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Abstract— Multimedia systems must deal with multiple 
data streams.  Each data stream usually contains 
significant volume of redundant noisy data.  In many 
real-time applications, it is essential to focus the 
computing resources on a relevant subset of data streams 
at any given time instant and use it to build the model of 
the environment.  We formulate this problem as an 
experiential sampling problem and propose an approach to 
utilize computing resources efficiently on the most 
informative subset of data streams.  
Firstly, in this paper, we focus on theoretical background 
and develop a theoretical framework for a single data 
stream. We generalize the notion of static visual attention 
in a dynamical systems setting and propose a dynamical 
attention-orientated analysis method. This is achieved by a 
sampling representation that utilizes the current context 
and past experience for attention evolution. Hence, the 
multimedia analysis task at hand can select its data of 
interest while immediately discarding the irrelevant data to 
achieve efficiency and adaptability.    
  
 
 
 
Index Terms— Dynamical Systems, Experiential 
Computing, Experiential Sampling, Sampling, Visual 
Attention  

I. INTRODUCTION 
ultimedia information processing usually deals with 
spatio-temporal data which have the following attributes:  

• It consists of a multiplicity of usually correlated data 
streams. Thus, it does not exist in isolation – it exists in 
its context with other data. For instance, visual data 
comes along with audio, music, text, etc.    
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• They possess a tremendous amount of redundancy. 
• The data is dynamic with temporal variations with the 

resultant history. 
 
However, many current approaches towards multimedia 

analysis do not fully consider the above attributes which lead to 
two main drawbacks – lack of efficiency and lack of 
adaptability.  The inefficiency arises from the inability to filter 
out the relevant aspects of the data and thus considerable 
resources are expended on superfluous computations on 
redundant data. Hence speed-accuracy tradeoffs cannot 
properly be exploited. The lack of adaptability stems from the 
fact that the context of the data is often ignored. As a result, 
rigid computational procedures are employed for analyses that 
remain fixed when the environment itself is changing. 
Moreover, the context of multiple correlated data streams is not 
fully harnessed in order to perform the task at hand. 

On the other hand, we have solid evidence that humans are 
superb at dealing with large volumes of disparate data using 
their sensors [3]. For instance, the human visual system is quite 
successful in understanding the surrounding environment at an 
appropriate accuracy quite efficiently. This is due to many 
factors [9]: the excellence of the physical visual sensing 
system, the richness of fusion information from perception, 
implicit understanding of every visual object, and the common 
understanding of how the world works. These attributes in the 
experiential environments [4] play an important role for the 
human visual perception to understand the visual scene 
accurately and quickly under fairly adverse conditions. The 
vision for experiential computing was introduced in [4], which 
envisages that multimedia analysis should also have the ability 
to process and assimilate sensor data like humans. Examples of 
such problems being currently tackled are speaker recognition 
[20], speech event detection [20], speaker change detection 
[20], monologue detection [21] and cross-modal information 
retrieval [22]. Many tasks like remote monitoring, 
understanding semantics and adaptive presentations also fall 
under this paradigm. Therefore, we would like to articulate the 
following goal for such multimedia systems:  

“In an experiential computing environment, the system 
should sense the data from the environment. Based on the 
observations and experiences, the system should collate the 
relevant data and information of interest related to the task. 
Thus, the system interacts naturally with all of the available 
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data based on its interests in light of the past states in order to 
achieve its designed task.” 

 Our ideas are articulated using some important concepts that 
Neisser [19] introduced in 1976 in his work on the notion of 
perceptual cycle to model how people perceive the world. He 
presented the idea that a perceiver builds a model of the world 
by acquiring specific signals and information to accomplish 
certain tasks in the natural environment.  The perceiver 
continuously builds a schema that is based on the signals that he 
has received so far.  This schema represents the world as the 
perceiver sees it at that instant. The perceiver then decides to 
get more information to refine the schema for accomplishing 
the task that he has in mind. This sets up the cycle as shown in 
Fig. 1.  The perceiver gets signals from the environment, 
interprets them using the current schema, uses the results to 
modify the schema, uses the schema to decide to get more 
information, and continues the cycle until the task is done. To 
formulate the problem precisely, we will define the scenario 
more formally in section II.  

Due to space constraints, we split our presentation over two 
papers.  In this paper, we only concentrate on the theoretical 
development of the technique on single data stream while we 
provide its generalization on multiple data streams, related 
work and the experimental results in [26]. 

II. EXPERIENTIAL SAMPLING 

A. Defining Experiential Sampling 
Experience is defined as the accumulation of knowledge or 

skill that results from direct participation in events or activities 
[23]. Direct participation implies having access to the 
environment of the event in order to observe it using all 
potential sensory mechanisms available to the perceiver or the 
experiencer.   In such an environment, the experiencer is driven 
by the goal of maximizing the efficacy of building the schema 
with minimal efforts to accomplish the most efficient 
mechanism to accumulate the knowledge.  This task translates 
into selecting appropriate data streams at any given time, based 
on the current schema, for paying attention. 

We define experiential sampling as the process of identifying 
the most relevant data stream among the available streams at a 
given instant to utilize for interpretation to refine the current 
model of the environment. 

In this section, we introduce our experiential sampling 
technique. There are two major components in this technique. 
The first is how to sense and fuse experiences (contextual 
information) in the experiential environment. The second is 
how to build a dynamic attention model to select the data (or 
region) of interest.  
1) Experience 

Our definition of experience is based on [4]. 
Experience in Multimedia Analysis: is any information that 

needs to be specified to characterize the current state of the 
multimedia system. It includes the current environment, a 
priori knowledge of the system domain, current goals and the 
past states. 

Although experience and experiential environments are 
domain dependent and their components are not clear in 
general, we define three main components as follows: 

Current contextual information: is the current existing 
information about the environment that needs to be specified to 
characterize the current state of the multimedia system with 
respect to the current goal. 

Past experience: is the accumulated experience of the 
multimedia analysis task performed in the past. 

Goal: is the purpose of the current analysis task. It is used to 
define what the related experiences are, and what analysis 
technique should be employed to accomplish the task. 

There are some relationships among these components. The 
current contextual information can be characterized by features 
extracted from the visual scene and other accompanying 
multimedia data (audio, speech, text etc.). The current goal and 
prior knowledge provide a top-down approach to analysis. It 
also determines which features of the visual scene and other 
accompanying data type should be used to represent the 
environment. The past experiences encapsulate the experiences 
till the current state. These relationships can help us defining 
the experiential environment when we perform multimedia 
analysis. More importantly, when we consider the experiential 
environment, the analysis process systematically integrates the 
top-down and bottom-up approaches by employing the context 
and history. 
2)  Goal oriented attention from experiential environments 

As mentioned in the introduction, we allow the system to 
sense the data from the experiential environment. Based on the 
observations and experiences, it collates the relevant data and 
information of interest related to the task of the analysis and 
discards irrelevant information. In this regard, a central 
problem is the allocation of the goal oriented attention within 
the experiential environments. Note that attention is intimately 
related to the goal – generic attention does not make sense. We 
base this discussion on video which is a prototypical 
multimedia data type.  

In our framework, we allow the analysis task to guide the 
attention onto regions or data of interest from the entire 
spatio-temporal data. We first introduce a vector to represent 
the spatial position of the goal oriented attention in a given time 
t as: 

Schema Exploration

Directs

SamplesModifies

Environment
Available

Information

 
Fig. 1.  Neisser’s Perceptual Cycle. (Based on Fig. 2 in [19]). 
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 ( ) [ , ]'Ga t x y=   
where x=1,…,X and y=1,…,Y are spatial coordinates and 
t=1,…,T is temporal position. aG(t)=[x,y]' indicates the current 
attended position is [x,y]' in a time slice t. ' denotes the 
transpose operator. Without loss of generality, the stream 
dimension {1,…,n} can be further added when multiple 
streams are considered, while the spatial coordinates x, y can be 
dropped when non-spatial streams are considered. 

To infer the attention from the environment, we define the 
current contextual information with respect to the attention at 
the time t as: 

 ( ) { ( , , ) | 1,..., ; 1,..., }e t e x y t x X y Y= = =  
where again x, y are spatial coordinates and t is the temporal 
position. It includes any contextual information which could 
help in inferring the goal oriented attention (we will show later 
it is a combination of different feature cues). Therefore, it can 
also be considered as the measurement (e.g. motion, colors etc) 
of the attention with respect to the given spatial coordinates and 
time. For this, the values of the elements are required to be 
normalized to the range of [0,1). The sum total of accumulated 
contextual information for the attention is defined as 
E(t)={e(1),…,e(t)}. 

In this paper, we attempt to infer the attention from the 
experiential environment. By employing probabilistic 
reasoning, we define the a posteriori probability P(AG(t)|E(t)) 
with AG(t)={aG(1),…,aG (t)}  as the goal oriented attention up 
to time t. For real time applications, we need to estimate 
P(aG(t)|E(t)) rather than P(AG(t)|E(t)). Here we assume that the 
attention at each spatial position {x, y} is only dependent on the 
context measurement around the position {x, y}. Then we have 
the following Eq.: 

( ( ) [ , ] ' | ( )) ( ( ) [ , ] ' | ( , , ))P a t x y E t P a t x y E x y t= = =  
 Note that this notion of attention is a generalization of visual 

attention [6] in the sense it can be applied to any multimedia 
stream which may be non-visual. For example, this definition 
subsumes the notion of aural attention which is also related to 
the cock-tail party effect in digital audio processing. And this 
generalized attention concept can be applied to non-visual, 
non-audio data as well. Also, it is a phenomenon which 
dynamically varies with time unlike the notion of static image 
attention dealt by the bulk of the visual attention literature. 
Moreover, attention is always goal-driven. 

B.  Goal oriented attention driven analysis 
In this section, we formulate the goal oriented attention 

driven analysis by using the Bayesian framework. 
1) Signal to symbol matching 

The central problem of multimedia content analysis is the 
signal to symbol matching. Fundamentally, it involves mapping 
the relationships between the digitized spatial-temporal data 
and semantic symbolic identity. We define this mapping 
function as SM. Many analysis approaches only unite the local 
content intrinsic features to perform content analysis. Here 
“local” and “intrinsic” refer to the fact that these features come 
from the information of the symbolic identity itself. By 

employing probabilistic reasoning, such analysis approaches, 
which we classify as local feature centered approaches, can be 
expressed as maximizing the a posteriori probability 

( ) arg max ( | )M L LH
SID S f P H f= =                        (1) 

where SID is the estimated true semantic symbolic identity, fL 
denotes the local intrinsic features and H is the hypothesis of 
the symbolic identity. For instance, in face detection, the 
hypothesis is face region and non-face region. Note that in this 
section, since we only discuss the situation within a given time 
slice, we simply drop the entire notation related to time. 

For instance, the local feature centered approach, which has 
been the dominant theme in computer vision for many years, 
exclusively uses object intrinsic features to represent the 
objects and to perform object detection/recognition tasks 
[1][2][17].                        
2) A Bayesian framework for integrating attention 

However, the symbolic identities physically exist in their 
environment and not in isolation. It is a well-known fact that 
focus of attention plays an important role in the human visual 
system to understand the visual scenes.  It can selectively 
process the data that it observes or gathers based on the context. 
The illusions in Fig. 2 shows that the role of goal oriented 
attention in top-down visual system increases in importance 
and can become indispensable when the viewing conditions 
deteriorate or when ambiguity exists. In Fig. 2 (courtesy of 
http://members.lycos.co.uk/brisray/optill/othis.htm), if we look 
at the entire image (process all the data in the image), we maybe 
confused whether there is a saxophone player or a woman’s 
face. However, if we just focus our attention on the dark region, 
we instantly identify that there is a saxophone player. 
Contrarily, if we focus our attention on the white region 
towards the right, it could convince us that it is a woman face. 
Similar ambiguity exists in the second illustration of Fig. 2 as 
well.  

In some respects, in the visual scene, the object intrinsic 
features and their differences with respect to the global 
environment features make the object distinct from the 
environment. In the early vision of human brain, by making use 
of these features, goal driven focus of attention allows human 
visual perception to quickly become aware of objects of interest 
from large volumes of visual data in the visual environment 
[6][7][8]. Recently, Jordan et al. in [16] have stated that 
contextual information plays an important role to make reliable 
inferences in situations where the measurements produce 
ambiguous interpretations. Torralba [15] mainly interpreted the 
scene information as context and developed contextual priors 
for object detection.  

Therefore, it is absolutely necessary to build in the attention 
phenomenon into the multimedia analysis process. Based on 
this, we extend the signal to symbol mapping function 
formulated in Eq. (1) by adding the attention A. Therefore, the 
multimedia analysis problem as shown in Eq. (1) essentially 
becomes maximizing the symbolic identity’s posterior 
probability P(H|fL,a). That is the probability of identity H, 
given the current intrinsic feature FL and the current attention a. 
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According to this model, we will use a Bayesian reasoning 
framework to embed the attention and experiential environment 
E into the multimedia analysis tasks. Bayes' theorem can be 
used to factorize the probability P(H| fL,a). 

( | , )( | , ) ( | )
( | )
L

L
L

P f H aP H f a P H a
P f a

=                           (2)                          

The identity feature is directly affected mainly by the 
identity. There is very little influence coming from the 
attention.  Here we assume that the local feature fL is 
independent of the attention A. Therefore Eq. (2) can be 
rewritten as: 

( | )( | , ) ( | )
( )
L

L
L

P f HP H f a P H a
P f

=                           (3) 

Therefore, the probability of the hypothesis H given local 
feature fL and the attention a is factorized into two components. 
The first component is the effect from the local feature fL on 
hypothesis H. The second component is the attention oriented 
priors on the hypothesis.  

It can also be further factorized as follows: 
( | ) ( | ) ( )( | , )

( ) ( )
( | ) ( ) ( | )

( ) ( )

L
L

L

L

L

P f H P a H P HP H f a
P f P a

P f H P H P a H
P f P a

= ⋅

= ⋅
              (4)                                                                                                             

                                                                                                       
In the end, we have the final Eq., 

( | , )( | , ) ( | )
( | )L L

P a H EP H f a P H f
P a E

= ⋅                             (5) 

where we treat attention in the experiential environment E. 
Therefore we add the dependence of E in the probability of the 
attention. The numerator of the second component in Eq. (5) is 
the attention aroused by both the symbolic identity and its 
experiential environment. The denominator of the second 
component is the attention aroused by the experiential 
environment only. By this denominator, the attention aroused 
by the environment is inhibited. Therefore, we can see that 
these arousing and inhibiting attentions can contribute to the 
multimedia analysis task. We call this attention goal-driven 
attention. From section II.A.1, our experiential environment E 
includes the goal. It means the goal about obtaining the 
symbolic identity SID has been considered in this framework. 
Therefore we denote 

( | , )( | )
( | )G

P a H EP a E
P a E

=                                                 (6) 

We can now rewrite Eq. (1) as. 

 

( , )

arg max ( | , )
( | , )arg max ( | )

( | )
arg max ( | ) ( | )

M L G

L G
H

L
H

L G
H

SID S f a

P H f a
P a H EP H f

P a E
P H f P a E

=

=

= ⋅

= ⋅

                   (7)                       

From the above equation, we can see that the final posterior 
probability has two components. The first component is the 
local posterior probability which can be inferred from the 
symbolic identity’s local features. In general, local feature 
centered approaches exclusively concentrate on obtaining this 
probability. The second component is the impact coming from 
the goal-driven attention. This part serves as an amplification 
factor on the identity centered approach of the first component.  

C.  Sampling based dynamical attention driven analysis 
From above analysis, we can see that the attention helps the 

multimedia analysis task. Given our task in this paper is 
identifying the most relevant data stream among the available 
streams at a given instant, based on the above discussion, we 
treat the information which makes the term P(a|E) (For the sake 
of simplicity, we will drop the subscript G later on. However, 
a(t) and A(t) will always denote goal oriented attention.) 
smaller as the irrelevant information. We discard it since we 
would not like to do the time-consuming processing (shown in 
Eq. (1)) on the irrelevant information which give a lower value 
for P(a|E). Contrarily, we treat the information which gives 
higher value on P(a|E) as the relevant information and perform 
detailed processing (to obtain  P(H|fL)) on it.  

There are two steps involved in performing this attention 
driven analysis. Firstly, we use samples and their weights to 
dynamically maintain the attention with respect to the 
experiential environment. Secondly, we propose the use of a 
re-sampling approach to obtain relevant information captured 
in the samples, which is employed to perform the multimedia 
analysis task based on the attention. The (visual or otherwise) 
attention in a scene can be represented by a multi-modal 
probability density function. Any assumptions about the form 
of this distribution would be limiting. However, not making 
any assumption about this distribution leads to intractability of 
computation. 

All the past work on extraction of visual attention uses the 
saliency map representation to denote the visual attention in an 
image [5][6][7][8]. The saliency map is built by either linear 
combination of features or by training [13]. There are two 
weaknesses of these approaches. First, most of the methods 
perform bottom-up computation which does not take into 
account the past experiences of the system [6] . Secondly, the 
temporal variation of attention is not modeled. 

On the other hand, based on the Sequential Importance 
Sampling (SIS) algorithm [12][14][18], we use attention 

                                    
                        (a)                                                             (b) 
Fig. 2.  Attention helps analysis. (a) A woman's face or a saxophone player. 
(b) A vase or head to head? 
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samples to represent the probability of attention P(a|E). For 
example, in the one dimensional case, the probability of 
attention P(a|E) is maintained by N attention samples 
AS(t)=[as1(t),…,asN(t)] as well as their weights )(tΠ  =[π1(t),…, 
πN(t)]. It provides a flexible representation of the probability 
with minimal assumptions. The number of samples employed 
can be adjusted to achieve a balance between the accuracy of 
the approximation and the computation load. Moreover, it is 
easy to incorporate this representation within a dynamical 
system which can model the temporal continuity of attention if 
we consider each sample as a particle and each particle having 
its own dynamics.  

In this sampling representation, the location of samples and 
their associated weights are employed to represent the attention 
probability P(a|E). This means that for a particular region, the 
more samples fall into this region and the higher their weights 
are, the higher is the probability of attention in this region. 
Apparently, the probability distribution is not fully represented 
by the distribution of the samples. It also relies on the weights 
of the samples. However, since we use attention to get the 
relevant information, we would like the probability of the 
attention be fully represented by the distribution of the attention 
samples, not partially on their weights. That is the highly 
attended regions should have more samples and vice versa. A 
re-sampling method is therefore introduced to let only the 
distribution of samples reflect the distribution of attention. In 
addition, since the attention is inferred from experience (which 
will be discussed in section II.C.3) and experience itself 
encapsulates the goal and environment, our sampling based 
dynamical attention model systematically integrates the 
top-down and bottom-up approaches. 

 

 

 
The entire probabilistic notation used in this section is shown 

in Fig. 3. In the remaining part of this section, we first provide 
the solution to the static case in section II.C.1. We then extend 
the solution to the dynamic case in section II.C.2. We treat 
attention as a Bayesian inference problem and develop an 
approach to obtain relevant information from the approximated 
dynamical attention probability. In section II.C.3, 4 and 5, a 
sampling based approach is introduced to maintain the 
probability of the dynamic attention. Important concepts like 
environment sampling, sensor sampling, attention sampling, as 
well as attention saturation are described in section II.C. 3,  4,  
and 5, respectively.    

1) Static attention driven analysis 
In our sampling technique, the second factor in Eq. (7), 

called goal driven attention, is represented by samples and their 
associated weights. Those samples which have higher weights 
can survive as the samples in the next time slice.  

Therefore, samples represent the higher task driven attention 
data. That is they will contribute more in the final computation 
of Eq. (7). In contrast, other regions having less attention value 
have less impact on Eq. (7). Based on this, we perform the 
multimedia analysis task (indicated by P(H| fL )) only on these 
samples and treat other data as the irrelevant data which is to be 
discarded from the analysis point of view. 

The entire algorithm including the dynamics will be 
discussed in the next section. But, first let us consider the 
simple static case. Here we assume that we know P(a|E) and we 
are able to simulate N i.i.d. (independently and identically 
distributed) random samples {a1, a2, a3 ,…, aN} according to 
P(a|E). For instance, in a spatial case, they are a set of spatial 
coordinates. Their associated weights {w1, w2, w3 ,…, wN } can 
be obtained by wi = P(a|E). So the weight wi is directly 
proportional to attention probability P(a|E) such that the sum of 
the N weights is equal to the total attention at that time.  

In this case, the distribution of the samples actually reflects 
the distribution of the attention probability. Differing from the 
classical perfect Monte Carlo sampling [12] which uses 
samples to approximate the distribution and consequently get 
its expectation, we use the sampling method to maintain our 
attention probability and consequently collect relevant 
information while discarding irrelevant information. By 
choosing a proper number of samples, the samples will only 
exist in the higher attended regions as shown in Fig. 4(b) since 
the high attention data is given by the distribution P(a|E). 
These samples intuitively represent the relevant information to 
be processed. Note that selection of the number of random 
samples N depends on current overall attention (measured by 
the attention saturation which will be introduced later) as well 
as the trade off between the computation load and the 
representation accuracy.  

Fig. 3. The probability distributions. 

( ( ) | ( ))P A t E t :  The a posteriori probability of attention 
given the contextual information up to now. 

( ( ) | ( ))P a t E t :  The a posteriori probability of attention at 
time t given the contextual information up to 
now. 

( ( ) | ( ))P e t a t :  The likelihood of the attention at time t with 
respect to the current contextual information.

( ( ) | ( 1))P a t a t − :The dynamics of the evolution of attention. 

P(AG|E)

2. Weighted samples

1. Important Sampling from g(a(t)|a(t-1)

(a)

3. Re-sampling

(b)

(c)

Sensor Samples

Attention Samples

Probability

 
Fig. 4  A sampling based dynamical attention model. (a) Attention (b) 
Samples as relevant information (static case) (c) Samples as relevant 
information (dynamic case). 
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It is clear that our method allows performing of the actual 
multimedia analysis task on the N samples. For example, if the 
task is face detection, it can be performed on the regions of the 
thresholded N samples. But when dealing with spatio-temporal 
multimedia data, the focus of attention dynamically varies not 
only along the spatial axes but also along the temporal axis. A 
dynamic attention model needs to be investigated in order to 
achieve effective and efficient spatio-temporal data analysis.  

 
2) Dynamical attention driven analysis 

In this section, we aim to infer the current attention a(t) from 
the contextual information E(t) until the time t, i.e. calculate the  
a posteriori probability P(a(t)|E(t)).  

a) Dynamical evolution of attention  
The attention is inferred from the observed experiences 

coming from the environment. That is, we try to estimate the 
probability density of the attention (which is the state variable 
of the system) at time t using P(a(t)|E(t)). Note that E(t) 
consists of all the observed experiences until time t which 
means E(t)={e(1),…,e(t)}, and a(t) is the “attention” in the 
scene. Attention has temporal continuity which can practically 
be modeled by a first-order Markov process state-space model 
[29]. The value of a(t)  may not be observed though the 
experience e(t), which influences the attention a(t), is 
observable. In this model, the new state depends only on the 
immediately preceding state, independent of the earlier history. 
This still allows quite general dynamics, including stochastic 
difference Eq.s of arbitrary order. Therefore, 

))1(|)(())0(),...,1(|)(( −=− tataPatataP                          (8) 
Our target, the posterior probability P(a(t)|E(t)), can be 

factorized by using the Bayes’  rule. The formalization is 
shown in Eq. (9). 

( ( ) | ( ))
( ( ) | ( ), ( 1))
( ( ) | ( ), ( 1)) ( ( ) | ( 1))

( ( ) | ( 1))
( ( ) | ( )) ( ( ) | ( 1))

( ( ) | ( 1))

P a t E t
P a t e t E t
P e t a t E t P a t E t

P E t E t
P e t a t P a t E t

P E t E t

= −
− −

=
−

−
=

−

                          (9) 

 
 
 
 
 

Since we are interested in the attention a(t), k becomes a 
normalization factor which does not depend on the attention. 

The prior probability P(a(t)|E(t-1))  in Eq. (9) can be further 
formulated as follows (a detailed explanation can be found in 
[18]). 

( 1)

( 1)

( ( ) | ( 1))

( ( ) | ( 1), ( 1)) ( ( 1) | ( 1)) ( 1)

( ( ) | ( 1)) ( ( 1) | ( 1)) ( 1)
a t

a t

P a t E t

P a t a t E t P a t E t da t

P a t a t P a t E t da t
−

−

−

= − − − − −

= − − − −

∫

∫

      (10) 

According to Eq. (10),  P(a(t)|E(t-1))  is dependent on the 
probability P(a(t)|a(t-1)) and P(a(t-1)|E(t-1)). 

From the above  two Eq.s,  we know that the posterior 
density P(a(t)|E(t)) can be iteratively obtained by knowing the 
observation (likelihood) P(e(t)|a(t)), the temporal continuity 
(dynamics) P(a(t)|a(t-1)) and the previous state density 
P(a(t-1)|E(t-1)).  

Initially we assume that the P(a(1)|E(1)) is zero. During each 
iteration, the three probabilities for obtaining the posterior 
density P(a(t)|E(t)) are calculated as follows: 

P(a(t)|a(t-1)): Since we have assumed a Markov state-space 
model, the dynamics of attention evolution is described by a 
stochastic differential Eq. where the deterministic part models 
the system knowledge and the stochastic part models the 
uncertainties. Thus the dynamics P(a(t)|a(t-1)) can be obtained 
by: 

/ 2 1

( ( ) | ( 1))
1(2 ) | | exp( [ ( ) ( 1)]' [ ( ) ( 1)])
2

k

P a t a t
Q a t a t Q a t a tπ − −

−

= − − Φ − − Φ −
    (11) 

where Q is the covariance matrix of the random noise and the 
term Φ  is basically the deterministic part which is the state 
transition matrix. This formulation is same as that of the 
Kalman filter. The problem of parameter estimation has been 
explored in [25]. 

P(e(t)|a(t)): As mentioned before, since we use the current 
contextual information e(t) to infer the goal oriented attention 
a(t), we select the contextual information regarding the 
attention. In another words, the contextual information can be 
considered as the measurements of the attention coming from 
the experiential environment. If we assume that the context 
measurement is independent on each other, we then can define 
the likelihood of attention in each position to follow the 
Gaussian distribution. 

,

1,

( ( ) | ( )) ( ( , , ) | ( ))
x X y Y

x y y

P e t a t P e x y t a t
= =

= =

= ∏                                 (12) 

2

( )( )( ( , , ) | ( ) )1 [ , ] ' exp{ }a b
a b

x x y yP e x y t a t x y L
δ

− −
= = = −  

where 2δ  is the constant which is used to control the 
randomness level and L is the normalizing constant.  
When the situation that the measurement ( , , )e x y t is not 
binary, the above Eq. can be modified as follows: 

2

( )( )( ( , , ) | ( ) )1 [ , ]' ( , , ) exp{ }a b
a b

x x y yP e x y t a t x y L e x y t
δ

− −
= = = ⋅ ⋅ −  

P(a(t-1)|E(t-1)):  This is the posterior probability of attention 
during time t-1. 

b) Sequential simulation-based solution 
Instead of using Kalman filters, the sequential simulation 

method (sequential importance sampling (SIS)) [12][14][18] 
can be invoked to generate a numerical solution for 
dynamically approximating the density ( ( ))a tπ =  
P(a(t)|E(t)). The approach has an advantage in terms of the 
capacity for generalization.  

Let S(t-1)={s1(t-1), s2(t-1), …, sN(t-1)} denote N random 
draws that are properly weighted by the set of weights W(t-1) 
={w1(t-1), w2(t-1),…, wN(t-1)} with respect to ( ( 1))a tπ − . 

( )

where ( ( ( ) | ( ), ( 1)) ( ( ) | ( )))
( ( ) | ( )) ( ( ) | ( 1))

1where
( ( ) | ( 1))

P e t a t E t P e t a t
kP e t a t P a t E t

k
P E t E t

− =
= −

=
−
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At time t, firstly, a set of samples S(t) is drawn from a 
so-called importance function g(a(t)|a(t-1)) [12][14][18] (as 
shown in Fig. 4 (c).1).The importance function is defined 
depending on the application. Secondly, their associated 
weights are obtained by: 

( ( ) | ( )) ( ( ) | ( 1))( ) ( 1)
( ( ) | ( 1))i i

P e t a t P a t a tw t w t
g a t a t

−
= −

−
                (13) 

where i=1,…,N and the definitions of P(e(t)|a(t) and 
P(a(t)|a(t-1)) have been provided in the previous section. The 
discussion of g(a(t)|a(t-1)) will be introduced later. This 
weighting is shown in Fig. 4 (c) step 2. Note that in the initial 
step, w(t)= P(e(t)|a(t)). 

It has been shown that [18] the above obtained set of random 
draws and their weights {S(t),W(t)} is properly weighted with 
respect to ( ( ))a tπ . It means that the following Eq. is true: 

( )
lim ( ( ))

n

j j
j

nn

j
j

h s w
h a

w
Eπ→∞

=
∑

∑

                                                    (14) 

where h is any integrable function, Eπ
 is the expectation, 

and the notation of time t has been dropped for the sake of 
simplicity of the expression. 

The fundamental idea of the SIS algorithm is to use both a set 
of discrete samples obtained by the importance function 
g(a(t)|a(t-1)) and the weights obtained by Eq. (13)  to 
approximate the a posteriori density. In another words, the 
distribution information is embedded both in the samples S(t) 
and the weights W(t). It is suitable for the applications which 
only require to get the expectation E(h(a(t)) like in tracking 
problems. However, in our application, our final aim is to 
obtain the relevant data on which the analysis task can be 
performed. We need the samples S(t) (i.e. location of the 
samples) themselves to fully cover the entire information about 
the distribution of the  attention ( ( ))a tπ . To this end, after the 
SIS algorithm, a re-sampling step is required to relocate the 
samples in the higher attended regions as shown in Fig. 4(c) 
step 3. The re-sampling step works as follows by using 
arithmetic coding [24]: the weights of all samples are 
normalized such that their sum is equal to 1 and thus they can 
be treated as contiguous intervals of [0,1). A random value is 
obtained by uniformly sampling from the range [0,1). A new 
sample will be re-created if the random value lies in the interval 
of the sample’s weight. Re-do this over time until NA (will be 
discussed in section 6)) new samples are obtained.  

Next, we will discuss how to update the samples from the 
current experiential environment according to Eq. (13).  

 
3) Environment sampling 

Since we obtain the attention value from the experiential 
environments, samples used in our approach have two tasks: 
sense the environment and maintain the attention. Therefore, 
we define samples S(t) to include both sensor samples SS(t) and 
attention samples AS(t): 
S(t)={SS(t), AS(t)}                                                                (15) 

The samples S(t) comprises of sensor samples SS(t) and the 
attention samples AS(t). The sensor samples are basically 
uniform random samples at any time t which constantly sense 
the environment. The attention samples are the dynamically 
changing samples which essentially represent the data of 
interest at time t. 

Since both the types of samples have different uses, we 
define different importance functions (g(a(t)|a(t-1))) for them. 
The sensor samples are used to constantly sense the 
environment. Therefore, we define a uniform importance 
function gS(a(t)) = uniform sampling for sensor samples. It 
allows the sensor samples to quickly notice any changes in the 
environments. Thus, sensor samples constantly scan the 
environment, looking out for sudden changes in the attention. 
For example, in the video face detection scenario, the sensor 
samples can alert the fact that a new face has entered the scene 
which cannot be inferred merely by the dynamical evolution of 
the attention samples of the previous time instant. So sensor 
samples perform the task of current context estimation from the 
extracted clues n

tc , n=1,…,N. The attention samples are the 
dynamically changing samples which essentially represent the 
data of interest at time t. The attention samples are therefore 
derived dynamically and adaptively at each time instance from 
the sensor samples in our framework through sensor fusion of 
the current environmental context and the assimilation of the 
past experience. Once we have the attention samples, the 
multimedia analysis task at hand can work only with these 
samples instead of the entire multimedia data. These focused 
attended samples are the most relevant data for that purpose. It 
should be understood that our data assimilation process is 
sampling based. Not all data need to be processed. Our aim now 
is to obtain these sensor samples to infer the attention. They can 
be sensed by multiple cues from the environment which can 
subsequently be fused to create e(t). 

The cues for obtaining experiences in the visual 
environments can be classified as temporal cues and spatial 
cues. They can be visual features extracted from the visual data 
or information from its accompanying data (speech, sound, text 
etc.). Basically, sensors can sense these cues in order to infer 
the state of the environment. Based on the above, the 
experiential sampling technique is summarized as follows: 

The current environment is first sensed by uniform random 
sensor samples and based on experiences so far, compute the 
attention samples to discard the irrelevant data. Higher 
attended samples will be given more weight and temporally, 
attention is controlled by the total number of attention samples.  
4) Sensor Sampling 

Studies on human visual system show that the role of 
experience used in top-down visual perception increases in 
importance and can become indispensable when the viewing 
conditions deteriorate or when a fast response is desired. In 
addition, humans get information about the objects of interest 
from different sources of different modalities [4]. Therefore, 
when we analyze one particular data type (say spatio-temporal 
visual data) in multimedia, we cannot constrain our analysis to 
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this data type only. Sensing other accompanying data like 
audio, speech, music, and text can help us find out where is the 
important data. Therefore, it is imperative to develop a 
sampling framework which can sense and fuse all 
environmental context data for the purpose of multimedia 
analysis. 

In our framework, SS(t) is a set of NS(t) sensor samples at 
time t which estimates the state of the multimedia environment. 
As mentioned above, these sensor samples are randomly and 
uniformly generated in order to sense the changes in the 
environments. Therefore, we define a uniform importance 
function gS(a(t)) = uniform sampling for them. It makes sensor 
samples to quickly spot any changes in the environments.  

 Since we do not change the number of the sensor samples 
with time, we will drop the time parameter and NS denotes the 
number of sensor samples at any point in time. SS(t) is then 
defined as: 

{ })(;)()( ttsstSS SΠ=                                                   (16) 
where ss(t)depends on the type of multimedia data. For spatial 
data, ({ ) ( ) ( )}

SS NN yxyxyxtss ,,,,,,)( 2211 "=  at time t, this is the set of 

spatial coordinates of the sensor samples. These coordinates are 
generated randomly and uniformly at every time instance.  

)(tSΠ  is the associated weight or the importance of each sample 
which is represented as { })(,),(),()( 21 tttt S

N
SSS

S
πππ …=Π . Now 

each )(tS
iπ is obtained by performing sensor fusion of the q cues 

C(t) available from the multimedia data (like color, motion, 
texture etc.). Thus, the set of cues is given by C(t)={c_sp1(t), 
c_sp2(t),…, c_spq(t)} where each individual cue c_spi(t) is 
given by { }1 1 1_ ( ) ( , , _ ), , ( , , _ )S S SN N N

i i i i i i ic sp t x y w sp x y w sp= …  Note 

that the coordinates x and y refer to the spatial coordinates of 
the sensor samples and w_spi  refers to the weight of that 
particular cue at that sample coordinate. Now it can be easily 
seen that  

1
( ) _

q
S i
i j j

j
t w spπ α

=

= ⋅∑                                 (17) 

where jα  is the importance of the jth cue. So we basically 

employ the linear combination as the sensor fusion strategy. 
But this can be replaced by a more sophisticated sensor fusion 
strategy, which has been investigated in our previous research 
in [10][11], if the application so requires. Also, note that if the 
cue is not spatial, then instead of the spatial coordinates, an 
appropriate reference (e.g. time) can be used for that cue. 
Usually, spatial cues are obtained from visual features. This can 
be denoted as: 

1_ ( ( , ),..., ( , ), )j j t jw sp VF I x y I x y m=                        (18) 

where VFj is the feature extraction function of the jth  cue and mj 
is its function parameters. It(x,y) denotes the image intensity at 
time t. 

For instance, in a video, the motion cue is a spatial cue since 
it varies according to its spatial position. It can be simply 
defined as 

1_ ( , ) ( , ) ( , )t tw mot x y I x y I x y−= −                             (19) 

Here the feature extraction function is the absolute 
difference of corresponding pixel intensity values of two 
neighboring frames. However, there is no adjustable parameter 
in this function.   
5) Attention Sampling 

We know that the attention changes dynamically. In a 
manner different from that of the sensor samples, which use 
uniform random sampling as the importance function, we use 
another probability distribution as an importance function 
gA(a(t)|a(t-1))  to create the attention samples: 

( ( ) | ( 1)) ( ( ) | ( 1))Ag a t a t P a t a t− = −                            (20) 
where P(a(t)|a(t-1)) is the dynamics of attention which can be 
obtained by Eq. (11). Consequently, Eq. to compute the 
weights (in Eq. (13)) becomes: 

( ) ( 1) ( ( ) | ( ))i iw t w t P e t a t= −                                        (21) 
The notation for attention sampling is introduced as follows: 
We represent the dynamically varying NA(t)  number of  

attention samples AS(t) using: 
{ })(;)()( ttastAS AΠ=                                                    (22) 

where as(t) again depends on the type of multimedia data. 
For spatial data, ({ ) ( ) ( )})()(2211 ,,,,,,)( tNtN AA

yxyxyxtas "= , is the 

set of spatial coordinates of the attention samples.  )(tAΠ  is the 
associated weight or the importance of each sample which is 
represented as { })(,),(),()( )(21 tttt A

tN
AAA

A
πππ …=Π . Again, 

each of the )(tA
iπ value is obtained by performing sensor fusion 

of the q cues C(t) available from the multimedia data. 
However, there still have one question: how to determine the 

number of attention samples NA(t) which varies with time? 
NA(t) intuitively models the attention saturation which is 
defined in the next section. 
6) Attention Saturation 

The temporal attribute of the spatio-temporal data requires 
the multimedia system to possess the ability of varying the 
amount of attention at different times. We introduce the 
concept of attention saturation to measure the attention in a 
given time slice. The attention saturation in this case can be 
calculated as the sum of attention in the spatial extent. Its value 
ranges from 0 (lowest, no attention) to 1 (highest, full 
attention). We define the attention saturation as ASat(t): 

( ) ( ( ( ) | ( )))N
Spatial

ASat t f P a t E t= ∫                             (23) 

where fN  is the mapping function which is used to normalize the 
value into range [0,1]. fN   is defined as follows: 

1 e x p ( )( )
1 e x p ( )N

xf x
x

λ
λ

− − ⋅
=

+ − ⋅
                                          (24) 

where λ  is a scaling factor. The benefit of employing Eq. (24) 
is that it can map a very large input domain to the interval [0, 1]. 
We select λ  so that the output scatters in the interval [0, 1] as 
much as possible.  
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The current attention is essentially captured by the sensor 
samples. The sensor samples are updated by each of the cues. 
Of course, some cues may only have temporal attributes and no 
spatial coordinate (e.g. audio volume). Such cues can be 
defined as }_ ( ) { _j jc tp t w tp= , where _ jw tp  is the weight of the 

jth cue. Therefore, the discrete form of Eq. (23) is given below: 

' [ , ] 1 1

( )

1 1( ( ( ') _ ( ') ) )
SN p

S
N i j j

t t n t i jS

A S a t t

f t w t p t
n N

π β
= − = =

= +∑ ∑ ∑
       (25) 

where jβ  is the importance of the jth temporal cue and p is the 

number of the temporal cues. Thus, the attention saturation of 
the current state is captured by the average weight of all the 
sensor samples and temporal cues. The value n is the temporal 
neighborhood. The aim of averaging n number of recent 
temporal attention epochs is to suppress noise and to maintain 
temporal continuity. In our audio-visual face detection, we set 

0.8jβ = for the sound volume cue and n=3 for the web-camera 

video stream.  
Note that for sensor samples, the number of samples was 

fixed a priori at NS in Eq. (25) and these samples are generated 
uniformly and randomly at every time instant. But the number 
of attention samples should vary with time. However, all 
previous image based attention models [5][6][7][8] lack the 
ability to model this adaptive behavior. 

We are now ready to determine the number of attention 
samples at time t using: 

)()( tASatNtN MaxA =                                                        (26) 
where NMax is the maximum number of samples the system can 
handle.  
7) Past Experiences 

We have introduced how the attention guides the analysis 
task. Contrastingly, in this section, we will discuss how the 
local analysis task guides the attention in the form of the past 
experiences. This is also an important concept in Neisser’s 
Perceptual Cycle, i.e. how the perceiver use the results of 
analysis to modify the current schema (current environment 
model).  

Our attention model is employed to obtain attention from the 
experiential environment. The current environment model in 
our case is the attention model. As formulated in section II.C.4, 
the attention model is parameterized by each cue’s feature 
extraction function VFj, its function parameter mj  and its 

importance 
jα (see Eq. (17) and (18)). The data to be dealt with 

is dynamic with temporal variations. Therefore, the attention 
model itself should change dynamically. It is non-trivial to 
accurately model the dynamical evolution of the attention 
model itself due to these variations. Thus we want to 
simultaneously model the dynamically varying attention as 
well as the evolving attention model (from which the attention 
is derived). We add the time variable t to our formulation and 
define the parameters of the attention model for q feature cues 
at time t as APara(t)={ 

1α ,…, 
qα . m1,…, mq }.  

The local analysis task, though time-consuming, provides us 
the most reliable measurements about the multimedia data. Like 
human beings, the results of the analysis can be stored as the 
accumulated knowledge. This knowledge can be utilized as the 
past experience when a future data assimilation process starts. 
In our framework, we want those past experiences to help in 
adjusting (adapting) the attention model and let the analysis 
task guide that attention model evolution. Fig. 5 describes this 
process graphically. 

Suppose we are doing multimedia analysis by mapping low 
level features to a semantic symbolic identity, named Tar 
(target) in the spatio-temporal data. The attention represented 
by the attention samples should be focused on regions which 
have concentrated relevant information about the identity Tar. 
Due to the reliability of the local analysis task, we can actually 
employ the local analysis task to judge the accuracy of the 
current attention samples. At time t, after performing the local 
analysis task on the attention samples AS(t), we divide the 
attention samples AS(t) into two sets: AS+(t) containing  
reliable attention samples, and  AS-(t) containing unreliable 
attention samples by using the following Eq.s: 

( ) { ( ) : ( , ( )) }M LAS t AS t S f AS t Tar+ = =                   (28) 

( ) { ( ) : ( , ( )) }M LAS t AS t S f AS t Tar− = ≠   
where SM  is the feature to semantics mapping function defined 
in section II.B.  

By employing Eq. (28), we treat the attention samples which 
are finally proven to have the relevant information about the 
target Tar as the reliable attention samples and the others are 
not reliable. We call these classified attention samples 
AS(t)={AS+(t),AS-(t)} the past experience. Intuitively, the past 
experience can be used as labeled training samples to learn or 
update the attention model parameters AP(t+1) for next time 
slice. This procedure is defined as follows: 

( 1) ( ( ), ( ))APara t L AS t AS t+ −+ =                           (29) 
where L denotes the inductive learning method to be used to 
obtain the parameters of the attention model.  

III. CONCLUSIONS 
In this paper, we describe a novel sampling based framework 

for multimedia analysis called experiential sampling. Based on 
this framework, we can utilize the context of the experiential 
environment for efficient and adaptive computations. Inferring 
from this environment, the multimedia system can select its 

Attention
Experiential 
environment

Local analysis

Attention 
model

Analysis results

Relevant 
information

Output

Past experience

Time t-1

Time t

 
Fig. 5.  Analysis guides attention model evolution by past experiences. 
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data of interest while immediately discarding the irrelevant 
data. In the future, other applications like adaptive streaming 
and surveillance with more sources of different modalities will 
be further investigated.  
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