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Abstract— Multimedia systems must deal with multiple 
data streams.  Each data stream usually contains 
significant volume of redundant noisy data.  In many 
real-time applications, it is essential to focus the 
computing resources on a relevant subset of data streams 
at any given time instant and use it to build the model of the 
environment.  In this paper, we formulate this problem as 
an experiential sampling problem and propose an 
approach to utilize computing resources efficiently on the 
most informative subset of data streams. We generalize the 
notion of static visual attention to multimedia data streams 
in a dynamical systems setting. The goal-driven 
generalized attention is maintained by a sampling 
representation that uses the current context and past 
experience for attention evolution. We have developed the 
theoretical background, algorithms and an evaluation 
measure for this technique. We have successfully applied 
this framework to the problems of traffic monitoring, face 
detection and monologue detection. 

 
 
Index Terms— Dynamical Systems, Experiential 
Computing, Experiential Sampling, Sampling, Visual 
Attention  

 
 

I. INTRODUCTION 
ultimedia information processing usually deals with 
spatio-temporal data which have the following attributes:  

• It consists of a multiplicity of usually correlated data 
streams. Thus, it does not exist in isolation – it exists in 
its context with other data. For instance, visual data 
comes along with audio, music, text, etc.    

• They possess a tremendous amount of redundancy. 
• The data is dynamic with temporal variations with the 

resultant history. 
However, many current approaches towards multimedia 

analysis do not fully consider the above attributes which lead to 
two main drawbacks – lack of efficiency and lack of 

 
Manuscript received April 28, 2004.  
 

 M. S. Kankanhalli is with the School of Computing, the National University 
of Singapore. Kent Ridge, Singapore 119260 (Phone: (65) 6516-6738 
Fax: (65) 6779-4580 e-mail: mohan@comp.nus.edu.sg). 

 J. Wang is with the Faculty of Electrical Engineering, Mathematics and 
Computer Science, the Delft University of Technology, the Netherlands. 
(e-mail: j.wang@ewi.tudelft.nl). 
     R. Jain is with the Bren School of Information and Computer Sciences, the  
University of California, Irvine. (e-mail: jain@ics.uci.edu). 
 

adaptability.  The inefficiency arises from the inability to filter 
out the relevant aspects of the data and thus considerable 
resources are expended on superfluous computations on 
redundant data. Hence speed-accuracy tradeoffs cannot 
properly be exploited. The lack of adaptability stems from the 
fact that the context of the data is often ignored. As a result, 
rigid computational procedures are employed for analyses that 
remain fixed when the environment itself is changing. 
Moreover, the context of multiple correlated data streams is not 
fully harnessed in order to perform the task at hand. 
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On the other hand, we have solid evidence that humans are 

superb at dealing with large volumes of disparate data using 
their sensors [6]. For instance, the human visual system is quite 
successful in understanding the surrounding environment at an 
appropriate accuracy quite efficiently. This is due to many 
factors [16]: the excellence of the physical visual sensing 
system, the richness of fusion information from perception, 
implicit understanding of every visual object, and the common 
understanding of how the world works. These attributes in the 
experiential environments [7] play an important role for the 
human visual perception to understand the visual scene 
accurately and quickly under fairly adverse conditions. The 
vision for experiential computing was introduced in [7], which 
envisages that multimedia analysis should also have the ability 
to process and assimilate sensor data like humans. Examples of 
such problems being currently tackled are speaker recognition 
[45], speech event detection [45], speaker change detection 
[45], monologue detection [46] and cross-modal information 
retrieval [47]. Many tasks like remote monitoring, 
understanding semantics and adaptive presentations also fall 
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Figure 1. Neisser’s Perceptual Cycle. (Based on Figure 2 in [44]) 
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under this paradigm. Therefore, we would like to articulate the 
following goal for such multimedia systems:  

“In an experiential computing environment, the system 
should sense the data from the environment. Based on the 
observations and experiences, the system should collate the 
relevant data and information of interest related to the task. 
Thus, the system interacts naturally with all of the available 
data based on its interests in light of the past states in order to 
achieve its designed task.” 

It is apparent that many current multimedia systems 
approaches ignore their contextual environments and do not 
have the ability to adapt to the environment. They, instead of 
processing relevant data, perform pervasive non-focused 
computations. In this paper, we argue that like human 
perception, multimedia analysis should be placed in the context 
of its environment. It should have the following characteristics: 
1. The ability to “focus” (have attention), i.e., to selectively 
process the data that it observes or gathers based on the context. 
2. The ability to perform experiential exploration of all of the 
available data streams.  

To formulate the problem precisely, we will define the 
scenario more formally in section III and IV.  Our ideas are 
articulated using some important concepts that Neisser [44] 
introduced in 1976 in his work on the notion of perceptual 
cycle to model how people perceive the world. He presented 
the idea that a perceiver builds a model of the world by 
acquiring specific signals and information to accomplish 
certain tasks in the natural environment.  The perceiver 
continuously builds a schema that is based on the signals that he 
has received so far.  This schema represents the world as the 
perceiver sees it at that instant. The perceiver then decides to 
get more information to refine the schema for accomplishing 
the task that he has in mind. This sets up the cycle as shown in 
Figure 1.  The perceiver gets signals from the environment, 
interprets them using the current schema, uses the results to 
modify the schema, uses the schema to decide to get more 
information, and continues the cycle until the task is done. 

Our contributions in this paper are as follows. We introduce 
the experiential sampling framework to solve the problems of 
adaptation and efficiency when dealing with multiple data 
streams in a multimedia system. What it effectively achieves is 
the development of the idea of generalized attention. This key 
concept extends the notion of static visual attention to any type 
of multimedia data. Thus attention is generalized to 
data-streams such as video and also to other data-streams which 
need not even be perceived by humans. Moreover, it is modeled 
as a time-varying continuous function which is approximated 
by a sampling representation. Also, it explicitly recognizes the 
presence of multiple correlated data-streams. We have 
developed the theory and demonstrate its efficacy for several 
applications. 

The paper is organized as follows. After surveying the 
related work in section II, we first start to define the problems 
and our solution: Experiential Sampling in section III.A. To 
effectively perform experiential sampling, we then propose a 
sampling-based dynamical attention driven analysis in the 

remaining part of the section. In section IV we extend our 
approach to handle multiple data streams. In section V we 
apply our framework to three applications and the 
corresponding experiments are described in section VI. Finally, 
we conclude our paper in section VII.       

 

II. RELATED WORK 
Since human perception is greatly aided by the ability to 

probe the environment through various sensors along with the 
use of the situated context, it has inspired context aware 
computing in the human computer interaction research 
community [15]. The basic idea there is to help the computer 
respond more intuitively to the human user based on the 
context. A comprehensive review of context aware computing 
can be found in [15, 16]. Our thrust is towards making 
multimedia analysis systems interact naturally with multiple 
data streams by considering the current context and past 
history. 

The ability to “focus” the “consciousness” in human visual 
perception has inspired research in non-uniform representation 
of visual data. The basic idea is to do adaptive sampling which 
is basically the selection of the most informative samples in a 
data stream. Visual attention in human brains allows a small 
part of incoming visual information to reach the short-term 
memory and visual awareness, consequently providing the 
ability to investigate more closely. There is a growing interest 
in the study of the visual attention phenomenon by 
psychologists [6, 8]. The phenomenon of inattentional 
blindness is particularly interesting in which human subjects 
have been found not to observe major objects when paying 
attention to some other objects [8]. It has been found to be a 
useful aid in finding evidence for resolving the controversy 
between the conflicting spotlight and object models of visual 
attention. The spotlight model hypothesizes that visual 
attention is concentrated in a small contiguous region 
(“spotlight” or “zoom lens”) which can move around in the 
field of vision. In contrast, the object model states that attention 
can be focused on spatially discontinuous objects (or a group of 
disparate objects). Experimental evidence seems to suggest that 
the human visual attention mechanism appears to be a 
combination of both models [6].  Computational modeling of 
visual attention has been investigated for potential usages in 
planning and motor control [14], video summarization [11] and 
object recognition [12]. The computational model of visual 
attention maintains a two-dimensional topographic saliency 
map by employing a bottom-up reasoning methodology [10]. 
Reference [13] attempts to model the influence of high-level 
task demands on the focal visual attention in humans. There is 
also the foveation technique [19, 21] for maintaining a 
high-resolution area of interest in an image. A 
uniform-resolution image can be foveated to transform into a 
spatially varying resolution image by either a log-polar [19] or 
a wavelet approach [20]. All these approaches recognize the 
need for doing adaptive sampling. But their approach is usually 
static. However, in humans, attention varies with the nature of 
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task. In addition, visual attention is adaptive. This means it will 
vary depending on the visual environment and has a 
self-corrective mechanism utilizing experiences. Interestingly 
enough, psychologists have observed that unexpected objects 
have a lower probability of being observed when attending 
other objects [6]. This strongly suggests the human perceptual 
system has a concrete notion of history which is encoded as a 
priori probabilities. Thus, attention will vary over time. 
Unfortunately, the above saliency map based visual attention 
models and foveation approaches are image based that do not 
provide a mechanism to evolve and adapt attention 
dynamically. Contrastingly, our sampling framework naturally 
expresses the dynamics of attention of a system. What is 
particularly appealing is that the attention states as well as the 
state-transitions are captured as a closed-loop feedback system. 
Moreover, the earlier adaptive sampling approaches consider 
only a single data stream. Our framework explicitly considers 
multimedia which consists of a multiplicity of correlated data 
streams. And these streams need not be audio or video – it can 
be any type of multimedia data including data not perceived by 
human sensors like infrared or motion sensors. 

The Sampling Importance Resampling (SIR) method which 
can be used for modeling evolution of distributions was 
proposed in [26]. The dynamics aspects were developed in 
[27]. In a SIR filter, a set of particles, which move according to 
the state model, multiply or die depending on their “fitness” as 
determined by the likelihood function [41]. A general 
importance-sampling framework that elegantly unifies many of 
these methods has been developed in [25]. A special case of this 
framework has been used for the purpose of visual tracking in 
[18]. Though we also utilize the sampling method, we use it to 
maintain the generalized notion of attention. To the best of our 
knowledge, this is the first use of the sampling technique to 
maintain the dynamically evolving attention. Thus, unlike [18], 
the number of samples dynamically changes for the purpose of 
adaptively representing the temporal visual attention.  This is in 
tune with the growing realization that computing systems will 
increasingly need to move from processing information and 
communication to the next step: dealing with insight and 
experience [7]. One of the key technical challenges in 
experiential computing is information assimilation, i.e., how to 
process in real time the disparate data received by multiple 
sensors. Our research in this paper aims to provide a sampling 
based dynamical framework to tackle this problem in the 
multimedia domain. 

 

III. EXPERIENTIAL SAMPLING 
Let us assume that we are given S1, S2 … Sn synchronized 

data streams belong to the space of multimedia data 
streams M . These data streams have K types of data in the 
form of image sequence, audio stream, motion detector, 
annotations, symbolic streams, and any other type that may be 
relevant and available.  Also, metadata for each of the streams 
MD1, MD2 …, MDn is available in the context of the 

environment.  This metadata may include things like location 
and type of the sensor, viewpoint, angles, camera calibration 
parameters or any other similar parameters relevant to the data 
stream.  Since a data stream is usually not directly very useful, 
some feature detectors must be applied to each data stream to 
obtain features that are relevant in the current environment. We 
assume that the multimedia system is a discrete time (or a 
sampled continuous time) dynamical system. When features are 
based on time intervals, they will be considered as detected at 
the end of interval, which is denoted as t, where t=1,…,T. 

Given the above data environment, there are now many very 
interesting problems that one faces, including the following 
that are directly relevant to the main theme that we wish to 
address in this paper: 

• How to focus on the most relevant data in a particular data 
stream? 

• How to focus on the most relevant data in multiple 
correlated data streams? 

• For the given task, what is the minimum number of data 
streams required? 

• How does one sample the data streams?  How can one 
minimize sampling for maximizing the efficiency? 

• Can one use alternate data streams to perform the same 
task with different costs? 

• Given that M streams are necessary for a given task, how 
does one combine the information from the data streams? 

We believe that this issue of determining which data streams 
are relevant and even among those streams which ones provide 
most relevant information at any given moment is a very 
important problem that needs to be addressed and has been 
ignored in the current literature. Current multimedia systems, 
usually start with the assumption that there is a given set of n 
data streams, unfortunately in most cases n=1 making it a 
signal analysis rather than a multimedia problem,  and one must 
deduce or extract all information from there to build the schema 
representing the environment.  There are other issues related to 
semantics and indexing that we do not wish to address here.  
Now we are ready to define what experiential sampling is and 
then address this in the remaining part of the paper. 

A.  Defining Experiential Sampling 
Experience is defined as the accumulation of knowledge or 

skill that results from direct participation in events or activities 
[51].  Direct participation implies having access to the 
environment of the event in order to observe it using all 
potential sensory mechanisms available to the perceiver or the 
experiencer.   In such an environment, the experiencer is driven 
by the goal of maximizing the efficacy of building the schema 
with minimal efforts to accomplish the most efficient 
mechanism to accumulate the knowledge.  This task translates 
into selecting appropriate data streams at any given time, based 
on the current schema, for paying attention. 

We define experiential sampling as the process of identifying 
the most relevant data stream among the available streams at a 
given instant to utilize for interpretation to refine the current 
model of the environment. 
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In this section, we introduce our experiential sampling 
technique. There are two major components in this technique. 
The first is how to sense and fuse experiences (contextual 
information) in the experiential environment. The second is 
how to build a dynamic attention model to select the data (or 
region) of interest.  

 

 
1) Experience 

Our definition of experience is based on [7, 51]. 
Experience in Multimedia Analysis: is any information that 

needs to be specified to characterize the current state of the 
multimedia system. It includes the current environment, a 
priori knowledge of the system domain, current goals and the 
past states. 

Although experience and experiential environments are 
domain dependent and their components are not clear in 
general, we define three main components as follows: 

Current contextual information: is the current existing 
information about the environment that needs to be specified to 
characterize the current state of the multimedia system with 
respect to the current goal. 

Past experience: is the accumulated experience of the 
multimedia analysis task performed in the past. 

Goal: is the purpose of the current analysis task. It is used to 
define what the related experiences are, and what analysis 
technique should be employed to accomplish the task. 

There are some relationships among these components. The 
current contextual information can be characterized by features 
extracted from the visual scene and other accompanying 
multimedia data (audio, speech, text etc.). The current goal and 
prior knowledge provide a top-down approach to analysis. It 
also determines which features of the visual scene and other 
accompanying data type should be used to represent the 
environment. The past experiences encapsulate the experiences 
till the current state. The relationships are shown in Figure 2. 
These relationships can help us define the experiential 
environment when we perform multimedia analysis. More 
importantly, when we consider the experiential environment, 
the analysis process systematically integrates the top-down and 
bottom-up approaches by employing the context and history. 
2)  Goal oriented attention from experiential environments 

As mentioned in the introduction, we allow the system to 
sense the data from the experiential environment. Based on the 
observations and experiences, it collates the relevant data and 

information of interest related to the task of the analysis and 
discards irrelevant information. In this regards, a central 
problem is the allocation of the goal oriented attention within 
the experiential environments. Note that attention is intimately 
related to the goal – generic attention does not make sense. We 
base this discussion on video which is a prototypical 
multimedia data type. Moreover, in this section, we will first 
concentrate on developing ideas for a single data stream. We 
will generalize this to multiple data streams in section IV. 

In our framework, we allow the analysis task to guide the 
attention onto regions or data of interest from the entire 
spatio-temporal data. We first introduce a vector to represent 
the spatial position of the goal oriented attention in a given time 
t as: 

 ( ) [ , ]'Ga t x y=   
where x=1,…,X and y=1,…,Y are spatial coordinates and 
t=1,…,T is temporal position. aG(t)=[x,y]' indicates the current 
attended position is [x,y]' in a time slice t. ' denotes the 
transpose operator. Without loss of generality, the stream 
dimension {1,…,n} can be further added when multiple 
streams are considered, while the spatial coordinates x, y can be 
dropped when non-spatial streams are considered. 

To infer the attention from the environment, we define the 
current contextual information with respect to the attention at 
the time t as: 

 ( ) { ( , , ) | 1,..., ; 1,..., }e t e x y t x X y Y= = =  
where again x, y are spatial coordinates and t is the temporal 
position. It includes any contextual information which could 
help in inferring the goal oriented attention (we will show later 
it is a combination of different feature cues). Therefore, it can 
also be considered as the measurement (e.g. motion, colors etc) 
of the attention with respect to the given spatial coordinates and 
time. For this, the values of the elements are required to be 
normalized to the range of [0,1). The sum total of accumulated 
contextual information for the attention is defined as 
E(t)={e(1),…,e(t)}. 

In this paper, we attempt to infer the attention from the 
experiential environment. By employing probabilistic 
reasoning, we define the a posteriori probability P(AG(t)|E(t)) 
with AG(t)={aG(1),…,aG (t)}  as the goal oriented attention up 
to time t. For real time applications, we need to estimate 
P(aG(t)|E(t)) rather than P(AG(t)|E(t)). Here we assume that the 
attention at each spatial position {x, y} is only dependent on the 
context measurement around the position {x, y}. Then we have 
the following equation: 

( ( ) [ , ] ' | ( )) ( ( ) [ , ] ' | ( , , ))P a t x y E t P a t x y E x y t= = =  
 Note that this notion of attention is a generalization of visual 

attention [10] in the sense it can be applied to any multimedia 
stream which may be non-visual. For example, this definition 
subsumes the notion of aural attention which is also related to 
the cock-tail party effect in digital audio processing. And this 
generalized attention concept can be applied to non-visual, 
non-audio data as well. Also, it is a phenomenon which 
dynamically varies with time unlike the notion of static image 

Figure 2. Experiential Environment Relationships. 
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attention dealt by the bulk of the visual attention literature. 
Moreover, attention is always goal-driven. 

B.  Goal oriented attention driven analysis 
In this section, we formulate the goal oriented attention 

driven analysis by using the Bayesian framework. 
1) Signal to symbol matching 

The central problem of multimedia content analysis is the 
signal to symbol matching. Fundamentally, it involves mapping 
the relationships between the digitized spatial-temporal data 
and semantic symbolic identity. We define this mapping 
function as SM. Many analysis approaches only unite the local 
content intrinsic features to perform content analysis. Here 
“local” and “intrinsic” refer to the fact that these features come 
from the information of the symbolic identity itself. By 
employing probabilistic reasoning, such analysis approaches, 
which we classify as local feature centered approaches, can be 
expressed as maximizing the a posteriori probability 

( ) arg max ( | )M L LH
SID S f P H f= =                        (1) 

where SID is the estimated true semantic symbolic identity, fL 
denotes the local intrinsic features and H is the hypothesis of 
the symbolic identity. For instance, in face detection, the 
hypothesis is face region and non-face region. Note that in this 
section, since we only discuss the situation within a given time 
slice, we simply drop the entire notation related to time. 

For instance, the local feature centered approach, which has 
been the dominant theme in computer vision for many years, 
exclusively uses object intrinsic features to represent the 
objects and to perform object detection/recognition tasks [2, 3, 
4, 5, 33]. 

 

                               

 
2) A Bayesian framework for integrating attention 

However, the symbolic identities physically exist in their 
environment and not in isolation. It is a well-known fact that 
focus of attention plays an important role in the human visual 
system to understand the visual scenes.  It can selectively 
process the data that it observes or gathers based on the context. 
The illusions in Figure 3 shows that the role of goal oriented 
attention in top-down visual system increases in importance 
and can become indispensable when the viewing conditions 
deteriorate or when ambiguity exists. In Figure 3 (courtesy of 
http://members.lycos.co.uk/brisray/optill/othis.htm), if we look 

at the entire image (process all the data in the image), we maybe 
confused whether there is a saxophone player or a woman’s 
face. However, if we just focus our attention on the dark region, 
we instantly identify that there is a saxophone player. 
Contrarily, if we focus our attention on the white region 
towards the right, it could convince us that it is a woman face. 
Similar ambiguity exists in the second illustration of Figure 3 as 
well.  

In some respects, in the visual scene, the object intrinsic 
features and their differences with respect to the global 
environment features make the object distinct from the 
environment. In the early vision of human brain, by making use 
of these features, goal driven focus of attention allows human 
visual perception to quickly become aware of objects of interest 
from large volumes of visual data in the visual environment 
[10, 12, 13, 34]. Recently, Jordan et al. in [32] have stated that 
contextual information plays an important role to make reliable 
inferences in situations where the measurements produce 
ambiguous interpretations. Torralba [31] mainly interpreted the 
scene information as context and developed contextual priors 
for object detection.  

Therefore, it is absolutely necessary to build in the attention 
phenomenon into the multimedia analysis process. Based on 
this, we extend the signal to symbol mapping function 
formulated in equation (1) by adding the attention A. Therefore, 
the multimedia analysis problem as shown in equation (1) 
essentially becomes maximizing the symbolic identity’s 
posterior probability P(H|fL,a). That is the probability of 
identity H, given the current intrinsic feature FL and the current 
attention a. According to this model, we will use a Bayesian 
reasoning framework to embed the attention and experiential 
environment E into the multimedia analysis tasks. Bayes' 
theorem can be used to factorize the probability P(H| fL,a). 

( | , )( | , ) ( | )
( | )
L

L
L

P f H aP H f a P H a
P f a

=                           (2)                    

The identity feature is directly affected mainly by the 
identity. There is very little influence coming from the 
attention.  Here we assume that the local feature fL is 
independent of the attention A. Therefore the equation (2) can 
be rewritten as: 

( | )( | , ) ( | )
( )
L

L
L

P f HP H f a P H a
P f

=                           (3) 

Therefore, the probability of the hypothesis H given local 
feature fL and the attention a is factorized into two components. 
The first component is the effect from the local feature fL on 
hypothesis H. The second component is the attention oriented 
priors on the hypothesis.  

It can also be further factorized. Therefore the above 
equation becomes, 

( | ) ( | ) ( )( | , )
( ) ( )

( | ) ( ) ( | )
( ) ( )

L
L

L

L

L

P f H P a H P HP H f a
P f P a

P f H P H P a H
P f P a

= ⋅

= ⋅
        (4)                           

Figure 3. Attention helps analysis. (a) A woman's face 
or a saxophone player. (b) A vase or head to head? 
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In the end, we have the final equation, 

( | , )( | , ) ( | )
( | )L L

P a H EP H f a P H f
P a E

= ⋅                            (5) 

where we treat attention in the experiential environment E. 
Therefore we add the dependence of E in the probability of the 
attention. The numerator of the second component in equation 
(5) is the attention aroused by both the symbolic identity and its 
experiential environment. The denominator of the second 
component is the attention aroused by the experiential 
environment only. By this denominator, the attention aroused 
by the environment is inhibited. Therefore, we can see that 
these arousing and inhibiting attentions can contribute to the 
multimedia analysis task. We call this attention goal-driven 
attention. From section III.A.1, our experiential environment E 
includes the goal. It means the goal about obtaining the 
symbolic identity SID has been considered in this framework. 
Therefore we denote 

( | , )( | )
( | )G

P a H EP a E
P a E

=                                                 (6) 

We can now rewrite equation (1) as. 

 

( , )

arg max ( | , )
( | , )arg max ( | )

( | )
arg max ( | ) ( | )

M L G

L G
H

L
H

L G
H

SID S f a

P H f a
P a H EP H f

P a E
P H f P a E

=

=

= ⋅

= ⋅

                   (7)                          

From the above equation, we can see that the final posterior 
probability has two components. The first component is the 
local posterior probability which can be inferred from the 
symbolic identity’s local features. In general, local feature 
centered approaches exclusively concentrate on obtaining this 
probability. The second component is the impact coming from 
the goal-driven attention. This part serves as an amplification 
factor on the identity centered approach of the first component.  

C.  Sampling based dynamical attention driven analysis 
From above analysis, we can see that the attention helps the 

multimedia analysis task. Given our task in this paper is 
identifying the most relevant data stream among the available 
streams at a given instant, based on the above discussion, we 
treat the information which makes the term P(a|E) (For the sake 
of simplicity, we will drop the subscript G later on. However, 
a(t) and A(t) will always denote goal oriented attention.) 
smaller as the irrelevant information. We discard it since we 
would not like to do the time-consuming processing (shown in 
equation (1)) on the irrelevant information which give a lower 
value for P(a|E). Contrarily, we treat the information which 
gives higher value on P(a|E) as the relevant information and 
perform detailed processing (to obtain  P(H|fL)) on it.  

There are two steps involved in performing this attention 
driven analysis. Firstly, we use samples and their weights to 
dynamically maintain the attention with respect to the 
experiential environment. Secondly, we propose the use of a 

re-sampling approach to obtain relevant information captured 
in the samples, which is employed to perform the multimedia 
analysis task based on the attention. The (visual or otherwise) 
attention in a scene can be represented by a multi-modal 
probability density function. Any assumptions about the form 
of this distribution would be limiting. However, not making 
any assumption about this distribution leads to intractability of 
computation. 

All the past work on extraction of visual attention uses the 
saliency map representation to denote the visual attention in an 
image [9, 10, 12, 13]. The saliency map is built by either linear 
combination of features or by training [28]. There are two 
weaknesses of these approaches. First, most of the methods 
perform bottom-up computation which does not take into 
account the past experiences of the system [10]. Secondly, the 
temporal variation of attention is not modeled. 

On the other hand, based on the Sequential Importance 
Sampling (SIS) algorithm [25, 29, 34], we use attention 
samples to represent the probability of attention P(a|E). For 
example, in the one dimensional case, the probability of 
attention P(a|E) is maintained by N attention samples 
AS(t)=[as1(t),…,asN(t)] as well as their weights )(tΠ  =[π1(t),…, 
πN(t)] as shown in Figure 4. It provides a flexible representation 
of the probability with minimal assumptions. The number of 
samples employed can be adjusted to achieve a balance 
between the accuracy of the approximation and the 
computation load. Moreover, it is easy to incorporate this 
representation within a dynamical system which can model the 
temporal continuity of attention if we consider each sample as a 
particle and each particle having its own dynamics.  

In this sampling representation, the location of samples and 
their associated weights are employed to represent the attention 
probability P(a|E). This means that for a particular region (say 
around a certain position x in Figure 4), the more samples fall 
into this region and the higher their weights are, the higher is 
the probability of attention in this region. Apparently, the 
probability distribution is not fully represented by the 
distribution of the samples. It also relies on the weights of the 
samples. However, since we use attention to get the relevant 
information, we would like the probability of the attention be 
fully represented by the distribution of the attention samples, 
not partially on their weights. That is the highly attended 
regions should have more samples and vice versa. A 
re-sampling method is therefore introduced to let only the 
distribution of samples reflect the distribution of attention. In 
addition, since the attention is inferred from experience (which 
will be discussed in section III.C.3) and experience itself 
encapsulates the goal and environment, our sampling based 
dynamical attention model systematically integrates the 
top-down and bottom-up approaches.  

The entire probabilistic notation used in this section is shown 
in Figure 5. In the remaining part of this section, we first 
provide the solution to the static case in section III.C.1. We 
then extend the solution to the dynamic case in section III.C.2. 
We treat attention as a Bayesian inference problem and develop 
an approach to obtain relevant information from the 
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approximated dynamical attention probability. In section 
III.C.3, 4 and 5, a sampling based approach is introduced to 
maintain the probability of the dynamic attention. Important 
concepts like environment sampling, sensor sampling, 
attention sampling, as well as attention saturation are 
described in section III.C. 3,  4,  and 5, respectively.    
1) Static attention driven analysis 

In our sampling technique, the second factor in the equation 
(7), called goal driven attention, is represented by samples and 
their associated weights. Those samples which have higher 
weights can survive as the samples in the next time slice. 
Therefore, samples represent the higher task driven attention 

data. That is they will contribute more in the final computation 
of equation (7). In contrast, other regions having less attention 
value have less impact on equation (7). Based on this, we 
perform the multimedia analysis task (indicated by P(H| fL )) 
only on these samples and treat other data as the irrelevant data 
which is to be discarded from the analysis point of view. 

The entire algorithm including the dynamics will be 
discussed in the next section. But, first let us consider the 
simple static case. Here we assume that we know P(a|E) and we 
are able to simulate N i.i.d. (independently and identically 
distributed) random samples {a1, a2, a3 ,…, aN} according to 
P(a|E). For instance, in a spatial case, they are a set of spatial 
coordinates. Their associated weights {w1, w2, w3 ,…, wN } can 
be obtained by wi = P(a|E). So the weight wi is directly 
proportional to attention probability P(a|E) such that the sum of 
the N weights is equal to the total attention at that time. 

 
 
 
 
 
 
 
 
 
 

 
In this case, the distribution of the samples actually reflects 

the distribution of the attention probability. Differing from the 
classical perfect Monte Carlo sampling [25] which uses 
samples to approximate the distribution and consequently get 
its expectation, we use the sampling method to maintain our 

attention probability and consequently collect relevant 
information while discarding irrelevant information. By 
choosing a proper number of samples, the samples will only 
exist in the higher attended regions as shown in Figure 6(b) 
since the high attention data is given by the distribution P(a|E). 
These samples intuitively represent the relevant information to 
be processed. Note that selection of the number of random 
samples N depends on current overall attention (measured by 
the attention saturation which will be introduced later) as well 
as the trade off between the computation load and the 
representation accuracy.  

When we know the probability P(a|E), the algorithm for this 
Static Sampling Based Attention Driven Analysis (Static 
SBADA) approach is shown in Figure 7. For the sake of 
simplicity, in this illustration, we consider the two-class 

Figure 7. The Static SBADA algorithm. Figure 5. The probability distributions. 

position x

Weighted 
sample

N Samples

Attention

 
Figure 4. The multi-modal attention probability can be represented by N 
samples AS(t)=[as1(t),…,asN(t)] and their weights )(tΠ  =[π1(t),…, πN(t)]. 
 

The algorithm Static_SBADA (P(a|E)) 
Results= {} 
begin  
1. Draw N number of random i.i.d. samples {a1, a2, a3 

,…, aN}  with respect to P(a|E). The associated 
weights {w1, w2, w3 ,…, wN } are calculated by the 
equation wi = P(a|E). 

2. for i = 1 to N do /* for each random sample*/ 
             begin  
3.          if   wi >wT   then do  
                     begin     
4.                    F L     feature extraction from the location of 

ai in the multimedia data. 
5.                  Compute P(H=1|fL) 
6.                  Calculate P(H=1|fL, a)= P(H=1|fL).wi 
7.                  SID = 1? 0: P(H=1|fL, a)>0.5 
8.     Results=Results + {ai, SID}           
                     end 
            end       
end 
output(Results) 

( ( ) | ( ))P A t E t :  The a posteriori probability of attention 
given the contextual information up to now. 

( ( ) | ( ))P a t E t :  The a posteriori probability of attention at 
time t given the contextual information up to 
now. 

( ( ) | ( ))P e t a t :  The likelihood of the attention at time t with 
respect to the current contextual information. 

( ( ) | ( 1))P a t a t − :The dynamics of the evolution of attention. 

P(AG|E)

2. Weighted samples

1. Important Sampling from g(a(t)|a(t-1)

(a)

3. Re-sampling

(b)

(c)

Sensor Samples

Attention Samples

Probability

 
Figure 6. A sampling based dynamical attention model. (a) Attention (b)
Samples as relevant information (static case) (c) Samples as relevant 
information (dynamic case).  
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classification problem and assume we have two hypothesis 
H=1 and H=0 (e.g. face and non-face) and we know the 
probability P(a|E) for H=1(Note that it can be easily extended 
for the multiple-class classification problems).  

It is clear that our method allows performing of the actual 
multimedia analysis task on the N samples. For example, if the 
task is face detection, it can be performed on the regions of the 
thresholded samples (by the threshold wT in Figure 7). But 
when dealing with spatio-temporal multimedia data, the focus 
of attention dynamically varies not only along the spatial axes 
but also along the temporal axis. A dynamic attention model 
needs to be investigated in order to achieve effective and 
efficient spatio-temporal data analysis.  

a(1)

e(1)

a(2)

e(2)

a(t)

e(t)…

…

 
2) Dynamical attention driven analysis 

In this section, we aim to infer the current attention a(t) from 
the contextual information E(t) until the time t, i.e. calculate the  
a posteriori probability P(a(t)|E(t)).  

a) Dynamical evolution of attention  
The attention is inferred from the observed experiences 

coming from the environment. That is, we try to estimate the 
probability density of the attention (which is the state variable 
of the system) at time t using P(a(t)|E(t)). Note that E(t) 
consists of all the observed experiences until time t which 
means E(t)={e(1),…,e(t)}, and a(t) is the “attention” in the 
scene. Attention has temporal continuity which can practically 
be modeled by a first-order Markov process state-space model 
[29] as shown in Figure 8. The value of a(t)  may not be 
observed though the experience e(t), which influences the 
attention a(t), is observable. In this model, the new state 
depends only on the immediately preceding state, independent 
of the earlier history. This still allows quite general dynamics, 
including stochastic difference equations of arbitrary order. 
Therefore, 

))1(|)(())0(),...,1(|)(( −=− tataPatataP                          (8) 
Our target, the posterior probability P(a(t)|E(t)), can be 

factorized by using the Bayes’  rule. The formalization is 
shown in equation (9). 

                      (9) 
 
 
 
 
 
 

 
 
 
 
 

Since we are interested in the attention a(t), k becomes a 
normalization factor which does not depend on the attention. 

The prior probability P(a(t)|E(t-1))  in the equation (9) can 
be further formulated as follows (a detailed explanation can be 
found in [18]). 

( 1)

( 1)

( ( ) | ( 1))

( ( ) | ( 1), ( 1)) ( ( 1) | ( 1)) ( 1)

( ( ) | ( 1)) ( ( 1) | ( 1)) ( 1)
a t

a t

P a t E t

P a t a t E t P a t E t da t

P a t a t P a t E t da t
−

−

−

= − − − − −

= − − − −

∫

∫

      (10) 

According to equation (10),  P(a(t)|E(t-1))  is dependent on 
the probability P(a(t)|a(t-1)) and P(a(t-1)|E(t-1)). 

From the above  two equations,  we know that the posterior 
density P(a(t)|E(t)) can be iteratively obtained by knowing the 
observation (likelihood) P(e(t)|a(t)), the temporal continuity 
(dynamics) P(a(t)|a(t-1)) and the previous state density 
P(a(t-1)|E(t-1)) . This procedure is succinctly captured in 
Figure 9. Initially we assume that the P(a(1)|E(1)) is zero.  

P(a(t)|E(t))P(a(t)|E(t-1))P(a(t-1)|E(t-1))

Dynamics Observations 
from 
experiences

P(a(t)|a(t-1)) P(e(t)|a(t))

E(t)

 
 
 
During each iteration, the three probabilities for obtaining 

the posterior density P(a(t)|E(t)) are calculated as follows: 
P(a(t)|a(t-1)): Since we have assumed a Markov state-space 

model, the dynamics of attention evolution is described by a 
stochastic differential equation where the deterministic part 
models the system knowledge and the stochastic part models 
the uncertainties. Thus the dynamics P(a(t)|a(t-1)) can be 
obtained by: 

/ 2 1

( ( ) | ( 1))
1(2 ) | | exp( [ ( ) ( 1)]' [ ( ) ( 1)])
2

k

P a t a t
Q a t a t Q a t a tπ − −

−

= − − Φ − − Φ −
    (11) 

where Q is the covariance matrix of the random noise and the 
term Φ  is basically the deterministic part which is the state 
transition matrix. This formulation is same as that of the 
Kalman filter. The problem of parameter estimation has been 
explored in [24]. 

Figure 8. State-space model for attention. 

( ( ) | ( ))
( ( ) | ( ), ( 1))
( ( ) | ( ), ( 1)) ( ( ) | ( 1))

( ( ) | ( 1))
( ( ) | ( )) ( ( ) | ( 1))

( ( ) | ( 1))

P a t E t
P a t e t E t
P e t a t E t P a t E t

P E t E t
P e t a t P a t E t

P E t E t

= −
− −

=
−

−
=

−

Figure 9. Iteration of calculating attention state density 
P(a(t)|E(t))  in the state-space model. By knowing the previous 
state density   P(a(t-1)|E(t-1) and current experience e(t) , 
P(a(t)|E(t)) can be approximated by a sampling method in the 
form of samples. 

( )

where ( ( ( ) | ( ), ( 1)) ( ( ) | ( )))
( ( ) | ( )) ( ( ) | ( 1))

1where
( ( ) | ( 1))

P e t a t E t P e t a t
kP e t a t P a t E t

k
P E t E t

− =
= −

=
−



MM000690 Experiential Sampling in Multimedia Systems  9

P(e(t)|a(t)): As mentioned before, since we use the current 
contextual information e(t) to infer the goal oriented attention 
a(t), we select the contextual information regarding the 
attention. In another words, the contextual information can be 
considered as the measurements of the attention coming from 
the experiential environment. If we assume that the context 
measurement is independent on each other, we then can define 
the likelihood of attention in each position to follow the 
Gaussian distribution. 

,

1,

( ( ) | ( )) ( ( , , ) | ( ))
x X y Y

x y y

P e t a t P e x y t a t
= =

= =

= ∏       (12) 

2

( )( )( ( , , ) | ( ) )1 [ , ] ' exp{ }a b
a b

x x y yP e x y t a t x y L
δ

− −
= = = −  

where 2δ  is the constant which is used to control the 
randomness level and L is the normalizing constant.  
When the situation that the measurement ( , , )e x y t is not 
binary, the above equation can be modified as follows: 

2

( )( )( ( , , ) | ( ) )1 [ , ]' ( , , ) exp{ }a b
a b

x x y yP e x y t a t x y L e x y t
δ

− −
= = = ⋅ ⋅ −  

P(a(t-1)|E(t-1)):  This is the posterior probability of attention 
during time t-1. 

b) Sequential simulation-based solutions 
Instead of using Kalman filters, the sequential simulation 

method (sequential importance sampling (SIS)) [25, 29, 34] can 
be invoked to generate a numerical solution for dynamically 
approximating the density ( ( ))a tπ =  P(a(t)|E(t)). The 
approach has an advantage in terms of the capacity for 
generalization.  

Let S(t-1)={s1(t-1), s2(t-1), …, sN(t-1)} denote N random 
draws that are properly weighted by the set of weights W(t-1) 
={w1(t-1), w2(t-1),…, wN(t-1)} with respect to ( ( 1))a tπ − . 

At time t, firstly, a set of samples S(t) is drawn from a 
so-called importance function g(a(t)|a(t-1))[25, 29, 34] (as 
shown in Figure6 (c).1).The importance function is defined 
depending on the application. Secondly, their associated 
weights are obtained by: 

( ( ) | ( )) ( ( ) | ( 1))( ) ( 1)
( ( ) | ( 1))i i

P e t a t P a t a tw t w t
g a t a t

−
= −

−
                (13) 

where i=1,…,N and the definitions of P(e(t)|a(t) and 
P(a(t)|a(t-1)) have been provided in the previous section. The 
discussion of g(a(t)|a(t-1)) will be introduced later. This 
weighting is shown in Figure 6 (c) step 2. Note that in the initial 
step, w(t)= P(e(t)|a(t)). 

It has been shown that [34] the above obtained set of random 
draws and their weights {S(t),W(t)} is properly weighted with 
respect to ( ( ))a tπ . It means that the following equation is true: 

( )
lim ( ( ))

n

j j
j

nn

j
j

h s w
h a

w
Eπ→∞

=
∑

∑

                                                    (14) 

where h is any integrable function, Eπ
 is the expectation, 

and the notation of time t has been dropped for the sake of 
simplicity of the expression. 

The fundamental idea of the SIS algorithm is to use both a set 
of discrete samples obtained by the importance function 
g(a(t)|a(t-1)) and the weights obtained by equation (13)  to 
approximate the a posteriori density. In another words, the 

distribution information is embedded both in the samples S(t) 
and the weights W(t). It is suitable for the applications which 
only require to get the expectation E(h(a(t)) like in tracking 
problems. However, in our application, our final aim is to 
obtain the relevant data on which the analysis task can be 
performed. We need the samples S(t) (i.e. location of the 

Figure 11. The Re-sampling algorithm. 

The Algorithm resampling(S(t),W(t), N’) 
/* N’ denotes number of re-sampled samples*/ 
begin  

1. Normalize W(t)  so that ∑
=

=
N

n
n tw

1
1)(  

2. Interpret each weight as a probability, use 
)()()( 1 twtctc iii += −  in order to obtain the 

cumulative probability distribution: 
 C(t) ={c1(t),c2(t),… ,cN(t)}   

3. for i = 1 to  N’ do 
              begin 
4.           Find by binary subdivision, the smallest j for 

which cj(t)>=i/ N’  
5.           Create the new samples s’i(t): 

        s’i(t)= sj(t)+ r   ( r is small random perturbation 
value ) 

       w’i(t)= wj(t) 
             end 
6.     S(t)’ = {a1’, a2’, a3’,…, aN’} , W’(t) =  {w1’ , w2’, w3’ 

,…, wN’} 
output(S’(t),W’(t) ) 
end

Figure 10. The Dynamic SBADA algorithm. 

The Algorithm Dynamic_SBADA(S(t-1), W(t-1) ) 
Results={} 
begin 
1. {S(t), W(t)}  {S(t-1), W(t-1)} by employing the SIS 

algorithm as per equation (13) 
2. {S(t), W(t)}= resampling(S(t), W(t))  
3.    for i = 1 to N do /* for each sample in {S(t), W(t)}*/ 
            begin  
4.           F L     feature extraction from ai in the multimedia 

data. 
5.         Compute P(H=1|fL) 
6.         Calculate P(H=1|fL, a)= P(H=1|fL).wi 
7.         SID = 1? 0: P(H=1|fL, a)>0.5 
8.   results=Results + {si, SID}           
             end 
         end     
output(Results, {S(t), W(t)}) 
end 
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samples) themselves to fully cover the entire information about 
the distribution of the  attention ( ( ))a tπ . To this end, after the 
SIS algorithm, a re-sampling step is required to relocate the 
samples in the higher attended regions as shown in Figure 6(c) 
step 3.  

Based on the above discussion, after adding the SIS 
algorithm to dynamically obtain the distribution of P(a(t)|E(t)), 
the Dynamic Sampling based Attention Driven Analysis 
(Dynamic SBADA) algorithm is formulated as shown in Figure 
10. The re-sampling algorithm is listed in Figure 11. This 
algorithm treats the weights as contiguous intervals of (0,1). 
These intervals are randomly ordered and it is sampled such 
that the weight of chosen samples in every interval is the same. 
Note that adding random perturbation value r in the step 5 is to 
prevent the creation of identical samples. 

Next, we will discuss how to update the samples from the 
current experiential environment according to equation (13).  
3) Environment sampling 

Since we obtain the attention value from the experiential 
environments, samples used in our approach have two tasks: 
sense the environment and maintain the attention. Therefore, 
we define samples S(t) to include both sensor samples SS(t) and 
attention samples AS(t): 
S(t)={SS(t), AS(t)}                                                                (15) 

The samples S(t) comprises of sensor samples SS(t) and the 
attention samples AS(t). The sensor samples are basically 
uniform random samples at any time t which constantly sense 
the environment. The attention samples are the dynamically 
changing samples which essentially represent the data of 
interest at time t. 

 

 

 
Since both the types of samples have different uses, we 

define different importance functions (g(a(t)|a(t-1))) for them. 
The sensor samples are used to constantly sense the 
environment. Therefore, we define a uniform importance 
function gS(a(t)) = uniform sampling for sensor samples. It 
allows the sensor samples to quickly notice any changes in the 
environments. Thus, sensor samples constantly scan the 
environment, looking out for sudden changes in the attention. 
For example, in the video face detection scenario, the sensor 
samples can alert the fact that a new face has entered the scene 

which cannot be inferred merely by the dynamical evolution of 
the attention samples of the previous time instant. So sensor 
samples perform the task of current context estimation from the 
extracted clues n

tc , n=1,…,N. The attention samples are the 
dynamically changing samples which essentially represent the 
data of interest at time t. The attention samples are therefore 
derived dynamically and adaptively at each time instance from 
the sensor samples in our framework through sensor fusion of 
the current environmental context and the assimilation of the 
past experience. Once we have the attention samples, the 
multimedia analysis task at hand can work only with these 
samples instead of the entire multimedia data. These focused 
attended samples are the most relevant data for that purpose. 
Figure. 12 illustrates our framework for doing sensor fusion 
within the experiential environment. It should be understood 
that our data assimilation process is sampling based. Not all 
data need to be processed. Our aim now is to obtain these 
sensor samples to infer the attention. They can be sensed by 
multiple cues from the environment which can subsequently be 
fused to create e(t). 

The cues for obtaining experiences in the visual 
environments can be classified as temporal cues and spatial 
cues. They can be visual features extracted from the visual data 
or information from its accompanying data (speech, sound, text 
etc.). Basically, sensors can sense these cues in order to infer 
the state of the environment. Based on the above, the 
experiential sampling technique can also be defined as follows: 

Experiential Sampling: The current environment is first 
sensed by uniform random sensor samples and based on 
experiences so far, compute the attention samples to discard 
the irrelevant data. Higher attended samples will be given more 
weight and temporally, attention is controlled by the total 
number of attention samples.  
4) Sensor Sampling 

Studies on human visual system show that the role of 
experience used in top-down visual perception increases in 
importance and can become indispensable when the viewing 
conditions deteriorate or when a fast response is desired. In 
addition, humans get information about the objects of interest 
from different sources of different modalities [7]. Therefore, 
when we analyze one particular data type (say spatio-temporal 
visual data) in multimedia, we cannot constrain our analysis to 
this data type only. Sensing other accompanying data like 
audio, speech, music, and text can help us find out where is the 
important data. Therefore, it is imperative to develop a 
sampling framework which can sense and fuse all 
environmental context data for the purpose of multimedia 
analysis. 

In our framework, SS(t) is a set of NS(t) sensor samples at 
time t which estimates the state of the multimedia environment. 
As mentioned above, these sensor samples are randomly and 
uniformly generated in order to sense the changes in the 
environments. Therefore, we define a uniform importance 
function gS(a(t)) = uniform sampling for them. It makes sensor 
samples to quickly spot any changes in the environments.  

Figure 12.  The framework for the sensing of environment. 
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 Since we do not change the number of the sensor samples 
with time, we will drop the time parameter and NS denotes the 
number of sensor samples at any point in time. SS(t) is then 
defined as: 

{ })(;)()( ttsstSS SΠ=                                                   (16) 
where ss(t)depends on the type of multimedia data. For spatial 
data, ({ ) ( ) ( )}

SS NN yxyxyxtss ,,,,,,)( 2211 Λ=  at time t, this is the set of 

spatial coordinates of the sensor samples. These coordinates are 
generated randomly and uniformly at every time instance.  

)(tSΠ  is the associated weight or the importance of each sample 
which is represented as { })(,),(),()( 21 tttt S

N
SSS

S
πππ Κ=Π . Now 

each )(tS
iπ is obtained by performing sensor fusion of the q cues 

C(t) available from the multimedia data (like color, motion, 
texture etc.). Thus, the set of cues is given by C(t)={c_sp1(t), 
c_sp2(t),…, c_spq(t)} where each individual cue c_spi(t) is 
given by { }1 1 1_ ( ) ( , , _ ), , ( , , _ )S S SN N N

i i i i i i ic sp t x y w sp x y w sp= K  Note 

that the coordinates x and y refer to the spatial coordinates of 
the sensor samples and w_spi  refers to the weight of that 
particular cue at that sample coordinate. Now it can be easily 
seen that  

1
( ) _

q
S i
i j j

j
t w spπ α

=

= ⋅∑                                 (17) 

where jα  is the importance of the jth cue. So we basically 

employ the linear combination as the sensor fusion strategy. 
But this can be replaced by a more sophisticated sensor fusion 
strategy, which has been investigated in our previous research 
in [22, 23], if the application so requires. Also, note that if the 
cue is not spatial, then instead of the spatial coordinates, an 
appropriate reference (e.g. time) can be used for that cue. 
Usually, spatial cues are obtained from visual features. This can 
be denoted as: 

1_ ( ( , ),..., ( , ), )j j t jw sp VF I x y I x y m=                        (18) 

where VFj is the feature extraction function of the jth  cue and mj 
is its function parameters. It(x,y) denotes the image intensity at 
time t. 

For instance, in a video, the motion cue is a spatial cue since 
it varies according to its spatial position. It can be simply 
defined as 

1_ ( , ) ( , ) ( , )t tw mot x y I x y I x y−= −                             (19) 

Here the feature extraction function is the absolute 
difference of corresponding pixel intensity values of two 
neighboring frames. However, there is no adjustable parameter 
in this function.   
5) Attention Sampling 

We know that the attention changes dynamically. In a 
manner different from that of the sensor samples, which use 
uniform random sampling as the importance function, we use 
another probability distribution as an importance function 
gA(a(t)|a(t-1))  to create the attention samples: 

( ( ) | ( 1)) ( ( ) | ( 1))Ag a t a t P a t a t− = −                            (20) 

where P(a(t)|a(t-1)) is the dynamics of attention which can be 
obtained by equation (11). Consequently, the equation to 
compute the weights (in equation (13)) becomes: 

( ) ( 1) ( ( ) | ( ))i iw t w t P e t a t= −                                        (21) 
The notation for attention sampling is introduced as follows: 
We represent the dynamically varying NA(t)  number of  

attention samples AS(t) using: 
{ })(;)()( ttastAS AΠ=                                                    (22) 

where as(t) again depends on the type of multimedia data. 
For spatial data, ({ ) ( ) ( )})()(2211 ,,,,,,)( tNtN AA

yxyxyxtas Λ= , is the 

set of spatial coordinates of the attention samples.  )(tAΠ  is the 
associated weight or the importance of each sample which is 
represented as { })(,),(),()( )(21 tttt A

tN
AAA

A
πππ Κ=Π . Again, 

each of the )(tA
iπ value is obtained by performing sensor fusion 

of the q cues C(t) available from the multimedia data. 
However, there still have one question: how to determine the 

number of attention samples NA(t) which varies with time? 
NA(t) intuitively models the attention saturation which is 
defined in the next section. 
6) Attention Saturation 

The temporal attribute of the spatio-temporal data requires 
the multimedia system to possess the ability of varying the 
amount of attention at different times. We introduce the 
concept of attention saturation to measure the attention in a 
given time slice. For instance, the attention saturation of motion 
in Figure 13 (a) is higher than that in Fig. 13 (d).  The attention 
saturation in this case can be calculated as the sum of attention 
in the spatial extent. Its value ranges from 0 (lowest, no 
attention) to 1 (highest, full attention). We define the attention 
saturation as ASat(t): 

( ) ( ( ( ) | ( )))N
Spatial

ASat t f P a t E t= ∫                             (23) 

where fN  is the mapping function which is used to normalize 
the value into range [0,1]. fN   is defined as the squashing 
function [1] shown in the equation (24)(the relationship of 
input and output is shown in Fig.14 ). 

1 e x p ( )( )
1 e x p ( )N

xf x
x

λ
λ

− − ⋅
=

+ − ⋅
                                          (24) 

where λ  is a scaling factor. As shown in Fig. 14, the benefit 
of employing equation (24) is that it can map a very large input 
domain to the interval [0, 1]. We select λ  so that the output 
scatters in the interval [0, 1] as much as possible.  

The current attention is essentially captured by the sensor 
samples. The sensor samples are updated by each of the cues. 
Of course, some cues may only have temporal attributes and no 
spatial coordinate (e.g. audio volume). Such cues can be 
defined as }_ ( ) { _j jc tp t w tp= , where _ jw tp  is the weight of the 

jth cue. Therefore, the discrete form of the equation (23) is 
given below: 

' [ , ] 1 1

( )
1 1( ( ( ') _ ( ') ) )

SN p
S

N i j j
t t n t i jS

A S a t t

f t w t p t
n N

π β
= − = =

= +∑ ∑ ∑
       (25) 
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where jβ  is the importance of the jth temporal cue and p is the 

number of the temporal cues. Thus, the attention saturation of 
the current state is captured by the average weight of all the 
sensor samples and temporal cues. The value n is the temporal 
neighborhood. The aim of averaging n number of recent 
temporal attention epochs is to suppress noise and to maintain 
temporal continuity. In our audio-visual face detection, we set 

0.8jβ = for the sound volume cue and n=3 for the web-camera 

video stream.  
 

        
(a) frame 37                (b)frame 37               

    
                     (c)frame 479              (d)frame 479 

 
 
Note that for sensor samples, the number of samples was 

fixed a priori at NS in equation (25) and these samples are 
generated uniformly and randomly at every time instant. But 
the number of attention samples varies with time. For instance, 
in the traffic monitoring application shown in Figure 13, Figure 
13 (a) has more motion activity and hence needs more attention 
samples to represent this motion attention. As shown in Figure 
13 (b), 587 attention samples (marked as yellow points) are 
required to represent this motion attention using our method. In 
contrast, Figure 13 (c) has less motion and needs fewer 
attention samples. As shown in Figure 13 (d), no attention 
samples are needed. However, all previous image based 
attention models [9, 10, 12, 13] lack the ability to model this 
adaptive behavior. 

 

Nf

x

1

0

 

 

Thus, we can utilize attention saturation to measure the 
attention at a given time instance (the temporal attention) as 
shown in the experiment in Figure 29. 

We are now ready to determine the number of attention 
samples at time t using: 

)()( tASatNtN MaxA =                                                        (26) 
where NMax is the maximum number of samples the system 

can handle.  
7) Past Experiences 

We have introduced how the attention guides the analysis 
task. Contrastingly, in this section, we will discuss how the 
local analysis task guides the attention in the form of the past 
experiences. This is also an important concept in Neisser’s 
Perceptual Cycle, i.e. how the perceiver use the results of 
analysis to modify the current schema (current environment 
model).  

Our attention model is employed to obtain attention from the 
experiential environment. The current environment model in 
our case is the attention model. As formulated in section 
III.C.4, the attention model is parameterized by each cue’s 
feature extraction function VFj, its function parameter mj  and 
its importance 

jα (see equation (17) and (18)). The data to be 

dealt with is dynamic with temporal variations. Therefore, the 
attention model itself should change dynamically. It is 
non-trivial to accurately model the dynamical evolution of the 
attention model itself due to these variations. Thus we want to 
simultaneously model the dynamically varying attention as 
well as the evolving attention model (from which the attention 
is derived). We add the time variable t to our formulation and 
define the parameters of the attention model for q feature cues 
at time t as APara(t)={ 

1α ,…, 
qα . m1,…, mq }.  

Attention
Experiential 
environment

Local analysis

Attention 
model

Analysis results

Relevant 
information

Output

Past experience

Time t-1

Time t

The local analysis task, though time-consuming, provides us 
the most reliable measurements about the multimedia data. Like 
human beings, the results of the analysis can be stored as the 
accumulated knowledge. This knowledge can be utilized as the 
past experience when a future data assimilation process starts. 
In our framework, we want those past experiences to help in 
adjusting (adapting) the attention model and let the analysis 
task guide that attention model evolution. Figure 15 describes 
this process graphically. 

Figure 15.  Analysis guides attention model evolution by past 
experiences. 

Figure 13. Temporal motion attention.(a) more motion 
activity (b) 567 attention samples are employed to represent 
this motion attention.(c) need less attention at this time(d) No 
attention samples are needed at this time. The number of 
attention samples is calculated by using equation (8). 

Figure 14. Relationship between the temporal experiences and 
the probability of the temporal attention (Attention Saturation). 
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Suppose we are doing multimedia analysis by mapping low 
level features to a semantic symbolic identity, named Tar 
(target) in the spatio-temporal data. The attention represented 
by the attention samples should be focused on regions which 
have concentrated relevant information about the identity Tar. 
Due to the reliability of the local analysis task, we can actually 
employ the local analysis task to judge the accuracy of the 
current attention samples. At time t, after performing the local 
analysis task on the attention samples AS(t), we divide the 
attention samples AS(t) into two sets: AS+(t) containing  
reliable attention samples, and  AS-(t) containing unreliable 
attention samples by using the following equations: 

( ) { ( ) : ( , ( )) }M LAS t AS t S f AS t Tar+ = =                   (28) 

( ) { ( ) : ( , ( )) }M LAS t AS t S f AS t Tar− = ≠   
where SM  is the feature to semantics mapping function defined 
in section III.B.  

By employing equation (28), we treat the attention samples 
which are finally proven to have the relevant information about 
the target Tar as the reliable attention samples and the others 
are not reliable. We call these classified attention samples 
AS(t)={AS+(t),AS-(t)} the past experience. Intuitively, the past 
experience can be used as labeled training samples to learn or 
update the attention model parameters AP(t+1) for next time 
slice. This procedure is defined as follows: 

( 1) ( ( ), ( ))APara t L AS t AS t+ −+ =                           (29) 
where L denotes the inductive learning method to be used to 

obtain the parameters of the attention model.  

D. The Experiential Sampling Technique 
We are now ready to fully describe the experiential sampling 

technique based on the background developed so far. Now we 
assume we are dealing with spatio-temporal data denoted by 
stream(t). Our experiential sampling technique (a two-class 
classification problem is considered) is summarized as shown 
in Figure 16. 

From the algorithm, we can see that the analysis task itself 
collects relevant data (step 4-7) in the form of attention samples 
and performs the analysis task on these attention samples (step 
11-14). In addition, the local analysis can classify the attention 
samples and these gained past experiences can re-train the 
attention model to make it more adaptive to the environments 
(step 14-16). 

E. Evaluation 
We use ideas from foraging theory to evaluate the efficacy of 

the experiential sampling technique. When people explore data 
and assimilate information, people try to maximize their rate of 
gaining valuable information over cost. In the information 
foraging theory [35], it has been formulated as maximizing the 
rate of gain of valuable information per unit cost R: 

B W

GR
T T

=
+

                                                  (30) 

where G is the total net amount of valuable information 
gained (the attended samples), TB  is the total amount of time 

spent between information patches (time to sense the 
environment using sensor samples and compute the context) 
and TW is the time within the information patches (time to 
obtain the attention samples and to perform analysis time on 
them). Therefore a “good” method should have the ability to 
maximize R at any given time. The intuitive idea is that the 
amount of computation required for determining attention 
should be small enough so that the savings obtaining by doing 
the task only on the attended samples clearly dominates this 
factor. Thus, we can obtain an overall gain. 

 Figure 16.  The Experiential Sampling Technique. 

The Algorithm ExperientialSampling(stream(t), 
AS(t-1),NA(t-1),t) 

begin 
    /*  Experiential environment sensing */ 
1. Initialization: Ns ,  NMax , and   if (t == 0), NA(t) = 0. 
2. AS(t)  AS(t-1)  by equation (11)  
3. SS(t)  create_ramdom_sampling().  /*create SSs*/ 
4. for SS(t)(i = 1 to Ns ), AS(t)( k= 1 to NA(t)) do   /* weight 

updating*/  
 begin 
                for j = 1 to q  do /* each multimedia cue*/   
                  begin 

w_spi
j   equation (18) with VFj and mj /*cues  for 

SS(t) sensor samples*/ 
w_spk

j   equation (18) with VFj  and mj /*cues  for 
AS(t) attention samples*/ 

           end 
( )S

i tπ   by equation (17) with w_spi
j, , 1,...,j j qα =   

/*weight for SS(t) sensor samples*/ 
( )A

k tπ   by equation (17) with w_spk
j, , 1,...,j j qα =   

/*weight for AS(t) attention samples*/ 
 end 
5.  Calculate ( )ASat t  by equation (25)  /*Overall Attention 

saturation*/ 
6.  NA(t)   equation (26)  /*current number of attention samples 

*/ 
     /* Building of  the attention model and attention driven 

analysis */ 
7.  AS’(t)  = resampling((ss(t),as(t)), ( ( )S tΠ , ( )A tΠ ),NA(t))  /* 

Create current attention samples, see Fig. 11*/ 
8.  AS(t) = AS’(t) 
9.  if NA (t) > 0 then do   /*Attention driven analysis*/ 
         begin 

 10.      for i = 1 to NA (t)  do  /*for each attention sample in AS(t) */ 
                       begin  
11.                  F L     feature_extraction(stream(t), ( )as t ) at 

location of as(t) in stream(t). 
12.                Compute P(H=1|fL) 
13.                 Calculate P(H=1|fL, a)= P(H=1|fL) ( )A

i tπ×  

14.                  SID = 1? 0: P(H=1|fL, a)>0.5 
15.                  Classify ( )AS t into { ( )AS t+ , ( )AS t− } by 

equation (28) /*the past experience*/  
16.                  update , , 1,...,j jVF j qα =  by equation (29) 

/*adaptation shaped by experience*/ 
                       end 
     end  /* end of “if NA (t) > 0”  */ 
output(results from step 15, AS(t-1), NA(t-1)) 
end. 
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Our attention samples are used to collect the relevant 

information. If the attention model is accurate, the attention 
saturation ASat(t) intuitively measures the relevant information 
regarding the goal in a given time slice. We can define G = 
ASat(t) (when ASat(t) ≠  0). The cost of obtaining the sensor 
samples CS can be treated as TB   while the cost of obtaining 
attention samples CA and performing local analysis (the 
equation (1)) on attention samples 

LFC  can be treated as TW. 

Based on the above, the rate of gain of valuable information 
per unit cost of our approach RE is equal to: 

( )( )
( )

L

E
A A F S S

ASat tR t
N C C N C

=
+ +

                    (31) 

Since the cost of obtaining both sensor samples CS   and 
attention samples CA is much smaller than the cost of 
performing local analysis

LFC , the second part of the 

denominator in the equation (NSCS as well as CA ) can be 
removed. Consequently, by replacing NA from equation (26), 
equation (30) becomes: 

( ) 1( )
( )

L L

E
Max F Max F

ASat tR t
N ASat t C N C

≈ =                         (32) 

From equation (32), we can see our algorithm is adaptive to 
the experiential environment and keeps maximizing the rate of 
gaining valuable information over cost. When there is more 
relevant information (increasing the attention saturation in the 
numerator), the number of attention samples will be larger and 
consequently the cost increases (as the increase in the 
denominator) and vice versa. This keeps the valuable 
information gain per unit cost near the maximal value. 

In contrast, the rate of gain of valuable information per unit 
cost for the local feature centered approach 

LFR  (if we only use 

equation (1) for content analysis) is equal to: 
( )( )

L

L

F
F

ASat tR t
MC

=                                                         (33) 

where M is number of times that the local analysis needs to 
be performed. M is much bigger than the maximum number of 
attention samples NMax. Especially when there is less relevant 
information, there still will be a constant local analysis cost. 
Therefore, it is not efficient compared to our approach.  

 

IV. HANDLING MULTIPLE DATA STREAMS  

A. Optimal Selection of Data Streams 
We have seen in the earlier section that for a single media 

stream case (which could have multiple local feature streams), 
the goal oriented attention driven analysis can be succinctly 
described by: 

( , ) arg max ( | , )M L G L GH
SID S f a P H f a= =  

arg max ( | ) ( | )L GH
SID P H f P a E∴ = ⋅  

We will now extend this scenario to the real multimedia case 
when multiple correlated media streams are considered. Our 
work adopts an approach similar to that of [38] and generalizes 
their ideas for multimedia systems. As described earlier, there 
are n media data streams S1, S2 …Sn. These data streams 
consist of K types of data such as image sequence, audio 
stream, motion detector, annotations, symbolic streams, and 
any other type that may be relevant. We assume that these 
streams are synchronized. Further, we assume that metadata 
MD1, MD2, …MDn for each stream is available from the 
original sources that helps in interpreting the data stream in the 
context of the environment. And since in most cases feature 
detectors will be applied to each data stream in the context of 
the corresponding metadata for each data stream, we can 
represent the multimedia data as a (possibly) correlated features 

stream set F { }jf= , where fj is the jth feature stream where 

nNNj ≥≤≤ such that 1  and there is at least one feature 
stream derived from every multimedia data stream. So, now our 
equation (7) can be modified to include the multiple correlated 
multimedia data streams scenario to: 

(F, ) arg max ( | F, )M G GH
SID f a P H a= =  

arg max ( | F) ( | )G
H

SID P H P a E∴ = ⋅                       (34) 

Clearly, there is some amount of noise in every data stream fj 
and also there is a tremendous amount of redundancy among 
them. The questions raised earlier in Section 3 boil down to the 
question of selection of appropriate features stream set for the 
goal to be achieved. More formally, let us assume that a set of 

F feature streams allows the system to achieve goal G. We also 
assume that each feature stream contains only partial 
information to achieve the goal and there is redundancy 
(overlap) of information among the various feature streams. Let 
us also assume that there is a cost function associated with the 

use of each subset of F . Our problem now can be defined as: 
(a) to identify a lowest cost subset of feature streams 

F⊆Φ∗ such that the goal G can be accomplished. 
(b) to develop an optimal procedure for determining this 

subset ∗Φ . 

Assume that when the full set of data streams F  is available, 
we have: 

NjfHGP j ≤≤> 1,),|(
F

α                                (35) 

where ),|(
F jfHGP denotes the probability that the goal of 

correctly identifying the hypothesis of the symbolic identity 
when it is actually true, given the N  feature streams 
information and 10 << α  denotes the confidence level. Our 
problem can now be restated as: 

(a) identify a lowest cost subset ∗Φ  of feature streams 
such that 

NjfHGP j ≤≤>∗Φ
1,),|( α .                                (36) 



MM000690 Experiential Sampling in Multimedia Systems  15

(b) determine the optimal procedure to identify the feature 
stream subset  ∗Φ  assuming we have a method to determine 

whether an arbitrary subset F⊆Φ  satisfies 

NjfHGP j ≤≤>Φ 1,),|( α .                                    (37) 

Note that the total cost is normally related to the total 
computation cost of the feature streams subset or perhaps can 
be the hardware cost of obtaining the feature streams or could 
be related to the energy consumption of obtaining the feature 
streams (particularly in case of low power appliances). Let us 
quantify the cost of using a subset of feature streams Φ  by 

Φc and let us assume an a priori probability Φp  that this 
subset can achieve the goal G. The idea of having these 
probabilities is that it allows for an identification strategy to be 
developed to obtain the lowest cost feature stream set. So we 
can not only identify which subset that can achieve the goal but 
also provides a mechanism to determine how to identify this 
optimal subset. This optimization problem is posed as a 
Markovian decision process. We also try to provide a set of 
assumptions under which this optimal strategy can be 
developed. Of course, by changing these assumptions, we can 
better study the structure of this problem and can lead to better 
identification algorithms for different problem instances. 

B.  The General Multiple Stream Problem 
We will first present the results in a general setting and then 

narrow down some specific instances of the problem. In the 
general case, let us assume that we are given a multimedia 

system with a set of F  feature streams. We make the following 
assumptions: 

(1) The goal G can be achieved when the full set of N 

feature data streams F  is available. If we do not have this 
assumption, there is no optimization problem to solve. 

(2) Any combination of i feature streams )( Ni < has a 

lower cost than any combination of 1+i  feature data streams. 
This allows for the fact that for any specific combination of i 
data streams to be of less cost than that of any other set of i data 
streams. Note that this may not be a realistic assumption. 
Relaxing this assumption is an open problem. 

(3) If the a priori probability that the multimedia system 
can achieve goal G using a combination of  i feature streams is 

ip , then we have: 

10 1210 =<≤≤≤<= − NN ppppp Κ               (38) 
         What this essentially states is all feature data streams 

have an equal capability of providing information for achieving 
goal G. We will modify this assumption later on for a specific 
instance of the general problem. 

(4) If a combination of feature data streams AΦ  cannot 

achieve the goal G, the probability ||Bp remains the same for all 

sets of feature data streams AB ⊃ . Moreover, if a 
combination of feature data streams AΦ  achieves the goal G, 

the probability ||Cp remains the same for all sets of feature data 

streams AC ⊂ .  
(5) The cost of finding out whether a subset of feature 

data streams can help achieve the system goal or not is a 
constant equal to c. This assumption basically states that there 
is a constant cost procedure to determine whether the given 
subset Φ  is sufficient to achieve the system goal G. One can 
conceivably have a benchmark data set with ground truth to 
perform this test. 

We can now cast the feature stream subset selection problem 
as a decision problem on a directed graph. The nodes of the 

directed graph are the elements of the power-set of F .  Each 
node of the graph represents a combination of feature data 
streams. Two vertices A and B are connected by an edge 
directed from B to A iff |B| = |A| + 1 and BA ⊂ . Node φ  of 
the graph is the empty node which corresponds to the use of 
zero feature data streams. An example of a directed graph for a 
multimedia system with three feature data streams is shown in 
Figure 17. 

We note that the directed graph provides the combinations of 
possible feature data streams. The idea of the identification 
procedure is to quickly identify the node with the least cost 
which allows for the multimedia system to achieve goal G. 
Each subset of feature data streams (corresponding to a node) 
can be tested for fact whether it achieves the goal G or not. Note 

that the node containing  F  i.e. containing all the feature data 
streams does achieve goal G (from assumption 1). The node φ  
cannot achieve the goal G. If a node A can achieve the goal G, 
then node AB ⊃  can also achieve the goal G. Conversely, if 
a node A cannot achieve the goal G, then node AB ⊃  also 
cannot achieve the goal G. These are fairly obvious statements. 
We now need a set of definitions: 

(1) Node B of the directed graph is a child of node C in the 
graph iff there exists a directed path from C to B. 

(2) Node B of the directed graph is a parent of node C iff 
there exists a directed path from B to C. 

(3) Let ξ  be a set of nodes with ξ∈A . A reachable set 
from ξ  conditioned on the fact that A can achieve goal G, is a 
set composed of all nodes in ξ  whose cost is less than that of 
A. 

(4) Let ξ  be a set of nodes with ξ∈A . A reachable set 
from ξ  conditioned on the fact that A cannot achieve goal G, 
is a set composed of all nodes in ξ  except node A and its 
children inξ . 

(5) A reachable set is a set that results from applying an 
arbitrary sequence of tests (for testing whether a node can 
achieve goal G) according to the definitions 3 and 4 above. 

 
Now, we are ready to pose the problem as a Markovian 

decision problem with perfect observations. The information 
state of the process is the set of nodes of the directed graph 
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which have not yet been checked whether they can achieve goal 
G and could potentially correspond to a least cost combination 
of feature data streams. Therefore, an information state is a 
reachable set. Let V(Q) denote the minimum expected cost (of 
testing) when the state is Q. Then V(Q) satisfies the optimality 
equation: 

)}()1()({min)( G
ii

G
iiQi

NVpNVpcQV ∗−+∗+=
∈

(39) 

Note that G denotes that the system goal is achievable and 

G denotes that the system goal is not achievable. We will now 
provide a solution to the above equation under the assumptions 
stated at the beginning of this section.  

Theorem 1: If 11 ≥+ +ll pp  for 2,,1 −= Nl Κ , then 
an optimal test strategy for identifying the feature stream subset  

∗Φ   is to test the combinations of feature data streams in an 
increasing order of feature data stream cost. 

Proof: The proof for this theorem is structurally similar to 
the proof of Theorem 3.1 of [38]. 

What this theorem states is that if one tests the combination 
of feature data streams in this manner, an optimal feature 
stream subset  ∗Φ  is guaranteed to be identified with the least 
cost. What is a more interesting result is the following corollary 
which precisely computes the value of V(Q) for the optimal 
subset: 

Theorem 2: Let Q be a reachable set. Then the minimum 
expected cost associated with Q is 
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  (40) 

Proof: This proof is similar to the proof of corollary 3.1 of 
[38]. 

 
We will now examine a special instance of the above 

generalized setting. 

C.  Analysis of the Constant Fusion Probability Instance 
Let us now examine the generalized setting under a more 

constrained assumption 3 of section IV.B. If we assume the 
following modified assumption: 

 
(3’) The a priori probability that the multimedia system can 

achieve goal G when a combination of i feature data streams is 
utilized for 11 −<< Ni , is equal to a constant probability p. 

 
Figure 17: The directed graph for three feature data streams case. 

 

The earlier assumption is constrained to consider the fact that 
any subset of feature data stream set has equal probability of 
achieving the system goal. This may not be a very realistic 
assumption but it is a practical assumption to make when no 
prior empirical evidence is available in which case it is fair to 
assume 

2
1

== ipp for all subsets i. This essentially means that 

any subset is equally like to achieve the system goal and we 
would like to identify the subset with the minimum cost. 

Theorem 3: Let Q be an information state with i and j being 

two elements of Q. If 
2
1

≥p , then: 

(1) If |||||||| G
j

G
j

G
i

G
i QQQQ +≤+  

and |||||| G
i

G
j

G
i QQQ ≤≤ , |||||| G

i
G
j

G
i QQQ ≤≤  then 

)()( QVQV ji ≤ where )(QVi denotes the expected cost of 

testing all Qk ∈ when the information state is Q and follow 
the optimal test strategy afterwards. 

(2) An optimal test strategy is to test combinations of 
feature stream sets in an increasing order of their cost. The 
minimum expected cost associated with Q is 

 ∑
−

=

−∗=
1||

0

)1()(
Q

n

npcQV .                                            (41) 

Proof: This proof is structurally similar to that of Theorem 
3.2 of [38]. 

What is interesting is the above theorem provides an 

upper-bound of V(Q) as 
p
c

.  

D. Attention Saturation for Multiple Data Streams 
If we have multiple data streams, we need to be able to 

decide how many sensor and attention samples to allocate to 
each data stream. The case of sensor samples is quite 
straightforward. For one data stream, we had NS sensor sample. 

If we have ∗Φ  data streams, then we can allocated a fixed 

NS(i) number of sensor samples for sensing the environment for 

each data stream where ∗Φ≤< i1 . Again, the notion of 

attention saturation can also be used with generalization. For 
one data stream case, we had NA attention samples. We now 
define attention saturation for a single feature stream Fj  as 
follows: 

( )( ) ( ) | ( )i

i

F
N

f

ASat t f P a t E t
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∫                              (42) 

Then for all the data streams, we have the total amount of 
attention saturation as: 

( ) ( )i

i

f

f
ASat t ASat t= ∑  

Now we can easily compute the number of attention samples 
for each individual data stream using: 
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max ( )( )
( )

i
i

f
f

A
N ASat tN t

ASat t
•

=                                   (43) 

Thus, we can compute the number of attention samples 
required for each data stream in way which proportional to the 
amount of attention required for that stream normalized over 
the total attention saturation. 

 

V. APPLICATIONS 
Since it is a general framework, our proposed experiential 

sampling technique can be used for a variety of multimedia 
analysis tasks, especially in real-time applications like 
monitoring systems [49]. We have applied our framework in 
the multiple-camera video surveillance domain [50], video 
adaptation [48] and camera control [37]. In this article, as test 
examples, we apply our framework in the three test examples 
ranging from activity monitoring, face detection to monologue 
detection.   

 

 
   Figure 18. Algorithm of Motion Activity Monitoring by Experiential 

Sampling. 

A.  Activity Monitoring 
In the traffic monitoring and surveillance applications, the 

most important task is to monitor the motion activity. The 
experiential sampling technique can use motion as the cue to 
maintain the motion attention in both spatial and temporal 
directions. Without fully processing the spatio-temporal data, 
locations of the attention samples actually reflect the spatial 
location of the motion activity while the attention saturation 
indirectly indicates the total amount of the motion activity. 

Sensors samples in equation (16) again can be defined as 

({ ) ( ) ( )}1 1 2 2( ) , , , , , , .
S SN Nss t x y x y x y= L Their associated 

weight is defined as { }1 2( ) ( ), ( ), , ( ) .
S

S S S S
Nt t t tπ π πΠ = K  The 

can then be obtained by calculating the spatial cue of motion. 

We define the spatial cue of motion as 
{ })_,,(,),_,,()(_ 111 SSS N

MT
N
MT

N
MTMTMTMTMT spwyxspwyxtspc Κ=  . The 

weight of each sensor sample and attention can be updated by 
using equation (19). Based on the experiential sampling 
technique (Figure 16), the algorithm of motion activity 
monitoring is summarized in Figure 18. Since in these 
experiments, we want to show that our sampling method 
captures the motion attention, the final attention driven analysis 
steps (shown in steps 9-15 in Figure 16) are discarded to depict 
only pure attention. 

Figure 19 illustrates the procedure for a pedestrian 
monitoring scenario. For each time instance, the algorithm 
outputs the temporal attention (ASat(t)) and spatial attention 
(AS(t)). The procedure can be described as follows: 

Step 1. The SSs are randomly created to sense the entire 
scene in (b), (f) and (j). If the ASs exist in the previous time 
slice, they are dynamically updated (Step 4) to the current time 
slice like the dark dots shown in (f) and (j). Note that time 0 
indicates the situation when there are no previous ASs, i.e.  
start of the system or a sequence of interest. 

Step 2. The weights of the SSs and the ASs (in (c), (g) and (k)) 
are adjusted by the measurements from the motion features (by 
using Eq. (3)). The weights are indicated by the size of the 
points in (c), (g) and (k).  

Step 3. The temporal attention (ASat(t)) is calculated from 
the weight-adjusted SSs. Consequently, AS(t) is created by 
resampling the SSs (shown from (c) to (d)) or both the SSs and 
ASs (shown from (g) to (h) and from (k) to (l), respectively). The 
number of the created AS(t)s is controlled by the obtained 
ASat(t). Obviously, the AS(t)s created represent the distribution 
of the spatial attention as shown in (d), (h) and (l). 

Step 4. Each AS follows its own dynamics (e.g., constant 
velocity) and is dynamically updated to the next time slice (dark 
dots shown from (h) to (j)). 
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Figure 19.  Illustration of  our framework for motion activity 
monitoring. (a,e,i) Sample frames. (b,f,j) Randomly created SSs and 
dynamical-updated ASs (only in f&j) from previous time slice. (c,g.k) 
weighted SSs and ASs (only in g&k). (d,h,j) NA number of the ASs. (j) 
ASs in (d) represent the attention distribution.  

The Algorithm 
MotionMonitoring_by_ES(image(t),AS(t-1), NA(t-1), t)   
begin 
1. Initialization: Ns  200 ,  NMax   1000,  if (t == 0), NA(t) 

= 0. 
2. SS(t)  

ramdom_sampling(image(t).width,image(t).height). 
3. AS(t)  AS(t-1)  by equation (11)  
4. SS(t)(i = 0 to Ns ), AS(t)( i= 0 to NA(t))  

updateweight(image(t))  /* weight updating using 
equation (19)*/ 

5. ASat(t)  by equation (25)  
6. NA(t)   equation (26)  /*number of attention samples 

needed in the current environment*/ 
7. AS’(t) = resampling((ss(t),as(t)), ( ( )S tΠ , ( )A tΠ ),NA(t))  /* 

create attention samples*/ 
8. AS(t) = AS’(t) 
output(ASat(t), AS(t)) 
end. 
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B. Face Detection 
In the face detection problem [2, 3, 4, 5], current robust 

detection methods all rely on exhaustive scanning of the entire 
image with different scale factors i.e. every position of the 
image is probed at different scales by employing either a 
Gaussian model [2], or Neural Networks [3] or boosted 
classifiers [4, 5]. 193737 probe computations are needed for a 
single 320x240 sized image (using 20x20 size scan window 
and a scale factor of 1.2). However, in most of the cases, human 
faces only occupy a small part of a given frame. Obviously, 
most of these probes are conducted where faces do not possibly 
exist. The computations in such low probability areas are 
wasteful and can even lead to false detections. It would be ideal 
if the expensive face detection computations were carried out 
only where faces are very likely to occur. Our experiential 
sampling framework precisely facilitates this. 

In this test example, we try to perform face detection task by 
using data coming from two streams (one visual data, one audio 
data). We utilize experiences (domain knowledge and 
accompanying audio (speech) and visual cues (skin color and 
motion)) to infer the attention samples. These attention samples 
are adaptively maintained by the sampling based attention 
framework proposed in the previous sections. We use the 
adaboost face detector [4] for performing the multimedia 
analysis task. Therefore, the mapping function in equation (7) 
becomes:  

( , ( ))Adaboost LSID S f AS t=                                           (44) 

where AdaboostS  is the signal to symbol mapping function from 
the adaboost face detector. 

Lf  is the input feature to the 
detector, which is obtained by feature extraction from the 
location of the attention samples AS(t).  Face detection is only 
performed on the attention samples to achieve robust real time 
processing. This processing (by using spatial cues from motion 
and skin color) is shown in Figure 20. Note that depending on 
the amount of attention, the number of attention samples is 
different. For instance, NA in Figure 20 (c) is 743, which is 
bigger than in Figure 20 (b) and (d) since Figure 20 (c) has two 
attention areas whereas Figure 20 (b) and (d) only have one 
attention area. Figure 20 (c) also shows our sampling technique 
can maintain more than one attention region. 

  

      
(a) NA = 0                  (b) NA = 110 

    
                      (c) NA = 743             (d) NA = 479 

Figure 20. Face detection sequence. 

 
Most importantly, past face detection results serve as the past 

experience to adaptively correct the attention samples and the 
skin color model in the attention inference stage. This provides 
the face detector the ability to cope with a variety of changing 
visual environments 
1) Cues from audio-visual data 

In the face detection application, the attended regions and 
frames are those where the probability of finding a face is high. 
The face attention information can be inferred from the 
contextual information in the experiential environment. In this 
application, we would like to use the cues of visual features 
(motion and skin color) and accompanying audio data to sense 
the experiential environment. The methods of obtaining the 
cues are now described: 

Skin color cue: Since skin color is clustered well in the color 
space [30], we use the 1-D histogram of hues (color) channel 
from HSV color system to represent the skin color [30]. 

We define 
{ })_,,(,),_,,()(_ 111 SSS N

Skin
N
Skin

N
SkinSkinSkinSkinSkin spwyxspwyxtspc Κ=  

as the skin color cues. As shown in Figure 21, the stored skin 
color histogram Ht in time t is employed as a lookup table to 
calculate the weight w_spi

Skin. This lookup procedure (looking 
for bin’s value) is defined as 

_ ( , ) ( ( , ), )i
Skin tw sp x y lookup hue x y H=                      (45) 

Figure 22(a) shows that attention samples congregate at the 
skin color region and the face is finally detected in that region 
by the final analysis (face detector). Figure 22 (b) shows the 
weight map as measured by equation (35).  

Hue

Histogram of hue

 
Figure 21. 1 D histogram of  the hue channel. 

 

   
(a)                                   (b) 

Figure 22 Face detection by Skin color histogram Ht. (a) Sample  Image 
(b) Weight Map. 

     
(a)Frame 2                    (b)Frame 10 

Figure 23. Sound cue (a) speech off NA=0.(b) speech on. NA becomes 
1000. face detected. 
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Figure 24. Face detection by Experiential Sampling. 

 
Motion cue: The motion cue is defined as  

{ })_,,(,),_,,()(_ 111 SSS N
MT

N
MT

N
MTMTMTMTMT spwyxspwyxtspc Κ=  (46) 

The weight i
MTspw _  is obtained by equation (19). 

By using the motion and skin color cue, the equation (17) 
becomes  

i
SkinSkin

i
MTMT

S
i spwspwt __)( ⋅+⋅= ααπ                                      (47) 

 
Speech/Sound cue:  The detection of speech/sound implies 

the possible existence of the face in the visual data. This is the 
case of utilizing information from multiple data-streams. We 

can then determine the attention saturation for this 
accompanying audio channel: 

( ) ( )C SA S a t t v o l tβ=                           (48) 
where vol(t) is the current volume of the audio channel and 

Sβ measures the importance of the sound volume cue.  
By utilizing this stream, we can dynamically update the 

number of attention samples on the visual when audio is 
detected. This consequently leads the face detector to work on 
more attention samples during the time slice when 
speech/audio occurs.  For instance, Figure 23 shows that speech 
cue can help to create the attention samples when there is not 
any motion attention initially.  
2) Effect of past experience on skin color model 

As discussed earlier, we use the 1-D histogram of hues (color) 
channel to build the skin color model. In order to ensure that the 
past experience helps future data assimilation, we make the 
histogram model adaptive i.e. it is responsive to the current 
environment and the analysis results.  Thus, the model 
parameters can dynamically adapt to the varying scene 
illumination. We denote it as Ht at time t.  It is learned from the 
final analysis of the previous time slice. In our method, the face 
regions obtained by the face detection in time t-1 serve as the 
feedback experience for the computation of the skin color 
histogram Ht for time t. This is formulated as follows by 
replacing equation (28) and (29).  

( ) { ( ) : ( , ( )) }Adaboost LAS t AS t S f AS t Tar+ = =                         (49) 

( 1) ( ( ( )))H t Hist hue AS t++ =                                    (50) 
 where Hist() is the histogram of hue channel from the 

reliable attention samples ( )AS t+
 while ( )AS t+

 is obtained by 
equation (49). Based on this past experience, the skin color 
model is dynamically updated. 
3) Audio-visual face detection by our experiential sampling 
technique 

By utilizing the cues from visual data and companying audio 
data, our face detection method is summarized in Figure 24. 

In addition, ( )CASat t , which is the attention in the 
accompanying audio stream,  can be used as the trigger to 
arouse the sensors in the visual stream: 

 if  ( )CASat t  > T then start FaceDetection_by_ES(…) 

 if  ( )CASat t  < T and NA(t) == 0 for a period of time  then 
stop  FaceDetection_by_ES(…) 
 

5.2 Monologue Detection    
In this test example, we illustrate how to use our experiential 

sampling to deal with multiple data streams and multiple 
sub-tasks.  We use two cameras and one audio sensor. One 
camera focuses on the whole scene (consisting of two people) 
while the other is supposed to be dynamically focused on the 
person speaking. We try to locate the speakers using one visual 
stream and one audio stream. From the detected faces and the 
lip-region analysis, we infer who the speaker is. Consequently 
the second camera is then zoomed onto the speaker. To this 
end, a face detector and a lip motion detector have to be used. 

The Algorithm FaceDetection_by_ES(visual(t),audio(t), 
AS(t-1), NA(t-1),t) 
Begin 
 /*  Experiential environment sensing */ 
1. Initialization: Ns  200 ,  NMax   1000,  if (t == 0), NA(t) 

= 0. 
2. AS(t)  AS(t-1)  by equation (11) /* importance sampling 

for the attention samples*/ 
3. SS(t)  ramdom_sampling(visual(t).width, 

visual(t).height)./* importance sampling for the sensor 
samples*/ 

4. ( )CASat t  ( )audio t  by equation (48)  /*Attention 
saturation for the audio data stream*/ 

5. for SS(t)(i = 0 to Ns ), AS(t)( k= 0 to NA(t)) do  
 begin 
 ( )S

i tπ   by equation (47)  /*weight for SS(t) sensor 
samples*/ 

( )A
i tπ   by equation (47)  /*weight for AS(t) attention 

samples*/ 
 end 
6.  Calculate ( )ASat t  using equation (25)  
7.  NA(t)   equation (26)  /*number of attention samples for 

each data stream*/ 
/* Building of  the attention model and attention driven 
analysis */ 

  8. AS’(t)  = resampling((ss(t),as(t)), ( ( )S tΠ , ( )A tΠ ),NA(t))  /* 
create attention samples*/ 
9. AS(t) = AS’(t) 
10.  if NA (t) > 0 then do   
           begin 
11.      for i = 1 to NA (t)  do  /*Attention driven analysis*/ 
             begin  
12.          f L     feature_extraction(as(t), visual(t)). 
13.            Compute P(H=face|fL) 
14.            Calculate P(H=face|fL, a)= P(H=face|fL). ( )A

i tπ  

15.            SID = face?nonface: P(H=face|fL, a)>0.5 
16.          find ( )AS t+

 by equation (49)  /*the experience*/   
17.            update ( )H t  by equation (50)/*adaptation*/ 
                  end 
          end  /* end of “if NA (t) > 0”  */ 
output(results form step 15,  AS(t), NA(t)) 
end 
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Figure 28. Traffic monitoring sequence. This figure illustrates the 
both spatial and temporal visual attention inferred from motion 
experience. Blue points are sensor samples while yellow points are 
attention samples. Red bar shows the spatial attention in x direction. 
It evolves according to the spatial experience. NS number of sensor 
samples is set to 200. NA number of attention samples changes each 
time based on the temporal experience. 

Figure 26. Mpeg 7 Test sequence 1. (a) original frame.(b) saliency map 
for motion. (c) 232 attention samples (yellow points) for motion. (d) 
motion attention by attention samples with original frame. Red bar 
shows the spatial visual attention in x direction; yellow points show the 
227 attention samples. Point size indicates the confidence of this sample. 
Blue points show the 200 sensor samples. 

Figure 27. Mpeg 7 Test sequence 2. Red bar shows the spatial visual 
attention in x direction; Yellow points show the attention samples. Point 
size indicates the confidence of this sample. This figure illustrates the 
ability of maintaining multi-modal attention. Both visual attention 
emerge and split during and after the crossing of the subjects. 

We use the method developed in [37] to adaptively adjust the 
camera parameters for zooming.  

We show in Figure 25 (which summarizes the algorithm) 
how to locate relevant data for multiple sub-tasks (face detector 
and lip motion detector).   

 
Figure 25.Algorithm of Monologue Detection. 

VI. EXPERIMENTS 
In this section, we present results from the three test 

examples. The result videos are available for viewing at 
http://www.comp.nus.edu.sg/~mohan/ebs/. 

A. Activity Monitoring 
We test our method for the video of several pedestrians 

(Figure 26 and 27) and traffic monitoring sequences (Figure 
28). There are 200 sensor samples randomly scattered spatially 
to sense the motion experience. Based on the sensor output, 
attention samples are created. Their numbers and spatial 
distribution are all determined by the motion experience. Figure 
26 shows that, unlike the saliency map based attention model 
(indicated by Figure 26(b)), only 227 attention samples and 200 
sensor samples are sufficient to maintain the motion attention. 

The weight of each attention sample is drawn using red bars 
along with the x direction to visualize the spatial attention in x 
direction. From Figure 26, 27 and 28, we can see that our 
experiential sampling technique can model multi-modal motion 
attention quite well without maintaining the saliency map 
(which requires higher computation). The evolution of 
temporal attention (attention saturation) is shown in Figure 29.  

  
(a)                          (b) 

  
(c)                              (d) 
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    Frame 3  NA = 0      Frame 191 NA =272   Frame 193 NA =147 

   
Frame 203 NA =345    Frame 212 NA = 238   Frame 243 NA =0 
 
 
    
   
 
 
Figure 29(a) shows that the temporal motion attention, 

calculated from the equation (24), evolves according to the 
motion activity in a pedestrian sequence. In Figure 29(b), the 

The Algorithm 
MonologueDetection_by_ES(visualstream1(t),visualstrea
m2, audio(t), AS(t-1), NA(t-1),t) 
begin 
 /*  face detection*/ 
1. ( )CASat t  ( )audio t  by equation (48) 
2. if  ( )CASat t  < T then exit    
/* audio stream as the trigger for face detector*/ 
3. FaceRegions = 
FaceDetection_by_ES(visualstream1(t),audio(t), ), 
AS(t-1), NA(t-1),t) 
4. if  FaceRegions == 0 then exit  
/* face detector as the trigger for lip motion detector*/ 
5. LipRegions  find_lip_region(FaceRegions)   /* locate 
the lip regions*/ 
6. A SpeakerRegion  lip_motion_detector(LipRegions)  
/* find which face is speaking and obtain the zoom factor to 
control the second camera*/ 
7. visualstream2(t)  zoom(SpeakerRegion, 
visualstream2(t)) /* control the second camera to focus on 
the speaker*/ 

   8. 
lip_motion_detector(visualstream2(t)) 
/* making sure about the monologue by 
checking for lip movement */ 
end 
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Figure 30. Face detection by using spatial cues. (a) static frame NA=0 
(b)A chair moves NA=414 (c)the chair stopped. NA=0 (d) a person comes. 
NA=791 (e) a person. NA=791 (f) one person. NA=791 (g) one person. 
NA=791 (h) static frame. NA=2. 

Figure 29. Activity monitoring. (a) The pedestrian activity 
monitoring by attention saturation. (b) Traffic monitoring by 
attention saturation. 

NA roughly reflects the traffic status at each time step. 
Therefore, our method here can be used for monitoring the 
traffic also. It also shows that the temporal attention is aroused 
only when the cars pass by. At other times, when NA is zero, 
there are no attention samples. During this time, the only 
processing and analysis done is the sensor sampling. It should 
be understood that all the results are obtained by only 
processing a few samples in the visual data. There is no need to 
process the entire data. It fulfills our aims of providing analysis 
have the ability to select the data to be processed. 

 

 
(a) 

 
(b) 

 
 
 

B. Face Detection Results 
We use our experiential sampling technique to solve the face 

detection problem. Sensor samples are employed to obtain the 
current environment from the skin color, motion and audio 
cues. The face attention is maintained by the attention samples.  
1) Face Detection by spatial cues 

Because of our sampling method, the adaboost face detector 
is not applied on all the pixel and regions. The face detector is 
only executed on the attention samples which indicate the most 
probable face data regions. 

Figure 30 shows that face detection results by using the 
motion cue. As shown in Figure 30, NS number of sensor 
samples is set to 200.The number and spatial distribution of 
attention samples can dynamically change according to the face 

attention. In Figure 30 (a), there is no motion in the frame, so 
NA, the number of attention samples is zero. No face detection 
is performed. In Figure 30 (b), when a chair enters, it alerts the 
motion sensor and attention is aroused. NA increases to 414. 
Face detection is performed on the 414 attention samples. But 
the face detector verifies that there is no face there. In Figure 30 
(c) as the chair stops, there is no motion and so the attention 
samples vanish. In Figure 30(d)-(h) attention samples come on 
with the face until the face vanishes. 

    
(a) Frame 76                (b) Frame 81 

  
                     (c) Frame 106           (d) Frame 120 

    
(e) Frame 147                (f) Frame 152   

  
                   (g) Frame 158           (h)Frame 268 
 
 
 

2) Audio-Visual Face Detection 
Figure 31 shows the face detection by using the audio-visual 

data from the two different streams. Figure 31(a) shows the 
initial status: there is no face detection working in the visual 
stream. The only processing is in the audio stream for the 
purpose of detecting the sound volume. In Figure 31(b), when a 
chair enters, it alerts the volume sensor in the audio stream and 
triggers the face detection module in the visual stream. Thus, 
sensors in the visual streams start to work: 200 sensor samples 
are uniformed randomly sampled and sense the visual scene. 
Based on this, 117 motion attention samples are aroused to 
follow the moving object (chair). Face detection is performed 
on those attention samples. But the face detector verifies that 
there is no face there. In Figure 31(c), the chair stops. It causes 
the volume in audio stream becomes zero and the attention 
samples vanish. If this state remains for a short period of time, 
the face detection module in the visual stream is shut down 
again as shown in Figure 31(d). In Figure 31(e)-(f), the volume 
sensor arouses the face detection module again when a person 
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enters. Attention samples are aroused by both the spatial cues in 
the visual stream (motion/ skin color) and the temporal cue in 
audio stream (volume). The attention samples come on with the 
face until the face vanishes and audio stream become silent 
again (In Figure 31(g)). If the system is in this state for a while, 
face detection is shut down again due to the no activity in both 
the audio and visual streams. Only the sensor sampling of the 
audio-visual environment continues to take place. 

 

   
(a) Frame 13              (b) Frame 68 

                                                           
(c) Frame 104         (d) Frame 114 

   
(e) Frame 511          (f) Frame 618 

  
                  (g) Frame 698              (h) Frame 700 

Figure 31. Audio-visual face detection by Experiential Sampling. 
 

 

 
Figure 32.  Comparison of the computation speed. 

 
3) Computation Speed 

We use a USB web camera to perform real time face 
detection on a Pentium III 1GHz laptop. The graph of the 

computation load, indicated by sec/frame, in this real time 
scenario is shown in Figure 32. Note that our absolute speed 
((with frame capturing, rendering, recording results (saving to 
disks), etc.)) is constrained by the capture speed of the USB 
camera. However, we intend to show the adaptability of our 
computational load rather than the absolute speed. In Figure 32, 
curve 1 shows the computation load of the adaboost face 
detection while curve 2 indicates the computation load of our 
experiential sampling with adaboost face detector. This figure 
shows that by using our experiential sampling technique, 
computation complexity can be significantly reduced. In 
addition, in order to show the adaptability, we also depict the 
value of attention saturation in the graph. It shows that the 
computation complexity varies according to the difficulty of 
the current task, which is measured by the attention saturation. 
This is the expected behavior as deduced in equation (32). 
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Figure 33.  Our Adaptive Model that adapts to the environment. 

 
4) Past Experiences 

Based on the discussion in Section III.C.7 and V.B.2, we 
have implemented the use of the past experience for building 
the dynamic skin color model. The experimental results are 
shown in Figure 33. We change the luminance of our visual 
scene. This consequently causes the global visual environment 
to vary, which is indicated by the curve 1 (luminance) and 
curve 2 (Max bin in hue) as shown in Figure 33. By constantly 
updating the skin color model from the previous analysis, our 
skin color model can dynamically adapt to the changed visual 
environment.  

C. Monologue Detection  
For the monologue detection, we intend to show our 

approach for integrated analysis on multiple streams and 
sub-tasks rather than giving quantitative test results. The results 
of the monologue detection are shown in Figure 34. Figure 34(a) 
shows the procedure. When there is a sound in the audio stream 
as shown in Figure 32(a.1), the lip motion detector starts up and 
speaker is found in camera 1. Then, camera 2 starts to focus on 
the speaker’s region which is detected by the lip motion 
detector in Camera 1. Detected faces are marked as yellow 
regions while lip regions are marked as red regions. Face 
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detector and lip motion detector perform measurements on the 
camera 1, which is indicated in the bottom-right of the frame. 
Camera 2 zooms in to the speaker’s region, which allows 
further visual analysis to be performed on the output of camera 
2 in order to obtain more accurate results. Figure 34(b) shows 
the detection results for a sequence in which two different 
speakers speak at different times. Therefore, the second camera 
focuses on a different person depending on who is speaking. 

             
(a.1)                                                 (a.2) 

 (a.1) Sound in the audio stream  triggers the lip motion 
detector in C1. (a.2) C2 focuses on the speaker’s region 
detected by lip motion detector. 

       

     
(b) 

       

     
(c) 

Figure 34 Sample frames for Monologue Detection Results 
 

VII. CONCLUSIONS 
In this paper, we describe a novel sampling based framework 

for multimedia analysis called experiential sampling. Based on 
this framework, we can utilize the context of the experiential 
environment for efficient and adaptive computations. Inferring 
from this environment, the multimedia system can select its 
data of interest while immediately discarding the irrelevant 
data. As examples, we utilize this framework for the activity 
monitoring, face detection and monologue detection problems. 
The results establish the efficacy of the sampling based 
technique. In the future, other applications like adaptive 
streaming and surveillance with more sources of different 
modalities will be further investigated.  

What we have essentially done is to formulate the problem of 
identifying the optimal feature stream subset  ∗Φ  of a 
multimedia system to accomplish its task. We have formalized 
the problem to cast it as a Markovian decision problem and 

have provided an optimal procedure to identify this subset as 
well as to estimate the cost of identifying this optimal subset. 
However, much more remains to be done: 

• Given this optimal subset  ∗Φ , how do we best fuse 
the information from the various feature streams for a particular 
problem? One possibility is a linear fusion framework. Another 
possibility is a dynamical system based approach. Model 
predictive controllers [43] seem to be an attractive option. Or 
some energy minimization [39] or MDL based approach [40] 
might turn out to be useful. These are fruitful avenues for future 
investigations. 

• How do we combine continuous feature streams with 
symbolic feature streams? For example, text stream is often 
available with video streams. How can the text stream be 
effectively exploited for video analysis in this case? 

• Having identified ∗Φ , how do we distribute the 
attention samples among the various streams belonging to ∗Φ ? 
We have suggested one method based on attention saturation. 
Can it be done in a more efficient manner? 

• How off are we from the optimal condition if a 
particular feature stream from ∗Φ drops off? The idea is to 
gracefully degrade any system and to have a quantitative notion 
about it. This can have practical implications for handling 
sensor failures and run-time maintenance of multimedia 
systems. 

• How exactly do we trade one feature stream of ∗Φ  
versus a subset others? The directed graph model will help 
along with the cost of each feature stream. This can help select 
different subset of sensors depending on other criteria. 

• Our main contribution is the introduction of 
generalized goal-oriented attention for multiple sensor data 
streams which are not necessarily biological sensors. 
Moreover, this attention function has been identified as 
dynamically varying phenomenon which is continuously 
updated based on past experience and current context. We have 
used the sampling framework to mathematically model this 
phenomenon. Can some other more economical mathematical 
model be developed for capturing this phenomenon? 

• Though we have been inspired by the human 
phenomenon of attention, we have adopted an engineering 
approach to solve the problem. However, it may be worthwhile 
to computationally mimic the biological phenomenon. Building 
biologically plausible models of attention would be an 
interesting challenge. Some of the findings by cognitive 
scientists [6, 8] would be extremely useful for this purpose. 
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