the interaction strategy or the practical issues of of
heterogeneous sensing. Hence, we realize that there are no existing works which
tackle the problem of effective interaction between multiple sensors while also
considering the issues posed by their heterogeneousness.

The outline of the remainder of this paper is as follows. Section 2 describes
how we tackle the issues of appropriate sub-task allocation, asynchronous data
utilization and multiple simultaneous events handling. Section 3 describes the
experimental results obtained for the surveillance experiments. The conclusions
and possible future works have been discussed in Section 4.

2 Proposed Work

2.1 Coopetitive Framework for Heterogeneous Sensors

The generic algorithm for ‘coopetitive’ interaction strategy is shown in figure 1.
Upon arrival of each new surveillance object S Obj (i.e the object or the person
under observation), the system divides the overall goal into sub-tasks. These sub-
tasks are allocated to the available sensors based on a suitability-cum-availability
strategy. Initially, the sensors ‘compete’ to be allocated the various sub-tasks and
later ‘cooperate’ with each-other to better perform the respective allocated sub-
tasks. The roles i.e. sub-task allocation can be swapped if environment changes
or it is realized that the current sub-task allocation is no longer appropriate.
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A key point to note is that ‘coopetition’ does not specify any particular type
of sensor, measure of merit or even type of scenario. For example, this work
describes ‘coopetition’ between two cameras and motion sensor grid but nothing
restricts us from using audio sensors, pressure sensors etc. which may be suit-
able for some other scenario. Similarly, the measure of merit can also be chosen
based on the system task. For example in tracking-like applications, resolution
of facial images obtained, body blob size, physical proximity to the sensor, and
camera resolution/quality all form reasonable measures of merit for handling
competition between sensors for task allocation. Lastly, ‘coopetition’ does not
restrict itself to any particular type of application. It is equally relevant to mul-
tiple search teams operating in rescue effort or multiple satellites providing data
about approaching tsunami/storms etc.

More details about ‘coopetitive’ strategy in general can be found in [7]. Here
we focus on issues which are unique to heterogeneous multimedia sensor systems.

Fig. 1. Proposed ‘coopetitive’ strategy for heterogeneous sensor interaction

Firstly, the system needs to allocate sub-tasks to sensors based on the suit-
ability of each type of sensor for the various sub-tasks. Let there be n different
sub-tasks viz ST1 through STn, each of which can be undertaken by one or
more of the m different sensor types viz SensorType1 through SensorTypem as
shown in figure 2. Each sensor type has one or more member sensors which



Coopetitive Multimedia Surveillance 347

can be represented as Sensor1 through Sensoro. It is possible to come up
with a set STCapi for each sub-task that contains the list of all sensors which
can handle the ith sub-task. We must note that at any instant, there must be
atleast one sensor capable of handling each sub-task i.e. ∀STCapi : STCapi �=
∅. Our approach for allocating the sensors to the various sub-tasks is
as follows.

Step 1: Choose the most restrictive sub-task p which can be undertaken by the least number of

sensors i.e. STCapp : ∀STCapi,∩(STCapp) ≤ ∩(STCapi)

Step 2: If STCapp has only one sensor as its member, Allocate it.

Step 3: If it has more than one member, Allocate from the sensor-type with the highest availability.

Step 4: Remove the allocated sub-task and the sensor from the allocation pool.

Step 5: If number of sub-tasks in pool �= 0, Go to Step 1

Step 6: After all sub-tasks have been allocated the minimum one sensors, allow the ‘redundant’

sensors to also perform tasks per their capabilities.

Fig. 2. Sub-tasks and their allocation

Now, let us understand this allocation in our surveillance setup which has two
sub-tasks: S Obj localization and S Obj focusing. The S Obj focusing can be
undertaken by the two cameras while the S Obj localization can be done by two
cameras as well as the motion-sensor grid. The better suited of the two cameras is
allocated the S Obj focusing task. Thus for our experimental setup, the camera
which can obtain better frontal facial images of the intruder is allocated the
focusing task. Similarly, the sensor (camera or the motion-sensor grid) which
provides first information about a ‘new’ intruder handles the localization task
(further discussed in section 2.2).

2.2 Handling Asynschronous Data

In multimedia surveillance, the system may encounter asynchronous data about
similar context coming from multiple sensors at different time intervals. To un-
derstand this, let us look at a scenario as shown in figure 3 in which two types of
sensors are providing similar type of information. The first sensor starts giving
information at t = 0 and continues to provide information at the interval of 10
time-units. On the other hand sensor 2 starts providing information from t = 15
and continues to do so every 15 time-units.
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Fig. 3. Coopetition approach for using asynchronous data

In our surveillance setup a similar situation arises when motion sensor grid
and cameras both compete to provide localization information for a new S Obj.
Whichever sensor provides the information about the first S Obj for the first time
clearly ‘wins’ the competition for the first case. For subsequent cases, the sensors
could either be providing recurrent information about an already focused S Obj
or it could be the information about a genuinely new S Obj. Finding whether
the S Obj is old or new is important for the system to react accordingly as
normally the initial overhead for the system to react to a new object are sig-
nificantly more than the effort required for per-frame tracking of an old object.
Hence we compare each new information with the last ‘winning’ entry to see if
it is recurrent (competition ‘lost’) or new (competition ‘won’). Only the infor-
mation from the ‘winning’ sensor is allowed to trigger the response process for
handling a ‘new’ S Obj. This decision process has been demonstrated in figure 3
with w1, w2 etc. representing the winning entries. The recurrent information on
the other hand is simply added to the position information vector which is main-
tained for each individual S Obj currently being focused and used for per-frame
tracking.

2.3 Handling Multiple Simultaneous Events

A multimedia surveillance system must decide the order for undertaking the
various sub-tasks. Certain sub-tasks might always be required to be undertaken
before others. For example, in our scenario, localization needs to be done before
the facial images can be captured. Hence the system undertakes such tasks first.
However, when dealing with multiple simultaneous surveillance events, the sys-
tem may encounter multiple sub-tasks which can be executed in any arbitrary
order. In such situations, the system must choose the execution order so as to
maximize the global output function. Such a global output function can be rep-
resented as

∑n
i=1 wi × STi, where wi is the weight/importance assigned to the

ith sub-task. This signifies that in case of a conflict i.e. if undertaking only one
of the z remaining sub-tasks is possible, we must choose the one with the high-
est importance. We represent the conflicting z sub-tasks as CST1 though CSTz

and assume that they are arranged in order of their importance in a descending
order. Let us represent our set of sub-tasks which can be actually be completed
as CanDo. Hence our combined strategy for undertaking the various tasks using
a ‘greedy’ algorithm is as follows:
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CanDo← CST1

For: r= 1 to z

if (CSTr can still be completed after finishing CSTr+1 )

CanDo← CanDo
�

CSTr+1

else

Do nothing;

Next r

We encounter such a conflicting scenario in our implemented scenario when
multiple intruders enter the monitored space simultaneously. Using a predictive
methodology the system constantly keeps track of the ETEx (Expected Time
of Exit) for each S Obj. If the system realizes that intruder r is going to stay
inside the monitored premises even if it ‘takes time off’ to focus on intruder r+1
first, then it would do so. Else, it would continue to focus on intruder r. The
estimate on how long the intruder shall stay inside the monitored premises can
be undertaken using Kalman filter approach by keeping track of position and
velocity vectors of the various intruders as described in [7].

3 Experimental Results

We conduct two sets of experiments to verify the suitability of our proposed
approaches. In first experiment we consider a single door enclosed environment
setup like that commonly found in ATM lobbies or museum sub-sections. The
system task is to obtain at least 3 frontal facial images of 200px by 200px res-
olution (which suffices for most face identification/expression recognition algo-
rithms[8]) for each intruder and then continue to obtain more images if there
are no other intruders. The setup consists of two active cameras, one placed
directly above the entrance and the other directly above the principal artifact
e.g. ATM machine. Essentially, the setup is similar to that described in [7] but
now we also have an additional motion-sensor grid covering the entire premises
to provide additional localization information.

In this experiment, we compare the performance of ‘only cooperation’, ‘only
competition’, ‘coopetition without MPC’ and ‘Coopetition with MPC’ approaches
for heterogeneous sensors and also see how they relate to the results obtained us-
ing only cameras [7]. In ‘only cooperation’ interaction approach sensors try to help
each other in better performing their sub-tasks e.g. by passing S Obj localization
information. However there is no differentiation between sensors based on their
worthiness and inappropriate sensors may also be passed information and allo-
cated critical roles e.g. face capturing sub-task may be allocated to the camera
in opposite direction with the face.In ‘only competition’ approach, the sensors do
not help other sensors in performing their sub-tasks. So, in this case the cameras
need to perform both S Obj localization and focusing on their own. In ‘coopeti-
tion’ based approach the sensors help each other, but do so only if the other sensor
is worthy of performing the allocated sub-task. Relating to our setup, the S Obj
location is transferred only to the appropriate camera(s) which use this informa-
tion to focus on the S Obj and obtain facial images better. In ‘coopetition with
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Fig. 4. Comparison of interaction strategies

MPC’ approach the sensors have the additional advantage of using a predictive
methodology to order and perform their sub-tasks.

For this experiment, the volunteer intruders were asked to enter the moni-
tored premises for a one minute duration and intentionally avoid getting their
facial images captured by the cameras. Twenty rounds of this experiment were
conducted for each strategy and we compare the average data based on the
percentage of frames for which atleast 100px by 100px images were obtained
(figure 4a) and the time taken to capture three 200px by 200px facial im-
ages (figure 4b). Hence in all, we used data from 80 one minute rounds using
two cameras each working at 768px by 576px with 4 fps for obtaining these
results.

The presented figure 4a also shows the image capturing results obtained for
similar setup with cameras alone [7]. We notice consistent increase in face cap-
turing capability with the addition of motion-sensor grid. This corroborates well
with the additional localization information available from motion-sensor grid
which is faster (no need to continuously pan) and more robust (non-frontal face
situations can also be handled). We notice that the ‘coopetitive with MPC’ strat-
egy significantly outperforms the other strategies for heterogeneous sensors too
and is able to obtain appropriate facial images for 82% of frames.

Figure 4b shows that the average time taken to obtain three 200px by 200px
frontal facial images is also the least (11 sec) for ‘coopetitive with MPC’
approach. This is due to appropriate allocation of sensors to the sub-tasks, abil-
ity to obtain localization information from other sensors and performing for-
ward state estimation for intruder’s trajectory. As one each of these features is
not present in ‘only cooperation’, ‘only competition’ and ‘coopetitive(without
MPC)’ approaches respectively, the ‘coopetitive with MPC’ approach works
better.

Being convinced about the superiority of ‘coopetitive’ interaction approach
over ‘only competition’ and ‘only cooperation’ approaches, in the second ex-
periment we closely compare the two variants of ‘coopetition’ with an aim to
verify the gains obtained by using a predictive strategy for handling multiple si-
multaneous events. While the proposed methodology poses no limitation on the
number of such simultaneous events, we use a two intruder base case scenario
to demonstrate its effectiveness. We consider the scenario of a walkway leading
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Fig. 5. Two example scenarios with multiple simultaneous events

to an important establishment e.g. control room for a nuclear plant etc. with
a system goal of obtaining three high resolution(200px by 200px) frontal facial
images of two intruders simultaneously walking across the walkway with differ-
ing speeds. The system uses a predictive methodology to decide which intruder
shall exit the monitored walkway first and then plan the order of focusing on
them as to maximize the probability of capturing appropriate images for both
of them. We conducted 20 rounds of experiments and found that the ‘coopet-
itive with MPC’ approach which uses a predictive strategy was able to obtain
appropriate images for both intruders 85% of times as compared to ‘coopetitive
without MPC’ approach which could do so only 65% of times.

Two example scenarios have been shown in figure 5 with time-instances la-
belled (a) through (j). Scenario1 shows how the system handles two intruders
simultaneously walking towards the important room (direction from camera2
towards camera1). The camera1 notices the intruder1 first(5a) but then realizes
that intruder2 is going to exit much faster and it has high probability of cap-
turing intruder1 even after completing intruder2 focusing task. Thus it focuses
on intruder2(5b). After obtaining three images of intruder2(5c) it goes back to
focus on intruder1(5d) and captures it’s three high resolution images(5e). Sce-
nario2 shows a similar case where intruder1 is detected first(5f) but intruder2 is
focused(5g) as it is exiting faster and it’s 3 facial images are obtained(5h). How-
ever, this time around intruder1 changes his direction and camera2 is required
to focus on it(5i) and obtain three high resolution images(5j).
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4 Conclusions

In this paper we have extended the ‘coopetitive’ interaction strategy to multi-
media surveillance systems which can handle multiple simultaneous surveillance
events. The major issues handled in this extension were of sensor to sub-task
allocation, asynchronous data handling and handling of multiple simultaneous
sub-tasks. Results obtained from two sets of experiments have demonstrated
that ‘coopetition with MPC’ strategy does work well with heterogeneous sys-
tems too. It can also handle multiple simultaneous events and continues to sig-
nificantly outperform other related strategies like ‘only cooperation’ and ‘only
competition’.

We realize that the currently adopted methods for sub task allocation and
scheduling are ‘greedy’ and hence not universally applicable. We intend to ex-
plore globally optimal solutions in future work. Further experimentation with
larger number of sensors which are also of different type (e.g. infra-red camera,
audio sensors, pressure sensors etc.) shall also be undertaken as part of our fu-
ture work. We also intend to work on handling the complexities of distributed
coordination mechanisms which have been ignored for the current work.
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