
REGULAR PAPER

Multimodal fusion for multimedia analysis: a survey

Pradeep K. Atrey • M. Anwar Hossain •

Abdulmotaleb El Saddik • Mohan S. Kankanhalli

Received: 8 January 2009 / Accepted: 9 March 2010 / Published online: 4 April 2010

� Springer-Verlag 2010

Abstract This survey aims at providing multimedia

researchers with a state-of-the-art overview of fusion

strategies, which are used for combining multiple modali-

ties in order to accomplish various multimedia analysis

tasks. The existing literature on multimodal fusion research

is presented through several classifications based on the

fusion methodology and the level of fusion (feature, deci-

sion, and hybrid). The fusion methods are described from

the perspective of the basic concept, advantages, weak-

nesses, and their usage in various analysis tasks as reported

in the literature. Moreover, several distinctive issues that

influence a multimodal fusion process such as, the use of

correlation and independence, confidence level, contextual

information, synchronization between different modalities,

and the optimal modality selection are also highlighted.

Finally, we present the open issues for further research in

the area of multimodal fusion.

Keywords Multimodal information fusion �
Multimedia analysis

1 Introduction

In recent times, multimodal fusion has gained much

attention of many researchers due to the benefit it provides

for various multimedia analysis tasks. The integration of

multiple media, their associated features, or the interme-

diate decisions in order to perform an analysis task is

referred to as multimodal fusion. A multimedia analysis

task involves processing of multimodal data in order to

obtain valuable insights about the data, a situation, or a

higher level activity. Examples of multimedia analysis

tasks include semantic concept detection, audio-visual

speaker detection, human tracking, event detection, etc.

Multimedia data used for these tasks could be sensory

(such as audio, video, RFID) as well as non-sensory (such

as WWW resources, database). These media and related

features are fused together for the accomplishment of

various analysis tasks. The fusion of multiple modalities

can provide complementary information and increase the

accuracy of the overall decision making process. For

example, fusion of audio-visual features along with other

textual information have become more effective in

detecting events from a team sports video [149], which

would otherwise not be possible by using a single medium.

The benefit of multimodal fusion comes with a certain

cost and complexity in the analysis process. This is due to

the different characteristics of the involved modalities,

which are briefly stated in the following:

• Different media are usually captured in different

formats and at different rates. For example, a video
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may be captured at a frame rate that could be different

from the rate at which audio samples are obtained, or

even two video sources could have different frame

rates. Therefore, the fusion process needs to address

this asynchrony to better accomplish a task.

• The processing time of different types of media streams

are dissimilar, which influences the fusion strategy that

needs to be adopted.

• The modalities may be correlated or independent. The

correlation can be perceived at different levels, such as

the correlation among low-level features that are

extracted from different media streams and the corre-

lation among semantic-level decisions that are obtained

based on different streams. On the other hand, the

independence among the modalities is also important as

it may provide additional cues in obtaining a decision.

When fusing multiple modalities, this correlation and

independence may equally provide valuable insight

based on a particular scenario or context.

• The different modalities usually have varying confi-

dence levels in accomplishing different tasks. For

example, for detecting the event of a human crying, we

may have higher confidence in an audio modality than a

video modality.

• The capturing and processing of media streams may

involve certain costs, which may influence the fusion

process. The cost may be incurred in units of time,

money or other units of measure. For instance, the task

of object localization could be accomplished cheaply

by using a RFID sensor compared to using a video

camera.

The above characteristics of multiple modalities influ-

ence the way the fusion process is carried out. Due to these

varying characteristics and the objective tasks that need to

be carried out, several challenges may appear in the mul-

timodal fusion process as stated in the following:

• Levels of fusion. One of the earliest considerations is to

decide what strategy to follow when fusing multiple

modalities. The most widely used strategy is to fuse the

information at the feature level, which is also known as

early fusion. The other approach is decision level

fusion or late fusion [45, 121] which fuses multiple

modalities in the semantic space. A combination of

these approaches is also practiced as the hybrid fusion

approach [144].

• How to fuse? There are several methods that are used in

fusing different modalities. These methods are parti-

cularly suitable under different settings and are

described in this paper in greater detail. The discussion

also includes how the fusion process utilizes the feature

and decision level correlation among the modalities

[103], and how the contextual [100] and the confidence

information [18] influences the overall fusion process.

• When to fuse? The time when the fusion should take

place is an important consideration in the multimodal

fusion process. Certain characteristics of media, such as

varying data capture rates and processing time of the

media, poses challenges on how to synchronize the

overall process of fusion. Often this has been addressed

by performing the multimedia analysis tasks (such as

event detection) over a timeline [29]. A timeline refers

to a measurable span of time with information denoted

at designated points. The timeline-based accomplish-

ment of a task requires identification of designated

points at which fusion of data or information should

take place. Due to the asynchrony and diversity among

streams and due to the fact that different analysis tasks

are performed at different granularity levels in time, the

identification of these designated points, i.e. when the

fusion should take place, is a challenging issue [8].

• What to fuse? The different modalities used in a fusion

process may provide complementary or contradictory

information and therefore knowing which modalities

are contributing towards accomplishing an analysis task

needs to be understood. This is also related to finding

the optimal number of media streams [9, 143] or feature

sets required to accomplish an analysis task under the

specified constraints. If the most suitable subset is

unavailable, can one use alternate streams without

much loss of cost-effectiveness and confidence?

This paper presents a survey of the research related to

multimodal fusion for multimedia analysis in light of the

above challenges. Existing surveys in this direction are

mostly focused on a particular aspect of the analysis task,

such as multimodal video indexing [26, 120]; automatic

audio-visual speech recognition [106]; biometric audio-

visual speech synchrony [20]; multi-sensor management

for information fusion [146]; face recognition [153]; mul-

timodal human computer interaction [60, 97]; audio-visual

biometric [5]; multi-sensor fusion [79] and many others. In

spite of these literatures, a comprehensive survey focusing

on the different methodologies and issues related to mul-

timodal fusion for performing different multimedia analy-

sis tasks is still missing. The presented survey aims to

contribute in this direction. The fusion problems have also

been addressed in other domains such as machine learning

[48], data mining [24] and information retrieval [133],

however, the focus of this paper is restricted to the multi-

media research domain.

Consequently, this work comments on the state-of-the-

art literature that uses different multimodal fusion strate-

gies for various analysis tasks such as audio-visual person
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tracking, video summarization, multimodal dialog under-

standing, speech recognition and so forth. It also presents

several classifications of the existing literature based on the

fusion methodology and the level of fusion. Various issues

such as the use of correlation, context and confidence, and

the optimal modality selection that influences the perfor-

mance of a multimodal fusion process is also critically

discussed.

The remainder of this paper is organized as follows. In

Sect. 2, we first address the issue levels of fusion and

accordingly describe three levels (feature, decision and

hybrid) of multimodal fusion, their characteristics, advan-

tages and limitations. Section 3 addresses the issue how to

fuse by describing the various fusion methods that have

been used for multimedia analysis. These fusion methods

have been elaborated under three different categories—the

rule-based methods, the estimation-based methods, and the

classification-based methods. In this section, we analyze

various related works from the perspective of the level of

fusion, the modality used, and the multimedia analysis task

performed. A discussion regarding the different fusion

methodologies and the works we analyzed is also presented

here. Some other issues (e.g. the use of correlation, confi-

dence, and the context), also related to how to fuse, are

described in Sect. 4. This section further elaborates the

issues when to fuse (the synchronization), and what to fuse

(the optimal media selection). Section 5 provides a brief

overview of the publicly available data sets and evaluation

measures in multimodal fusion research. Finally, Sect. 6

concludes the paper by pointing out the open issues and

possible avenues of further research in the area of multi-

modal fusion for multimedia analysis.

2 Levels of fusion

The fusion of different modalities is generally performed at

two levels: feature level or early fusion and decision level

or late fusion [3, 45, 121]. Some researchers have also

followed a hybrid approach by performing fusion at the

feature as well as the decision level.

Figure 1 shows different variants of the feature, deci-

sion, and hybrid level fusion strategies. We now describe

the three levels of fusion and highlight their pros and cons.

Various works that have adopted different fusion models at

different levels (feature, decision and hybrid) in different

scenarios will be discussed in Sect. 3.

2.1 Feature level multimodal fusion

In the feature level or early fusion approach, the features

extracted from input data are first combined and then sent

as input to a single analysis unit (AU) that performs the

analysis task. Here, features refer to some distinguishable

properties of a media stream. For example, the feature

fusion (FF) unit merges the multimodal features such as

skin color and motion cues into a larger feature vector

which is taken as the input to the face detection unit in

order to detect a face. An illustration of this is provided in

Fig. 1. While Fig. 1a shows an AU that receives a set of

either features or decisions and provides a semantic-level

decision, Fig. 1b shows a FF unit that receives a set of

features F1 to Fn and combines them into a feature vector

F1,n. Figure 1d shows an instance of the feature level

multimodal analysis task in which the extracted features

are first fused using a FF unit and then the combined fea-

ture vector is passed to an AU for analysis.

In the feature level fusion approach, the number of

features extracted from different modalities may be

numerous, which may be summarized as [138, 150]:

• Visual features. It may include features based on color

(e.g. color histogram), texture (e.g. measures of

coarseness, directionality, contrast), shape (e.g. blobs),

and so on. These features are extracted from the entire

image, fixed-sized patches or blocks, segmented image

blobs or automatically detected feature points.

• Text features. The textual features can be extracted

from the automatic speech recognizer (ASR) transcript,

video optical character recognition (OCR), video closed

caption text, and production metadata.

• Audio features. The audio features may be generated

based on the short time Fourier transform including the

fast Fourier transform (FFT), mel-frequency cepstral

coefficient (MFCC) together with other features such as

zero crossing rate (ZCR), linear predictive coding

(LPC), volume standard deviation, non-silence ratio,

spectral centroid and pitch.

• Motion features. This can be represented in the form of

kinetic energy which measures the pixel variation

within a shot, motion direction and magnitude histo-

gram, optical flows and motion patterns in specific

directions.

• Metadata. The metadata features are used as supple-

mentary information in the production process, such as

the name, the time stamp, the source of an image or

video as well as the duration and location of shots.

They can provide extra information to text or visual

features.

The feature level fusion is advantageous in that it can

utilize the correlation between multiple features from dif-

ferent modalities at an early stage which helps in better

task accomplishment. Also, it requires only one learning

phase on the combined feature vector [121]. However, in

this approach it is hard to represent the time synchroniza-

tion between the multimodal features [144]. This is because
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the features from different but closely coupled modalities

could be extracted at different times. Moreover, the fea-

tures to be fused should be represented in the same format

before fusion. In addition, the increase in the number of

modalities makes it difficult to learn the cross-correlation

among the heterogeneous features. Various approaches to

resolve the synchronization problem are discussed in

Sect. 4.2.

Several researchers have adopted the early fusion

approach for different multimedia analysis tasks. For

instance, Nefian et al. [86] have adopted an early fusion

approach in combining audio and visual features for speech

recognition.

2.2 Decision level multimodal fusion

In the decision level or late fusion approach, the analysis

units first provide the local decisions D1 to Dn (see Fig. 1)

that are obtained based on individual features F1 to Fn. The

local decisions are then combined using a decision fusion

(DF) unit to make a fused decision vector that is analyzed

further to obtain a final decision D about the task or the

hypothesis. Here, a decision is the output of an analysis

unit at the semantic level. An illustration of DF unit is

provided in Fig. 1c whereas Fig. 1e shows an instance of

the decision level multimodal analysis in which the deci-

sions obtained from various AUs are fused using a DF unit

and the combined decision vector is further processed by

an AU.

The decision level fusion strategy has many advantages

over feature fusion. For instance, unlike feature level

fusion, where the features from different modalities (e.g.

audio and video) may have different representations, the

decisions (at the semantic level) usually have the same

representation. Therefore, the fusion of decisions becomes

easier. Moreover, the decision level fusion strategy offers

scalability (i.e. graceful upgradation or degradation) in

terms of the modalities used in the fusion process, which is

difficult to achieve in the feature level fusion [9]. Another

advantage of late fusion strategy is that it allows us to use
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the most suitable methods for analyzing each single

modality, such as hidden Markov model (HMM) for audio

and support vector machine (SVM) for image. This pro-

vides much more flexibility than the early fusion.

On the other hand, the disadvantage of the late fusion

approach lies in its failure to utilize the feature level cor-

relation among modalities. Moreover, as different classifi-

ers are used to obtain the local decisions, the learning

process for them becomes tedious and time-consuming.

Several researchers have successfully adopted the

decision level fusion strategy. For example, Iyenger et al.

[57] performed fusion of decisions obtained from a face

detector and a speech recognizer along with their syn-

chrony score by adopting two approaches—a linear

weighted sum and a linear weighted product.

2.3 Hybrid multimodal fusion

To exploit the advantages of both the feature level and the

decision level fusion strategies, several researchers have

opted to use a hybrid fusion strategy, which is a combi-

nation of both feature and decision level strategies. An

illustration of the hybrid level strategy is presented in

Fig. 1f where the features are first fused by a FF unit and

then the feature vector is analyzed by an AU. At the same

time, other individual features are analyzed by different

AUs and their decisions are fused using a DF unit. Finally,

all the decisions obtained from the previous stages are

further fused by a DF to obtain the final decision.

A hybrid fusion approach can utilize the advantages of

both early and late fusion strategies. Therefore, many

researchers ([16, 88, 149], etc.) have used the hybrid fusion

strategy to solve various kinds of multimedia analysis

problems.

3 Methods for multimodal fusion

In this section, we provide an overview of the different

fusion methods that have been used by the multimedia

researchers to perform various multimedia analysis tasks.

The advantages and the drawbacks of each method are also

highlighted. The fusion methods are divided into the fol-

lowing three categories: rule-based methods, classification-

based methods, and estimation-based methods (as shown in

Fig. 2). This categorization is based on the basic nature of

these methods and it inherently means the classification of

the problem space, such as, a problem of estimating

parameters is solved by estimation-based methods. Simi-

larly the problem of obtaining a decision based on certain

observation can be solved by classification-based or rule-

based methods. However, if the observation is obtained

from different modalities, the method would require fusion

of the observation scores before estimation or making a

classification decision.

While the next three sections (Sect. 3.1–3.3) have been

devoted to the above three classes of fusion methods; in the

last section (Sect. 3.4), we present a comparative analysis

of all the fusion methods.

3.1 Rule-based fusion methods

The rule-based fusion method includes a variety of basic

rules of combining multimodal information. These include

statistical rule-based methods such as linear weighted

fusion (sum and product), MAX, MIN, AND, OR, majority

voting. The work by Kittler et al. [69] has provided the

theoretical introduction of these rules. In addition to these

rules, there are custom-defined rules that are constructed

for the specific application perspective. The rule-based

schemes generally perform well if the quality of temporal

alignment between different modalities is good. In the

following, we describe some representative works that

have adopted the rule-based fusion strategy.

3.1.1 Linear weighted fusion

Linear weighted fusion is one of the simplest and most

widely used methods. In this method, the information

obtained from different modalities is combined in a linear

fashion. The information could be the low-level features

(e.g. color and motion cues in video frames) [136] or the

semantic-level decisions (i.e. occurrence of an event) [90].

To combine the information, one may assign normalized

weights to different modalities. In literature, there are

various methods for weight normalization such as min–

max, decimal scaling, z score, tanh-estimators and sigmoid

function [61]. Each of these methods have pros and cons.

The min–max, decimal scaling and z score methods are

preferred when the matching scores (minimum and maxi-

mum values for min–max, maximum for decimal scaling

and mean and standard deviation for z score) of the indi-

vidual modalities can be easily computed. But these

methods are sensitive to outliers. On the other hand, tanh

Multimodal fusion methods

Custom-defined Rule

Rule-based
methods

Linear Weighted Fusion

Majority Voting Rule

Classification-based
methods

Estimation-based
methods

Kalman Filter

Particle Filter

Extended Kalman Filter
Support Vector Machine

Bayesian Inference

Dampster-Shafer Theory
Dynamic Bayesian Networks

Neural Networks
Maximum Entropy Model

Fig. 2 A categorization of the fusion methods
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normalization method is both robust and efficient but

requires estimation of the parameters using training. Note

that the absence of prior knowledge of the weights usually

equals the weight assigned to them.

The general methodology of linear fusion can be

described as follows. Let Ii, 1 B i B n be a feature vector

obtained from ith media source (e.g. audio, video etc.) or a

decision obtained from a classifier.1 Also, let wi, 1 B i B n

be the normalized weight assigned to the ith media source

or classifier. These vectors, assuming that they have the

same dimensions, are combined by using sum or product

operators and used by the classifiers to provide a high-level

decision. This is shown in Eqs. 1 and 2, which are as

follows:

I ¼
Xn

i¼1

wi � Ii ð1Þ

I ¼
Yn

i¼1

Ii
wi ð2Þ

This method is computationally less expensive compared

to other methods. However, a fusion system needs to

determine and adjust the weights for the optimal accom-

plishment of a task.

Several researchers have adopted the linear fusion

strategy at the feature level for performing various multi-

media analysis tasks. Examples include Foresti and Snidaro

[40], Yang et al. [152] for detecting and tracking people,

and Wang et al. [136] and Kankanhalli et al. [67] for video

surveillance and traffic monitoring. The linear fusion

strategy has also been adopted at the decision level by

several researchers. These include Neti et al. [87] for

speaker recognition and speech event detection, Iyengar

et al. [57] for monologue detection, Iyengar et al. [58] for

semantic concept detection and annotation in video, Lucey

et al. [78] for spoken word recognition, Hua and Zhang

[55] for image retrieval, McDonald and Smeaton [83] for

video shot retrieval and Jaffre and Pinquier [59] for person

identification. We briefly describe these works in the

following.

Foresti and Snidaro [40] used a linear weighted sum

method to fuse trajectory information of the objects. The

video data from each sensor in a distributed sensor network

is processed for moving object detection (e.g. a blob). Once

the blob locations are extracted from all sensors, their

trajectory coordinates are averaged in a linear weighted

fashion in order to estimate the correct location of the blob.

The authors have also assigned weights to different sen-

sors; however, the determination of these weights has been

left to the user. Similar to [40], Yang et al. [152] also

performed linear weighted fusion of the location informa-

tion of the objects. However, unlike Foresti and Snidaro

[40], Yang et al. [152] assigned equal weights to the dif-

ferent modalities.

The linear weighted sum strategy at the feature level has

also been proposed by Wang et al. [136] for human

tracking. In this work, the authors have fused several

spatial cues such as color, motion and texture by assigning

appropriate weights to them. However, in the fusion pro-

cess, the issue of how different weights should be assigned

to different cues has not been discussed. This work was

extended by Kankanhalli et al. [67] for face detection,

monologue detection, and traffic monitoring. In both

works, the authors used a sigmoid function to normalize the

weights of different modalities.

Neti et al. [87] obtained individual decisions for speaker

recognition and speech event detection from audio features

(e.g. phonemes) and visual features (e.g. visemes). They

adopted a linear weighted sum strategy to fuse these indi-

vidual decisions. The authors used the training data to

determine the relative reliability of the different modalities

and accordingly adjusted their weights. Similar to this

fusion approach, Iyengar et al. [57] fused multiple

modalities (face, speech and the synchrony score between

them) by adopting two approaches at the decision level—a

linear weighted sum and a linear weighted product. This

methodology was applied for monologue detection. The

synchrony or correlation between face and speech has been

computed in terms of mutual information between them by

considering the audio and video features as locally

Gaussian distributed. The mutual information is a measure

of the information of one modality conveyed about another.

The weights of the different modalities have been deter-

mined at the training stage. While fusing different modali-

ties, the authors have found the linear weighted sum

approach to be a better option than the linear weighted

product for their data set. This approach was later extended

for semantic concept detection and annotation in video by

Iyengar et al. [58]. Similar to [57], the linear weighted

product fusion strategy has also been adopted by Jaffre and

Pinquier [59] for fusing different modalities. In this work,

the authors have proposed a multimodal person identifi-

cation system by automatically associating voice and

image using a standard product rule. The association is

done through fusion of video and audio indexes. The pro-

posed work used a common indexing mechanism for both

audio and video based on frame-by-frame analysis. The

audio and video indexes were fused using a product fusion

rule at the late stage.

In another work, Lucey et al. [78] performed a linear

weighted fusion for the recognition of spoken words. The

word recognizer modules, which work on audio and video

data separately, provided decisions about a word in terms

1 To maintain consistency, we will use these notations for modalities

in rest of this paper.
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of the log likelihoods. These decisions are linearly fused by

assigning weights to them. To determine the weights of the

two decision components, the authors have chosen the

discrete values (0, 0.5 and 1), which is a simple but non-

realistic choice.

A decision level fusion scheme proposed by Hua and

Zhang [55] is based on the human’s psychological obser-

vations which they call ‘‘attention’’. The core idea of this

approach is to fuse the decisions taken based on different

cues such as the strength of a sound, the speed of a motion,

the size of an object and so forth. These cues are consid-

ered as the attention properties and are measured by

obtaining the set of features including color histogram,

color moment, wavelet, block wavelet, correlogram, and

blocked correlogram. The authors proposed a new fusion

function which they call ‘‘attention fusion function’’. This

new function is a variation of a linear weighted sum

strategy and is derived by adding the difference of two

decisions to their average (please refer to [55] for forma-

lism). The authors have demonstrated the utility of the

proposed attention based fusion model for image retrieval.

Experimental results have shown that the proposed

approach performed better in comparison to average or

maximal fusion rules.

In the context of video retrieval, McDonald and

Smeaton [83] have employed a decision level linear

weighted fusion strategy to combine the normalized scores

and ranks of the retrieval results. The normalization was

performed using max–min method. The video shots were

retrieved using different modalities such as text and mul-

tiple visual features (color, edge and texture). In this work,

the authors found that the combining of scores with dif-

ferent weights has been best for combining text and visual

results for TRECVid type searches, while combining

scores and ranks with equal weights have been best for

combining multiple features for a single query image. A

similar approach was adopted by Yan et al. [151] for re-

ranking the video. In this work, the authors used a linear

weighted fusion strategy at the decision level in order to

combine the retrieval scores obtained based on text and

other modalities such as audio, video and motion.

From the works discussed above, it is observed that the

optimal weight assignment is the major drawback of

the linear weighted fusion method. The issue of finding the

appropriate weight (or confidence level) for different

modalities is an open research issue. This issue is further

elaborated in Sect. 4.1.2.

3.1.2 Majority voting

Majority voting is a special case of weighted combination

with all weights to be equal. In majority voting based

fusion, the final decision is the one where the majority of

the classifiers reach a similar decision [113]. For example,

Radova and Psutka [108] have presented a speaker iden-

tification system by employing multiple classifiers. Here,

the raw speech samples from the speaker are treated as

features. From the speech samples, a set of patterns are

identified for each speaker. The pattern usually contains a

current utterance of several vowels. Each pattern is clas-

sified by two different classifiers. The output scores of all

the classifiers were fused in a late integration approach to

obtain the majority decision regarding the identity of the

unknown speaker.

3.1.3 Custom-defined rules

Unlike the above approaches that use standard statistical

rules, Pfleger [100] presented a production rule-based

decision level fusion approach for integrating inputs from

pen and speech modality. In this approach, each input

modality (e.g. pen input) is interpreted within its context

of use, which is determined based on the previously

recognized input events and dialog states belonging to the

same user turn. The production rule consists of a

weighting factor and a condition-action part. These rules

are further divided into three classes that work together to

contribute to the fusion process. First, the synchronization

rules are applied to track the processing state of the

individual recognizer (e.g. speech recognizer) and in case

of pending recognition results the other classes of rules

are not fired to ensure synchronization. Second, the rules

for multimodal event interpretation are used to determine

which of the input events has the lead and need to be

integrated. Furthermore, there may be conflicting events

due to the recognition or interpretation error, which are

addresses by obtaining the event with highest score.

Third, the rules for unimodal interpretations are adopted

when one of the recognizers do not produce any mean-

ingful result, for example a time-out by one recognizer,

which will lead to a single modality based decision

making. This approach is further extended [101] and

applied for discourse processing in a multiparty dialog

scenario.

In another work, Holzapfel et al. [49] showed an

example of multimodal integration approach using custom-

defined rules. The authors combined speech and 3D

pointing gestures as a means of natural interaction with a

robot in a kitchen. Multimodal fusion is performed at the

decision level based on the n-best lists generated by each of

the event parsers. Their experiments showed that there is a

close correlation in time of speech and gesture. Similarly,

in [32], a rule-based system has been proposed for fusion of

speech and 2D gestures in human computer interaction.

Here the audio and gesture modalities are fused at the

decision level. A drawback of these approaches is the
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overhead to determine the best action based on n-best fused

input.

In addition to the video, audio and gesture, other

modalities such as closed caption text and external meta-

data have been used for several applications such as video

indexing and content analysis for team sports videos. On

this account, Babaguchi et al. [12] presented a knowledge-

based technique to leverage the closed caption text of

broadcast video streams for indexing video shots based on

the temporal correspondence between them. The closed

caption text features are extracted as keywords and the

video features are extracted as temporal changes of color

distribution. This work presumably integrates textual and

visual modalities using a late fusion strategy.

3.1.4 Remarks on rule-based fusion methods

A summary of all the works (related to the rule-based

fusion methods) described above is provided in Table 1. As

can be seen from the table, in rule-based fusion category,

linear weighted fusion method has been widely used by

researchers. It is a simple as well as computationally less

expensive approach. This method performs well if the

weights of different modalities are appropriately deter-

mined, which has been a major issue in using this method.

In the existing literature, this method has been used for face

detection, human tracking, monologue detection, speech

and speaker recognition, image and video retrieval, and

person identification. On the other hand, the fusion using

custom-defined rules has the flexibility of adding rules

based on the requirements. However, in general, these rules

are domain specific and defining the rules requires proper

knowledge of the domain. This fusion method is widely

used in the domain of multimodal dialog systems and

sports video analysis.

3.2 Classification-based fusion methods

This category of methods includes a range of classification

techniques that have been used to classify the multimodal

observation into one of the pre-defined classes. The

methods in this category are the support vector machine,

Table 1 A list of the representative works in the rule-based fusion methods category

Fusion

method

Level of

fusion

The work Modalities Multimedia analysis task

Linear weighted

fusion

Feature Foresti and Snidaro [40] Video (trajectory coordinates) Human tracking

Wang et al. [136] Video (color, motion and texture Human tracking

Yang et al. [152] Video (trajectory coordinates) Human tracking

Kankanhalli et al. [67] Video (color, motion and texture) Face detection, monologue

detection and traffic

monitoring

Decision Neti et al. [87] Audio (phonemes) and visual (visemes) Speaker recognition

Lucey et al. [78] Audio (MFCC), video (Eigenlip) Spoken word recognition

Iyenger et al. [57, 58] Audio (MFCC), video (DCT of the face

region) and the synchrony score

Monologue detection, semantic

concept detection and

annotation in video

Hua and Zhang [55] Image (six features: color histogram,

color moment, wavelet, block wavelet,

correlagram, blocked correlagram)

Image retrieval

Yan et al. [151] Text (closed caption, video OCR), audio,

video (color, edge and texture

histogram), motion

Video retrieval

McDonald and Smeaton

[83]

Text and video (color, edge and texture) Video retrieval

Jaffre and Pinquier [59] Audio, video index Person identification from

audio-visual sources

Majority voting rule Decision Radova and Psutka

[108]

Raw speech (set of patterns) Speaker identification from

audio sources

Custom-defined

rules

Decision Babaguchi et al. [12] Visual (color), closed caption text

(keywords)

Semantic sports video indexing

Corradini et al. [32] Speech, 2D gesture Human computer interaction

Holzapfel et al. [49] Speech, 3D pointing gesture Multimodal interaction with robot

Pfleger [100] Pen gesture, speech Multimodal dialog system
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Bayesian inference, Dempster–Shafer theory, dynamic

Bayesian networks, neural networks and maximum entropy

model. Note that we can further classify these methods as

generative and discriminative models from the machine

learning perspective. For example, Bayesian inference and

dynamic Bayesian networks are generative models, while

support vector machine and neural networks are discrimi-

native models. However, we skip further discussion on

such classification for brevity.

3.2.1 Support vector machine

Support vector machine (SVM) [23] has become increas-

ingly popular for data classification and related tasks. More

specifically, in the domain of multimedia, SVMs are being

used for different tasks including feature categorization,

concept classification, face detection, text categorization,

modality fusion, etc. Basically SVM is considered as a

supervised learning method and is used as an optimal

binary linear classifier, where a set of input data vectors are

partitioned as belonging to either one of the two learned

classes. From the perspective of multimodal fusion, SVM

is used to solve a pattern classification problem, where the

input to this classifier is the scores given by the individual

classifier. The basic SVM method is extended to create a

non-linear classifier by using the kernel concept, where

every dot product in the basic SVM formalism is replaced

using a non-linear kernel function.

Many existing literature use the SVM-based fusion

scheme. Adams et al. [3] adopted a late fusion approach in

order to detect semantic concepts (e.g. sky, fire-smoke) in

videos using visual, audio and textual modalities. They use

a discriminate learning approach while fusing different

modalities at the semantic level. For example, the scores of

all intermediate concept classifiers are used to construct a

vector that is passed as the semantic feature in SVM as

shown in Fig. 3. This figure depicts that audio, video and

text scores are combined in a high-dimensional vector

before being classified by SVM. The black and white dots

in the figure represent two semantic concepts. A similar

approach has been adopted by Iyengar et al. [58] for con-

cept detection and annotation in video.

Wu et al. [141] reported two approaches to study the

optimal combination of multimodal information for video

concept detection, which are gradient-descent-optimization

linear fusion (GLF) and the super-kernel nonlinear fusion

(NLF). In GLF, an individual kernel matrix is first con-

structed for each modality providing a partial view of the

target concept. The individual kernel matrices are then

fused based on a weighted linear combination scheme.

Gradient-descent technique is used to find the optimal

weights to combine the individual kernels. Finally, SVM is

used on the fused kernel matrix to classify the target

concept. Unlike GLF, the NLF method is used for non-

linear combination of multimodal information. This

method is based on [3], where SVM is first used as a

classifier for the individual modality and then super kernel

non-linear fusion is applied for optimal combination of the

individual classifier models. The experiments on the

TREC-2003 Video Track benchmark showed that NLF and

GLF performed 8.0 and 5.0% better than the best single

modality, respectively. Furthermore, NLF had an average

3.0% better performance than GLF. The NLF fusion

approach was later extended by the authors [143] in order

to obtain the best independent modalities (early fusion) and

the strategy to fuse the best modalities (late fusion).

A hybrid fusion approach has been presented by Ayache

et al. [11] as normalized early fusion and contextual late

fusion for semantic indexing of multimedia resources using

visual and text cues. Unlike other works, in case of nor-

malized early fusion, each entry of the concatenated vector

is normalized and then fused. In the case of contextual late

fusion, the second layer classifier based on SVM is used to

exploit the contextual relationship between the different

concepts. Here, the authors have also presented a kernel-

based fusion scheme based on SVMs, where the kernel

functions are chosen according to the different modalities.

In the area of image classification, Zhu et al. [156] have

reported a multimodal fusion framework to classify the

images that have embedded text within their spatial coor-

dinates. The fusion process followed two steps. At first, a

bag-of-words model [73] is applied to classify the given

image that considers the low-level visual features. In par-

allel, the text detector finds the text existence in the image

using text color, size, location, edge density, brightness,

contrast, etc. In the second step, a pair-wise SVM classifier

is used for fusing the visual and textual features together.

This is illustrated in Fig. 4.

In a recent work, Bredin and Chollet [19] proposed a

biometric-based identification scheme of a talking face.

Audio scores
I1,1

I1,2

I1,3

I2,1

I2,2

I2,3

I3,1

I3,2

Video scores

Text scores

Concept
space 1

Concept
space 2

High dimension
vector SVM

boundary

Fig. 3 SVM based score space classification of combined informa-

tion from multiple intermediate concepts [3]
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The key idea was to utilize the synchrony measure between

the talking face’s voice and the corresponding video

frames. Audio and visual sample rates are balanced by

linear interpolation. By adopting a late fusion approach, the

scores from the monomodal biometric speaker verification,

face recognition, and synchrony were combined and passed

to the SVM model, which provided the decision about the

identity of the talking face. On another front, Aguilar et al.

[4] provided a comparison between the rule-based fusion

and learning-based fusion (trained) strategy. The scores of

face, fingerprint and online signature are combined using

both the Sum rule and radial basis function SVM (RBF

SVM) for comparison. The experimental results demon-

strates that learning-based RBF SVM scheme outperforms

the rule-based scheme based on some appropriate param-

eter selection.

Snoek et al. [121] have compared both the early and late

fusion strategies for semantic video analysis. Using the

former approach, the visual vector has been concatenated

with the text vector and then normalized to use as input in

SVM to learn the semantic concept. In the latter approach

the authors have adopted a probabilistic aggregation

mechanism. Based on an experiment on 184 h of broadcast

video using 20 semantic concepts, this study concluded that

a late fusion strategy provided better performance for most

concepts, but it bears an increased learning effort. The

conclusion also suggested that when the early fusion per-

formed better, the improvements were significant. How-

ever, which of the fusion strategies is better in which case

needs further investigation.

3.2.2 Bayesian inference

The Bayesian inference is often referred to as the ‘classi-

cal’ sensor fusion method because it has been widely used

and many other methods are based on it [45]. In this

method, the multimodal information is combined as per the

rules of probability theory [79]. The method can be applied

at the feature level as well as at the decision level. The

observations obtained from multiple modalities or the

decisions obtained from different classifiers are combined,

and an inference of the joint probability of an observation

or a decision is derived [109].

The Bayesian inference fusion method is briefly

described as follows. Let us fuse the feature vectors or the

decisions ðI1; I2; . . .; InÞ obtained from n different modali-

ties. Assuming that these modalities are statistically inde-

pendent, the joint probability of an hypothesis H based on

the fused feature vectors or the fused decisions can be

computed as [102]:

pðHjI1; I2; . . .; InÞ ¼
1

N

Yn

k¼1

pðIkjHÞwk ð3Þ

where N is used to normalize the posterior probability

estimate pðHjI1; I2; . . .; InÞ: The term wj is the weight of the

kth modality, and
Pn

k¼1 wj ¼ 1: This posterior probability

is computed for all the possible hypotheses, E. The

hypothesis that has the maximum probability is determined

using the MAP rule Ĥ ¼ argmaxH2E pðHjI1; I2; . . .; InÞ:
The Bayesian inference method has various advantages.

Based on the new observations, it can incrementally

compute the probability of the hypothesis being true. It

allows for any prior knowledge about the likelihood of the

hypothesis to be utilized in the inference process. The new

observation or the decision is used to update the a priori

probability in order to compute the posterior probability of

the hypothesis. Moreover, in the absence of empirical data,

this method permits the use of a subjective probability

estimate for the a priori of hypotheses [140].

These advantages of the Bayesian method are seen as its

limitations in some cases. Bayesian inference method

requires a priori and the conditional probabilities of the

hypothesis to be well defined [110]. In absence of any

knowledge of suitable priors, the method does not perform

well. For example, in gesture recognition scenarios, it is

sometimes difficult to classify a gesture of two stretched

fingers in ‘‘V’’ form. This gesture can be interpreted as

either ‘‘victory sign’’ or ‘‘sign indicating number two’’. In

this case, since the priori probability of both the classes

would be 0.5, the Bayesian method would provide

ambiguous results. Another limitation of this method is that

it is often found unsuitable for handling mutually exclusive

hypotheses and general uncertainty. It means that only one

hypothesis can be true at any given time. For example,

Bayesian inference method would consider two events of

human’s running and walking mutually exclusive and

cannot handle a fuzzy event of human’s fast walking or

slow running.

Bayesian inference method has been successfully used

to fuse multimodal information (at the feature level and at

the decision level) for performing various multimedia

Image

Low level visual cues Text detector

Bag-of-words model Text lines

Probabilities Related features

SVM-based classifier

Fig. 4 Multimodal fusion using visual and text cues for image

classification based on pair-wise SVM classifier [156]
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analysis tasks. An example of Bayesian inference fusion at

the feature level is the work by Pitsikalis et al. [102] for

audio-visual speech recognition. Meyer et al. [85] and Xu

and Chua [149] have used the Bayesian inference method

at the decision level for spoken digit recognition and sports

video analysis, respectively; while Atrey et al. [8]

employed this fusion strategy at both the feature as well as

the decision level for event detection in the multimedia

surveillance domain. These works are described in the

following.

Pitsikalis et al. [102] used the Bayesian inference met-

hod to combine the audio-visual feature vectors. The audio

feature vector included 13 static MFCC and their deriva-

tives, while the visual feature vector was formed by con-

catenating 6 shapes and 12 texture features. Based on the

combined features, the joint probability of a speech seg-

ment is computed. In this work, the authors have also

proposed to model the measurement of noise uncertainty.

At the decision level, Meyer et al. [85] fused the deci-

sions obtained from speech and visual modalities. The

authors have first extracted the MFCC features from speech

and the lip contour features from the speaker’s face in the

video, and then obtained individual decisions (in terms of

probabilities) for both using HMM classifiers. These

probability estimates are then fused using the Bayesian

inference method to estimate the joint probability of a

spoken digit. Similar to this work, Xu and Chua [149] also

used the Bayesian inference fusion method for integrating

the probabilistic decisions about the offset and non-offset

events detected in a sport video. These events have been

detected by fusing audio-visual features with textual clues

and by employing a HMM classifier. In this work, the

authors have shown that the Bayesian inference has com-

parable accuracy to the rule-based schemes.

In another work, Atrey et al. [8] adopted a Bayesian

inference fusion approach at hybrid levels (feature level as

well as decision level). The authors demonstrated the

utility of this fusion (they call it ‘assimilation’) approach

for event detection in a multimedia surveillance scenario.

The feature level assimilation was performed at the intra-

media stream level and the decision level assimilation was

adopted at the inter-media stream level.

3.2.3 Dempster–Shafer theory

Although the Bayesian inference fusion method allows for

uncertainty modeling (usually by Gaussian distribution),

some researchers have preferred to use the Dempster–

Shafer (D–S) evidence theory since it uses belief and

plausibility values to represent the evidence and their

corresponding uncertainty [110]. Moreover, the D–S

method generalizes the Bayesian theory to relax the

Bayesian inference method’s restriction on mutually

exclusive hypotheses, so that it is able to assign evidence to

the union of hypotheses [140].

The general methodology of fusing the multimodal

information using the D–S theory is as follows. The D–S

reasoning system is based on a fundamental concept of

‘‘the frame of discernment’’, which consists of a set H of

all the possible mutually exclusive hypotheses. An

hypothesis is characterized by belief and plausibility. The

degree of belief implies a lower bound of the confidence

with which a hypothesis is detected as true, whereas the

plausibility represents the upper bound of the possibility

that the hypothesis could be true. A probability is assigned

to every hypothesis H 2 PðHÞ using a belief mass function

m : PðHÞ ! 0; 1½ � . The decision regarding a hypothesis is

measured by a ‘‘confidence interval’’ bounded by its basic

belief and plausibility values, as shown in Fig. 5.

When there are multiple independent modalities, the

D–S evidence combination rule is used to combine them.

Precisely, the mass of a hypothesis H based on two

modalities, Ii and Ij, is computed as:

ðmi � mjÞðHÞ ¼
P

Ii\Ij¼H miðIiÞmjðIjÞ
1�

P
Ii\Ij¼£ miðIiÞmjðIjÞ

ð4Þ

Note that, the weights can also be assigned to different

modalities that are fused.

Although the Dempster–Shafer fusion method has been

found more suitable for handling mutually inclusive

hypotheses, this method suffers from the combinatorial

explosion when the the number of frames of discernment is

large [27].

Some of the representative works that have used the

D–S fusion method for various multimedia analysis tasks

are Bendjebbour et al. [16] (at hybrid level) and Mena and

Malpica [84] (at the feature level) for segmentation of

satellite images, Guironnet et al. [44] for video classifica-

tion, Singh et al. [116] for finger print classification, and

[110] for human computer interaction (at the decision

level).

Bendjebbour et al. [16] proposed to use the D–S theory

to fuse the mass functions of two regions (cloud and no
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Fig. 5 An illustration of the belief and plausibility in the D–S theory

[140]
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cloud) of the image obtained from radar. They performed

fusion at two levels the feature level and the decision level.

At the feature level, the pixel intensity was used as a fea-

ture and the mass of a given pixel based on two sensors was

computed and fused; while at the decision level, the deci-

sions about a pixel obtained from the HMM classifier were

used as mass and then the HMM outputs were combined.

Similar to this work, Mena and Malpica [84] also used the

D–S fusion approach for the segmentation of color images

for extracting information from terrestrial, aerial or satellite

images. However, they extracted the information of the

same image from three different sources: the location of an

isolated pixel, a group of pixels, and a pair of pixels. The

evidences obtained based on the location analysis were

fused using the D–S evidence fusion strategy.

Guironnet et al. [44] extracted low-level (color or tex-

ture) descriptors from a TREC video and applied a SVM

classifier to recognize the pre-defined concepts (e.g.

‘beach’ or ‘road’) based on each descriptor. The SVM

classifier outputs are integrated using the D–S fusion

approach, they call it the ‘‘transferable belief model’’. In

the area of biometrics, Singh et al. [116] used the D–S

theory to combine the output scores of three different finger

print classification algorithms based on the Minutiae, ridge

and image pattern features. The authors showed that the

D–S theory of fusing three independent evidences outper-

formed the individual approaches. Recently, Reddy [110]

also used the D–S theory for fusing the outputs of two

sensors, the Hand Gesture sensor and the Brain Computing

Interface sensor. Two concepts, ‘‘Come’’ and ‘‘Here’’ were

detected using these two sensors. The fusion results

showed that the D–S fusion approach helps in resolving the

ambiguity in the sensors.

3.2.4 Dynamic Bayesian networks

Bayesian inferencing can be extended to a network (graph)

in which the nodes represent random variable (observations

or states) of different types, e.g. audio and video; and the

edges denote their probabilistic dependencies. For exam-

ple, as shown in Fig. 6, a speaker detection problem can be

depicted by a Bayesian Network [30]. The speaker node

value is determined based on the value of three interme-

diate nodes ‘visible’, ‘frontal’ and ‘speech’, which are

inferred from the measurement nodes ‘skin’, ‘texture’,

‘face’, ‘mouth’ and ‘sound’. The figure shows the depen-

dency of nodes upon each other. However, the network

shown in Fig. 6 is a static one, meaning it depicts the state

at a particular time instant.

A Bayesian Network works as a dynamic Bayesian

network (DBN) when the temporal aspect being added to it

as shown in Fig. 7. A DBN is also called a probabilistic

generative model or a graphical model. Due to the fact that

Kiosk

Speaker

Visible Frontal

Skin Texture
Face
Det

Speech

Mouth Sound

Fig. 6 An example of a static Bayesian networks [30]
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Fig. 7 An example of a dynamic Bayesian networks [30]
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these models describe the observed data in terms of the

process that generate them, they are called generative.

They are termed as probabilistic because they describe

probabilistic distributions rather than the sensor data.

Moreover, since they have useful graphical representations,

they are also called graphical [15]. Although the DBNs

have been used with different names such as probabilistic

generative models, graphical models, etc. for a variety of

applications, the most popular and simplest form of a DBN

is the HMM.

The DBNs have a clear advantage over the other

methods in two aspects. First, they are capable of modeling

the multiple dependencies among the nodes. Second, by

using them, the temporal dynamics of multimodal data can

easily be integrated [119]. These advantages make them

suitable for various multimedia analysis tasks that require

decisions to be performed using time-series data. Although

DBNs are very beneficial and widely used, the determi-

nation of the right DBN state is often seen as its problem

[81].

In the following, we briefly outline some representative

works that have used DBN in one form or the other.

Wang et al. [138] have used HMM for video shot clas-

sification. The authors have extracted both audio (cepstral

vector) and visual features (a gray-level histogram dif-

ference and two motion features) from each video frame

and used them as the input data for the HMM. While this

method used a single HMM that processed the joint

audio-visual features, Nefian et al. [86] used the coupled

HMM (CHMM), which is a generalization of the HMM.

The CHMM suits to multimodal scenarios where two or

more streams need to be integrated. In this work, the

authors have modeled the state asynchrony of the audio

features (MFCC) and visual features (2D-DCT coeffi-

cients of the lips region) while preserving their correlation

over time. This approach is used for speech recognition.

The work by Adams et al. [3] also used a Bayesian net-

work in addition to SVM and showed the comparison of

both for video shot retrieval.

Unlike Nefian et al. [86] who used CHMM, Bengio [17]

has presented the asynchronous HMM (AHMM) at the

feature level. The AHMM is a variant of HMM to deal with

the asynchronous data streams. The authors modeled the

joint probability distribution of asynchronous sequences—

speech (MFCC features) stream and video (shape and

intensity features) stream that described the same event.

This method was used for biometric identity verification.

Nock et al. [90] and [91] employed a set of HMMs

trained on joint sequences of audio and visual data. The

features used were MFCC from speech and DCT coeffi-

cients of the lip region in the face from video. The joint

features were presented to the HMMs at consecutive time

instances in order to locate a speaker. The authors also

computed the mutual information (MI) between the two

types of features and analyzed its effect on the overall

speaker location results. Similar to this work, Beal et al.

[15] have used graphical models to fuse audio-visual

observations for tracking a moving object in a cluttered,

noisy environment. The authors have modeled audio and

video observations jointly by computing their mutual

dependencies. The expectation-maximization algorithm

has been used to learn the model parameters from a

sequence of audio-visual data. The results were demon-

strated in a two microphones and one camera setting.

Similarly, Hershey et al. [46] also used a probabilistic

generative model to combine audio and video by learning

the dependencies between the noisy speech signal from a

single microphone and the fine-scale appearance and

location of the lips during speech.

It is important to note that all works described above

assume multiple modalities (usually audio-visual data) that

locally, as well as jointly, follow a Gaussian distribution. In

contrast to these works, Fisher et al. [39] have presented a

non-parametric approach to learn the joint distribution of

audio and visual features. They estimated a linear projec-

tion onto low-dimensional subspaces to maximize the

mutual information between the mapped random variables.

This approach was used for audio–video localization.

Although the non-parametric approach is free from any

parametric assumptions, they often suffer from imple-

mentation difficulties as the method results in a system of

undetermined equations. That is why, the parametric

approaches have been preferred [92]. With this rationale,

Noulas and Krose [92] also presented a two-layer Bayesian

network model for human face tracking. In the first layer,

the independent modalities (audio and video) are analyzed,

while the second layer performs the fusion incorporating

their correlation. A similar approach was also presented by

Zou and Bhanu [158] for tracking humans in a cluttered

environment. Recently, Town [131] also used the Bayesian

networks approach for multi-sensory fusion. In this work,

the visual information obtained from the calibrated cam-

eras is integrated with the ultrasonic sensor data at the

decision level to track people and devices in an office

building. The authors presented a large-scale sentient

computing system known as ‘‘SPIRIT’’.

In the context of news video analysis, Chua et al. [31]

have emphasized on the need to utilize multimodal features

(text with audio-visual) for segmenting news video into

story units. In their other work [25], the authors presented

an HMM-based multi-modal approach for news video story

segmentation by using a combination of features. The

feature set included visual-based features such as color,

object-based features such as face, video-text, temporal

features such as audio and motion, and semantic features

such as cue-phrases. Note that the fundamental assumption
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which is often considered with the DBN methods is the

independence among different observations/features.

However, this assumption does not hold true in reality. To

relax the assumption of independence between observa-

tions, Ding and Fan [38] presented a segmental HMM

approach to analyze a sports video. In segmental HMM,

each hidden state emits a sequence of observations, which

is called a segment. The observations within a segment are

considered to be independent to the observations of other

segments. The authors showed that the segmental HMM

performed better than traditional HMM. In another work,

the importance of combining text modality with the other

modalities has been demonstrated by Xie et al. [145]. The

authors proposed a layered dynamic mixture model for

topic clustering in video. In their layer approach, first a

hierarchical HMM is used to find clusters in audio and

visual streams; and then latent semantic analysis is used to

cluster the text from the speech transcript stream. At the

next level, a mixture model is adopted to learn the joint

probability of the clusters from the HMM and latent

semantic analysis. The authors have performed experi-

ments with the TRECVID 2003 data set, which demon-

strated that the multi-modal fusion resulted in a higher

accuracy in topics clustering.

An interesting work was presented by Wu et al. [142].

In this work, the authors used an influence diagram

approach (a form of the Bayesian network) to represent the

semantics of photos. The multimodal fusion framework

integrated the context information (location, time and

camera parameters), content information (holistic and

perceptual local features) with the domain-oriented

semantic ontology (represented by a directed acyclic

graph). Moreover, since the conditional probabilities that

are used to infer the semantics can be misleading, the

authors have utilized the causal strength between the con-

text/content and semantic ontology instead of using the

correlation among features. The causal strength is based on

the following idea. The two variables may co-vary with

each other, however, there may be a third variable as a

‘‘cause’’ that may affect the value of these two variables.

For example, two variables ‘‘wearing a warm jacket’’ and

‘‘drinking coffee’’ may have a large positive correlation;

however, the cause behind both could be ‘‘cold weather’’.

The authors have shown that the usage of causal strength in

influence diagrams provide better results in the automatic

annotation of photos.

3.2.5 Neural networks

Neural network (NN) is another approach for fusing mul-

timodal data. Neural networks are considered a non-linear

black box that can be trained to solve ill-defined and

computationally expensive problems [140]. The NN

method consists of a network of mainly three types of

nodes—input, hidden and output nodes. The input nodes

accept sensor observations or decisions (based on these

observations), and the output nodes provide the results of

fusion of the observations or decisions. The nodes that are

neither input nor output are referred to hidden nodes. The

network architecture design between the input and output

nodes is an important factor for the success or failure of

this method. The weights along the paths, that connect the

input nodes to the output nodes, decide the input–output

mapping behavior. These weights can be adjusted during

the training phase to obtain the optimal fusion results [22].

This method can also be employed at both the feature level

and the decision level.

In the following, we describe some works that illustrate

the use of the NN fusion method for performing the mul-

timedia analysis tasks. Gandetto et al. [41] have used the

NN fusion method to combine sensory data for detecting

human activities in an environment equipped with a het-

erogeneous network of sensors with CCD cameras and

computational units working together in a LAN. In this

work, the authors considered two types of sensors—state

sensors (e.g. CPU load, login process, and network load)

and observation sensors (e.g. cameras). The human activ-

ities in regard to usage of laboratory resources were

detected by fusing the data from these two types sensors at

the decision level.

A variation of the NN fusion method is the time-delay

neural network (TDNN) that has been used to handle

temporal multimodal data fusion. Some researchers have

adopted the TDNN approach for various multimedia

analysis tasks, e.g. Cutler and Davis [34], Ni et al. [88],

and Zou and Bhanu [158] for speaker tracking. Cutler and

Davis [34] learned the correlation between audio and visual

streams by using a TDNN method. The authors have used it

for locating the speaking person in the scene. A similar

approach was also presented by Zou and Bhanu [158]. In

[158], the authors have also compared the TDNN approach

with the BN approach and found that the BN approach

performed better than the TDNN approach in many

aspects. First, the choosing of the initial parameters does

not affect the DBN approach while it does affect the TDNN

approach. Second, the DBN approach was better in mod-

eling the joint Gaussian distribution of audio-visual data

compared to linear mapping between audio signals and the

object position in video sequences in the TDNN method.

Third, the graphical models provide an explicit and easily

accessible structure compared to TDNN, in which, the

inner structure and parameters are difficult to design.

Finally, the DBN approach offers better tracking accuracy.

Moreover, in the DBN approach, a posteriori probability of

the estimates is available as the quantitative measure in the

support of the decision.
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While Cutler and Davis [34] and Zou and Bhanu [158]

used the NN fusion approach at the feature level, Ni et al.

[88] adopted this approach at the feature level as well as at

the decision level. In [88], the authors have used the NN

fusion method to fuse low level features to recognize

images. The decisions from multiple trained NN classifiers

are further fused to come up with a final decision about an

image.

Although the NN method is in general found suitable to

work in a high-dimensional problem space and generate

high-order nonlinear mapping, there are some familiar

complexities associated with them. For instance, the

selection of appropriate network architecture for a partic-

ular application is often difficult. Moreover, this method

also suffers from slow training. Due to these limitations

and other shortcomings (stated above as compared to the

BN method), the NN method has not been often used for

multimedia analysis tasks compared to other fusion

methods.

3.2.6 Maximum entropy model

In general, maximum entropy model is a statistical classi-

fier which follows an information-theoretic approach and

provides a probability of an observation belonging to a

particular class based on the information content it has.

This method has been used by few researchers for cate-

gorizing the fused multimedia observations into respective

classes.

The maximum entropy model based fusion method is

briefly described as follows. Let Ii and Ij are the two dif-

ferent types of input observations. The probability of these

observations belonging to a class X can be given by an

exponential function:

PðXjIi; IjÞ ¼
1

ZðIi; IjÞ
eFðIi;IjÞ ð5Þ

where, F(Ii, Ij) is the combined feature (or decision) vector

and Z(Ii, Ij) is the normalization factor to ensure a proper

probability.

Recently, this fusion method has been used by

Magalhães and Rüger [80] for semantic multimedia

indexing. In this work, the authors combined the text and

image based features to retrieve the images. The authors

found that the maximum entropy model based fusion

worked better than the Naive Bayes approach.

There are other works such as Jeon and Manmatha [63]

and Argillander et al. [7], which have used maximum

entropy model for multimedia analysis tasks, however in

these works the authors used only single modality rather

than multiple modalities. Therefore, the discussion of these

works is out of scope for our paper.

3.2.7 Remarks on classification-based fusion methods

All the representative works related to the classification-

based fusion methods are summarized in Table 2. Our

observations are as follows:

• The Bayesian inference fusion method, which works on

probabilistic principles, provides easy integration of

new observation and the use of a priori information.

However, they are not suitable for handling mutually

exclusive hypotheses. Moreover, the lack of appropri-

ate a priori information can lead to inaccurate fusion

results using this method. On the other hand, Demp-

ster–Shafer fusion methods are good at handling

certainty and mutually exclusive hypotheses. However,

in this method, it is hard to handle the large number of

combinations of hypotheses. This method has been

used for speech recognition, sports video analysis and

event detection tasks.

• The dynamic Bayesian networks have been widely used

to deal with time-series data. This method is a variation

of the Bayesian Inference when used over time. The

DBN method in its different forms (such as HMMs) has

been successfully used for various multimedia analysis

tasks such as speech recognition, speaker identification

and tracking, video shot classification etc. However, in

this method, it is often difficult to determine the right

DBN states. Compared to DBN, the neural networks

fusion method is generally suitable to work in a high-

dimensional problem space and it generates a high-

order nonlinear mapping, which is required in many

realistic scenarios. However, due to the complex nature

of a network, this method suffers from slow training.

• As can be seen from the table, among various classifi-

cation-based fusion methods, SVM and DBN have been

widely used by researchers. SVMs have been preferred

due to their improved classification performance while

the DBNs have been found more suitable to model

temporal data.

• There are various other classification methods used in

multimedia research. These include decision tree [76],

relevance vector machines [36], logistics regression

[71] and boosting [75]. However, these methods have

been used more for the traditional classification prob-

lems than for the fusion problems. Hence, we skip the

description of these methods.

3.3 Estimation-based fusion methods

The estimation category includes the Kalman filter,

extended Kalman filter and particle filter fusion methods.

These methods have been primarily used to better estimate

Multimodal fusion for multimedia analysis 359
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the state of a moving object based on multimodal data. For

example, for the task of object tracking, multiple modali-

ties such as audio and video are fused to estimate the

position of the object. The details of these methods are as

follows.

3.3.1 Kalman filter

The Kalman filter (KF) [66, 112] allows for real-time

processing of dynamic low-level data and provides state

estimates of the system from the fused data with some

statistical significance [79]. For this filter to work, a linear

dynamic system model with Gaussian noise is assumed,

where at time t, the system true state, x(t) and its obser-

vation, y(t) are modeled based on the state at time t - 1.

Precisely, this is represented using the state-space model

given by Eqs. 6 and 7 in the following:

xðtÞ ¼ AðtÞxðt � 1Þ þ BðtÞIðtÞ þ wðtÞ ð6Þ
yðtÞ ¼ HðtÞxðtÞ þ vðtÞ ð7Þ

where, A(t) is the transition model, B(t) is the control input

model, I(t) is the input vector, H(t) is the observation

model, w(t) * N(0, Q(t)) is the process noise as a normal

distribution with zero mean and Q(t) covariance, and v(t)

* N(0, R(t)) is the observation noise as a normal distri-

bution with zero mean and R(t) covariance.

Based on the above state-space model, the KF does not

require to preserve the history of observation and only

depends on the state estimation data from the previous

timestamp. The benefit is obvious for systems with less

storage capabilities. However, the use of the KF is limited

to the linear system model and is not suitable for the sys-

tems with non-linear characteristics. For non-linear system

models, a variant of the Kalman filter known as extended

Kalman filter (EKF) [111] is usually used. Some

researchers also use KF as inverse Kalman filter (IKF) that

reads an estimate and produce an observation as oppose to

KF that reads an observation and produce an estimate

[124]. Therefore, a KF and its associated IKF can logically

be arranged in series to generate the observation at the

output. Another variant of KF has gained attention lately,

which is the unscented Kalman filter (UKF) [65]. The

benefit of UKF is that it does not have a linearization step

and the associated errors.

The KF is a popular fusion method. Loh et al. [77]

proposed a feature level fusion method for estimating the

translational motion of a single speaker. They used dif-

ferent audio-visual features for estimating the position,

velocity and acceleration of the single sound source. For

position estimation in 3D space, the measurement of three

microphones are used in conjunction with the camera

image point. Given the position estimate, a KF is thenT
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used based on a constant acceleration model to estimate

velocity and acceleration. Unlike Loh et al. [77], Potam-

itis et al. [107] presented a audio-based fusion scheme for

detecting multiple moving speakers. The same speaker

state is determined by fusing the location estimates from

multiple microphone arrays, where the location estimates

are computed using separate KF for all the individual

microphone arrays. A probabilistic data association tech-

nique is used with an interacting multiple model estimator

to handle speaker’s motion and measurement origin

uncertainty.

KF as well as EKF have been successfully used for

source localization and tracking for many years. Strobel

et al. [124] focused on the localization and tracking of

single objects. The audio and video localization features

are computed in terms of position estimates. EKF is used

due to the non-linear estimates based on audio-based

position. On the other hand, a basic KF is used at the video

camera level. The outputs of the audio and video estimates

are then fused within the fusion center, which is comprised

of two single-input inverse KFs and a two-input basic KFs.

This is shown in Fig. 8. This work requires that the audio

and video sources are in sync with each other. Likewise,

Talantzis et al. [125] have adopted a decentralized KF that

fuses audio and video modalities for better location esti-

mation in real time. A decision level fusion approach has

been adopted in this work.

A recent work [154] presents a multi-camera based

tracking system, where multiple features such as spatial

position, shape and color information are integrated toge-

ther to track object blobs in consecutive image frames. The

trajectories from multiple cameras are fused at feature level

to obtain the position and velocity of the object in the real

world. The fusion of trajectories from multiple cameras,

which uses EKF, enables better tracking even when the

object view is occluded. Gehrig et al. [43] also adopted an

EKF based fusion approach using audio and video features.

Based on the observation of the individual audio and video

sensor, the state of the KF was incrementally updated to

estimate the speaker’s position.

3.3.2 Particle filter

Particle filters are a set of sophisticated simulation-based

methods, which are often used to estimate the state distri-

bution of the non-linear and non-Gaussian state-space

model [6]. These methods are also known as Sequential

Monte Carlo (SMC) methods [33]. In this approach, the

particles represent the random samples of the state vari-

able, where each particle is characterized by an associated

weight. The particle filtering algorithm also consists of a

prediction and update steps. The prediction step propagates

each particle as per its dynamics while the update step

reweighs a particle according to the latest sensory infor-

mation. While the KF, EKF or IKF are optimal only for

linear Gaussian processes, the particle methods can provide

Bayesian optimal estimates for non-linear non-Gaussian

processes when sufficiently large number of samples are

taken.

The particle methods have been widely used in multi-

media analysis. For instance, Vermaak et al. [132] used

particle filters to estimate the predictions from audio- and

video-based observations. The reported system uses a sin-

gle camera and a pair of microphones and were tested

based on stored audio-visual sequences. The fusion of

audio-visual features took place at the feature level,

meaning that the individual particle coordinates from the

features of both modalities were combined to track the

speaker. Similar to this approach, Perez et al. [99] adopted

the particle filter approach to fuse 2D object shapes and

audio information for speaker tracking. However, unlike

Vermaak et al. [132], the latter uses the concept of

importance particle filter, where audio information was

specifically used to generate an importance function that

influenced the computation of audio-based observation

likelihood. The audio and video-based observation likeli-

hoods are then combined as a late fusion scheme using a

standard probabilistic product formula that forms the

multimodal particle.

A probabilistic particle filter framework is proposed by

Zotkin et al. [157] that adopts a late fusion approach for

tracking people in a videoconferencing environment. This

framework used multiple cameras and microphones to

estimate the 3D coordinates of the person using the sam-

pled projection. Multimodal particle filters are used to

approximate the posterior distribution of the system

parameters and the tracking position in the audio-visual

state-space model. Unlike Vermaak et al. [132] or Perez

et al. [99], this framework enables tracking multiple per-

sons simultaneously.

Nickel et al. [89] presented an approach for real-time

tracking of the speaker using multiple cameras and

microphones. This work used particle filters to estimate the

location of the speaker by sampled projection as proposed
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by Zotkin et al. [157], where each particle filter represented

a 3D coordinate in the space. The evidence from all the

camera views and microphones are adjusted to assign

weights to the corresponding particle filter. Finally, the

weighted mean of a particle set is considered as the speaker

location. This work adopted a late fusion approach to

obtain the final decision.

3.3.3 Remarks on estimation-based fusion methods

The representative works in the estimation-based category

are summarized in Table 3. The estimation-based fusion

methods (Kalman filter, extended Kalman filter and particle

filter) are generally used to estimate and predict the fused

observations over a period. These methods are suitable for

object localization and tracking tasks. While the Kalman

filter is good for the systems with a linear model, the

extended Kalman filter is better suited for non-linear sys-

tems. However, the particle filter method is more robust for

non-linear and non-Gaussian models as they approach the

Bayesian optimal estimate with sufficiently large number

of samples.

3.4 Further discussion

In the following, we provide our observations based on the

analysis of the fusion methods described above.

• Most used methods. From the literature, it has been

observed that many fusion methods such as linear

weighted fusion, SVM, and DBN have been used more

often in comparison to the other methods. This is due to

the fact the linear weighted fusion can be easily used to

prioritize different modalities while fusing; SVM has

improved classification performance in many multi-

media analysis scenarios; and the DBN fusion method

is capable of handling temporal dependencies among

multimodal data, which is an important issue often

considered in multimodal fusion.

• Fusion methods and levels of fusion. Existing literature

suggest that linear weighted fusion is suitable to work

at the decision level. Also, although SVM is generally

used to classify individual modalities at the feature

level, in the case of multimodal fusion, the outputs of

individual SVM classifiers are fused and further

classified using another SVM. That is why most of

the reported works have been seen to fall into the late

fusion category. Among others, the DBNs have been

used more at the feature level due to its suitability in

handling temporal dependencies.

• Modalities used. The modalities that have been used for

multimodal fusion are mostly based on audio and video.

Some works also considered text modality, while others

have investigated gesture.

• Multimedia analysis tasks versus fusion methods. In

Table 4, we summarize the existing literature in terms

of the multimedia analysis tasks and the different fusion

methods used for these tasks. This may be useful for the

readers as a quick reference in order to decide which

fusion method would be suitable for which task. It has

been found that for a variety of tasks, various fusion

methodologies have been adopted. However, based on

the nature of a multimedia analysis task, some fusion

methods have been preferred over the others. For

Table 3 A list of the representative works in the estimation methods category used for multimodal fusion

Fusion method Level of

fusion

The work Modalities Multimedia analysis task

Kalman filter and its

variants

Feature Potamitis et al. [107] Audio (position, velocity) Multiple speaker tracking

Loh et al. [77] Audio, video Single speaker tracking

Gehrig et al. [43] Audio (TDOA), video (position of the

speaker)

Single speaker tracking

Zhou and Aggarwal

[154]

Video [spatial position, shape, color (PCA),

blob]

Person/vehicle tracking

Decision Strobel et al. [124] Audio, video Single object localization and

tracking

Talantzis et al. [125] Audio (DOA), video (position, velocity,

target size)

Person tracking

Particle filter Feature Vermaak et al. [132] Audio (TDOA), visual (gradient) Single speaker tracking

Decision Zotkin et al. [157] Audio (TDOA), video (skin color, shape

matching and color histograms)

Multiple speaker tracking

Perez et al. [99] Audio (TDOA), video (coordinates) Single speaker tracking

Nickel et al. [89] Audio (TDOA), video (Haar-like features) Single speaker tracking
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instance, for image and video classification retrieval

tasks, the classification-based fusion methods such as

Bayesian inference, Dempster–Shafer theory and

dynamic Bayesian networks have been used. Also, as

an object tracking task involves dynamics and the state

transition and estimation, dynamic Bayesian networks

and the estimation-based methods such as Kalman filter

have widely been found successful. Moreover, since the

sports and news analysis tasks consist of complex rules,

custom-defined rules have been found appropriate.

• Application constraints and the fusion methods. From

the perspective of application constraints such compu-

tation, delay and resources, we can analyze different

fusion methods as follows. It has been observed that the

Table 4 A summary of the fusion method used for different multimedia analysis tasks

Multimedia analysis task Fusion method The works

Biometric identification and verification Support vector machine Bredin and Chollet [19], Aguilar et al. [4]

Dynamic Bayesian networks Bengio et al. [17]

Face detection, human tracking and

activity/event detection

Linear weighted fusion Kankanhalli et al. [67], Jaffre and

Pinquier [59]

Bayesian inference Atrey et al. [8]

Dynamic Bayesian networks Town [131], Beal et al. [15]

Neural networks Gandetto et al. [41], Zou and Bhanu [158]

Kalman filter Talantzis et al. [125], Zhou and Aggarwal

[154], Strobel et al. [124]

Human computer interaction and

multimodal dialog system

Custom-defined rules Corradini et al. [32], Pfleger [100],

Holzapfel et al. [49]

Dempster–Shafer theory Reddy [110]

Image segmentation, classification,

recognition, and retrieval

Linear weighted fusion Hua and Zhang [55]

Support vector machine Zhu et al. [156]

Neural networks Ni et al. [88]

Dempster–Shafer Theory Mena and Malpica [84], Bendjebbour

et al. [16]

Video classification and retrieval Linear weighted fusion Yan et al. [151], McDonald and Smeaton

[83]

Bayesian inference Xu and Chua [149]

Dempster–Shafer Theory Singh et al. [116]

Dynamic Bayesian networks Wang et al. [138], Ding and Fan [38],

Chaisorn et al. [25], Xie et al. [145],

Adams et al. [3]

Photo and video annotation Linear weighted fusion Iyenger et al. [58]

Dynamic Bayesian networks Wu et al. [142]

Semantic concept detection Linear weighted fusion Iyenger et al. [58]

Support vector machine Adams et al. [3], Iyenger et al. [58], Wu

et al. [141]

Semantic multimedia indexing Custom-defined rules Babaguchi et al. [12]

Support vector machine Ayache et al. [11]

Maximum entropy model Magalhães and Rüger [80]

Monologue detection Linear weighted fusion Kankanhalli et al. [67], Iyenger et al. [57]

Speaker localization and tracking Particle filter Vermaak et al. [132], Perez et al. [99],

Nickel et al. [89], Zotkin et al. [157]

Kalman filter Potamitis et al. [107]

Majority voting rule Radova and Psutka [108]

Dynamic Bayesian networks Nock et al. [91], Hershey et al. [46]

Neural networks Cutler and Davis [34]

Speech and speaker recognition Linear weighted fusion Neti et al. [87], Lucey et al. [78]

Bayesian inference Meyer et al. [85], Pitsikalis et al. [102]

Dynamic Bayesian networks Nefian et al. [86]
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linear weighted fusion method is applied to the

applications which have lesser computational needs.

On other hand, while the dynamic Bayesian networks

fusion method is computationally more expensive than

the others, the neural networks can be trained to

computationally expensive problems. Regarding the

time delay and synchronization problems, custom-

defined rules have been found more appropriate as

they are usually application specific. These time delays

may occur due to the resource constraints since the

input data can be obtained from different types of

multimedia sensors and the different CPU resources

may be available for analysis.

4 Distinctive issues of multimodal fusion

This section provides a critical look at the distinctive issues

that should be considered in a multimodal fusion process.

These issues have been identified in the light of the fol-

lowing three aspects of fusion: how to fuse (in continuation

with the fusion methodologies as discussed in Sect. 3),

when to fuse, and what to fuse. From the aspect of how to

fuse, we will elaborate in Sect. 4.1 on the issues of the use

of correlation, confidence and the contextual information

while fusing different modalities. The when to fuse aspect

is related to the synchronization between different

modalities which will be discussed in Sect. 4.2. We will

cover what to fuse aspect by describing the issue of optimal

modality selection in Sect. 4.3. In the following, we

highlight the importance of considering these distinctive

issues and also describe the past works related to them.

4.1 Issues related to how to fuse

4.1.1 Correlation between different modalities

The correlation among different modalities represents how

they co-vary with each other. In many situations, the cor-

relation between them provides additional cues that are very

useful in fusing them. Therefore, it is important to know

different methods of computing correlations and to analyze

them from the perspective of how they affect fusion [103].

The correlation can be comprehended at various levels,

e.g. the correlation between low level features and the

correlation between semantic-level decisions. Also, there

are different forms of correlation that have been utilized by

the researchers in the multimodal fusion process. The

correlation between features has been computed in the

forms of correlation coefficient, mutual information, latent

semantic analysis (also called lament semantic indexing),

canonical correlation analysis, and cross-modal factor

analysis. On the other hand, the decision level correlation

has been exploited in the form of causal link analysis,

causal strength and agreement coefficient.

Table 5 A list of some representative works that used the correlation information between different streams in the fusion process

Level of fusion The form of correlation The works Multimedia analysis task

Feature Correlation coefficient Wang et al. [138] Video shot classification

Nefian et al. [86] Speech recognition

Beal et al. [15] Object tracking

Li et al. [74] Talking face detection

Mutual information Fisher-III et al. [39] Speech recognition

Darrell et al. [35] Speech recognition

Hershey and Movellan [47] Speaker localization

Nock et al. [90], Iyengar et al. [57] Monologue detection

Nock et al. [91] Speaker localization

Noulas and Krose [92] Human tracking

Latent semantic analysis Li et al. [74] Talking face detection

Chetty and Wagner [28] Biometric person authentication

Canonical correlation analysis Slaney and Covell [117] Talking face detection

Chetty and Wagner [28] Biometric person authentication

Bredin and Chollet [20] Talking face identity verification

Cross-modal factor analysis Li et al. [72] Talking head analysis

Decision Casual link analysis Stauffer [123] Event detection for surveillance

Causal strength Wu et al. [142] Photo annotation

Agreement coefficient Atrey et al. [8] Event detection for surveillance
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In the following, we describe the above eight forms of

correlation and their usage for the various multimedia

analysis tasks. We also cast light on the cases where

independence between different modalities can be useful

for multimedia analysis tasks. A summary of the repre-

sentative works that have used correlation in different

forms is provided in Table 5.

Correlation coefficient. The correlation coefficient is a

measure of the strength and direction of a linear relation-

ship between any two modalities. It has been widely used

by multimedia researchers for joint modeling the audio–

video relationship [138, 86, 15]. However, to jointly model

the audio–video, the authors have often assumed them—(1)

to be independent, and (2) to locally and jointly follow the

Gaussian distribution.

One of the most simple and widely used forms of the

correlation coefficient is the Pearson’s product-moment

coefficient [20], which is computed as follows. Assuming

that Ii and Ij are the two modalities (of same or different

types). The correlation coefficient CC(Ii, Ij) between them

can be computed as [138]:

CCðIi; IjÞ ¼
ĈðIi; IjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈðIi; IiÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈðIj; IjÞ
q ð8Þ

where ĈðIi; IjÞ is the (i, j)th element of the covariance

matrix C, which is given as:

C ¼
XN

k¼1

ðIk
i � Im

i Þ � ðIk
j � Im

j Þ ð9Þ

where Ik
i and Ik

j are the kth value in the feature vector Ii and

Ij, respectively; and Im
i and Im

j are the mean values of these

feature vectors. This method of computing correlation has

been used by many researchers such as Wang et al. [138]

and Li et al. [74]. In [74], based on the Correlation Coef-

ficient between audio and face feature vectors, the authors

have selected the faces having the maximum correlation

with the audio.

Mutual information. The mutual information is a infor-

mation theoretic measure of correlation that represents the

amount of information one modality conveys about

another. The mutual information MI(Ii, Ij) between two

modalities Ii and Ij, which are normally distributed with

variances RIi
and RIj

, and jointly distributed with covari-

ance RIiIj
; is computed as:

MIðIi; IjÞ ¼
1

2
log
jRIi
jjRIj
j

jRIiIj
j ð10Þ

There are several works that have used mutual information

as a measure of synchrony between audio and video. For

instance, Iyengar et al. [57] computed the synchrony

between face and speech using mutual information. The

authors found that the face region had high mutual infor-

mation with the speech data. Therefore, the mutual infor-

mation score helped locate the speaker. Similarly, Fisher

et al. [39] also learned the linear projections from a joint

audio–video subspace where the mutual information was

maximized. Other works that have used mutual information

as a measure of correlation are Darrell et al. [35], Hershey

and Movellan [47], Nock et al. [90], Nock et al. [91] and

Noulas and Krose [92] for different tasks as detailed in

Table 5.

Latent semantic analysis. Latent semantic analysis

(LSA) is a technique often used for text information

retrieval. This technique has proven useful to analyze the

semantic relationships between different textual units. In

the context of text information retrieval, the three primary

goals that the LSA technique achieves are dimension

reduction, noise removal and finding of the semantic and

hidden relation between keywords and documents. The

LSA technique has also been used to uncover the correla-

tion between audio-visual modalities for talking-face

detection [74]. The learning correlation using LSA consists

of four steps: construction of a joint multimodal feature

space, normalization, singular value decomposition and

measuring semantic association [28]. The mathematical

details can be found in Li et al. [74]. In [74], the authors

demonstrated the superiority of LSA over the traditional

correlation coefficient.

Canonical correlation analysis. Canonical correlation

analysis (CCA) is another powerful statistical technique

that can be used to find linear mapping that maximizes the

cross-correlation between two feature sets. Given two

feature sets Ii and Ij, the CCA is a set of two linear pro-

jections A and B that whiten Ii and Ij. A and B are called

canonical correlation matrices. These matrices are con-

structed under the constraints that their cross-correlation

becomes diagonal and maximally compact in the projected

space. The computation details of A and B can be found in

[117]. The first M vectors of A and B are used to compute

the synchrony score CCA(Ii, Ij) between two modalities Ii

and Ij as:

CCAðIi; IjÞ ¼
1

M

XM

m¼1

jcorrðaT
mIi; b

T
mIjÞj ð11Þ

where aT
m and bT

m are elements of A and B.

It is important to note that finding the canonical corre-

lations and maximizing the mutual information between

the sets are considered equivalent if the underlying distri-

butions are elliptically symmetric [28].

The canonical correlation analysis for computing the

synchrony score between modalities has been explored by

few researchers. For instance, Chetty and Wagner [28] used

the CCA score between audio and video modalities for
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biometric person authentication. In this work, the authors

also used LSA and achieved about 42% overall improve-

ment in error rate with CCA and 61% improvement with

LSA. In another work, Bredin and Chollet [20] also dem-

onstrated the utility of considering CCA for audio–video

based talking-face identity verification. Similarly, Slaney

and Covell [117] used CCA for talking-face detection.

Cross-modal factor analysis. The weakness of the LSA

method lies in its inability to distinguish features from

different modalities in the joint space. To overcome this

weakness, Li et al. [72] proposed the cross-modal factor

analysis (CFA) method, in which, the features from dif-

ferent modalities are treated as two subsets and the

semantic patterns between these two subsets are discov-

ered. The method works as follows. Let the two subsets of

features be Ii and Ij. The objective is to find the orthogonal

transformation matrices A and B that can minimize the

expression:

IiA� IjB
�� ��2

F
ð12Þ

where ATA and BTB are unit matrices. F denotes the

Frobenius norm and is calculated for the matrix M as:

Mk kF¼
X

x

X

y

jmxyj2
 !1=2

ð13Þ

By solving the above equation for optimal transformation

matrices A and B, the transformed version of Ii and Ij can

be calculated as follows:

~Ii ¼ IiA; ~Ij ¼ IjB ð14Þ

The optimized vectors ~Ii and ~Ij represent the coupled

relationships between the two feature subsets Ii and Ij.

Note that, unlike CCA, the CFA provides a feature

selection capability in addition to feature dimension

reduction and noise removal. These advantages make CFA

a promising tool for many multimedia analysis tasks. The

authors in [72] have shown that although all three methods

(LSA, CCA and CFA) achieved significant dimensionality

reduction, the CFA gave the best results for talking head

analysis. The CFA method achieved 91% detection accu-

racy as compared to the LSA (66.1%) and the CCA

(73.9%).

All the methods described above have computed the

correlation between the features extracted from different

modalities. In the following, we describe the methods that

have been used to compute the correlation at the semantic

(or decision) level.

Causal link analysis. The events that happen in an

environment are often correlated. For instance, the events

of ‘‘elevator pinging’’, ‘‘elevator door opening’’, ‘‘people

coming out of elevator’’ usually occur at relative times one

after another. This temporal relationship between events

has been utilized by Stauffer [123] for detecting events in a

surveillance environment. This kind of analysis of the

events has been called the casual link analysis.

Assuming that the two events were linked, the likeli-

hood pðci; cj; dtijjci;j ¼ 1Þ of a pair (ci, cj) of events and

their relative times dtij is estimated. Note that, dtij is the

time difference between the absolute times of event i and

event j. The term ci,j = 1 indicates that the occurrence of

the first event ci is directly responsible for the occurrence

of the second event cj. Once the estimates of the posterior

likelihood of ci,j = 1 for all i, j pairs of events have been

computed, an optimal chaining hypothesis is iteratively

determined. The authors have demonstrated that the casual

link analysis significantly helps in the overall accuracy of

event detection in an audio–video surveillance

environment.

Causal strength. The causal strength is a measure of the

cause due to which two variables may co-vary with each

other. Wu et al. [142] have preferred to use the causal

strength between the context/content and the semantic

ontology as described in Sect. 3.2.4. Here we describe how

the causal strength is computed by adopting a probabilistic

model. Let u and d be chance and decision variables,

respectively. The chance variables imply effects (e.g.

wearing warm jacket and drinking hot coffee) and the

decision variables denote causes (e.g. cold weather). The

causal strength CSu|d is computed by using Eq. 15.

CSujd ¼
Pðujd; nÞ � Pðu; nÞ

1� Pðu; nÞ ð15Þ

In the above equation, n refers to the state of the world, e.g.

indoor or outdoor environment in the above mentioned

example; and the terms P(u|d, n) and P(u, n) are the con-

ditional probability assuming that d and n are independent

of each other.

The authors have shown that the usage of causal strength

provides not only improved accuracy of photo annotation,

but also better capability of assessing the annotation

quality.

Agreement coefficient. Atrey et al. [8] have used the

correlation among streams at the intra-media stream and

inter-media stream levels. At the intra-media stream level,

they used the traditional correlation coefficient; however,

at the inter-media stream level, they introduced the notion

of the decision level ‘‘agreement coefficient’’. The agree-

ment coefficient among streams has been computed based

on how concurring or contradictory the evidence is that

they provide. Intuitively, the higher the agreement among

the streams, the more confidence one would have in the

global decision, and vice versa [115].

The authors have modeled the agreement coefficient in

the context of event detection in a multimedia surveillance

scenario. The agreement coefficient ck
i;jðtÞ between the
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media streams Ii and Ij detects the kth event at time instant

t, by iteratively averaging the past agreement coefficients

with the current observation. Precisely, ck
i;jðtÞ is computed

as:

ck
i;jðtÞ ¼ ð1� 2� jpi;kðtÞ � pj;kðtÞjÞ þ ck

i;jðt � 1Þ ð16Þ

where, pi,k(t) and pj,k(t) are the individual probabilities of

the occurrence of kth event based on the media streams Ii

and Ij, respectively, at time t C 1; and ck
i;jð0Þ ¼ 1� 2�

jpi;kð0Þ � pj;kð0Þj . These probabilities represent decisions

about the events. Exactly the same probabilities would

imply full agreement (ck
i;j ¼ 1) while detecting the kth

event whereas totally dissimilar probabilities would mean

that the two streams fully contradict each other (ck
i;j ¼ �1).

The authors have shown that the usage of agreement

coefficient resulted in better overall event detection accu-

racy in a surveillance scenario.

Independence. In should be noted that, in addition to

using the correlation among modalities, the independent

modalities can also be very useful in some cases to obtain a

better decision. Let us consider the case of a multimodal

dialog system [49, 96, 100]. In such systems, multiple

modalities such as gesture and speech are used as a means

of interaction. It is sometimes very hard to fuse these

modalities at the feature level due to a lack of direct cor-

respondence between their features and different temporal

alignment. However, each modality can complement each

other in obtaining a decision about the intended interaction

event. To this regard, each modality can be processed

separately in parallel to derive individual decisions and

later fuse these individual decisions at a semantic level to

obtain the final decision [96]. Similarly, other cases of

independence among modalities are also possible. For

instance, environment context, device context, network

context, task context and so forth may provide comple-

mentary information to the fusion process, thereby making

the overall analysis tasks more robust and accurate.

4.1.2 Confidence level of different modalities

Different modalities may have varying capabilities of

accomplishing a multimedia analysis task. For example, in

good lighting condition, the video analysis may be more

useful in detecting human than the audio analysis; while in

a dark environment, the audio analysis could be more

handy. Therefore, in the fusion process, it is important to

assign the appropriate confidence level to the participating

streams [115]. The confidence in a stream is usually

expressed by assigning appropriate weight to it.

Many fusion methods such as the linear weight fusion

and the Bayesian inference do have a notion of specifying

the weights to different modalities. However, the main

question that remains to be answered is how to determine

the weights of different modalities. These weights can vary

based on several factors such as the context and the task

performed. Therefore, the weight should be dynamically

adjusted in order to obtain optimal fusion results.

While performing multimodal fusion, several research-

ers have adopted the strategy of weighting different

modalities. However, many of them either have considered

equal weights [83, 152] or have not elaborated the issue of

weight determination [55, 67, 136], and have left it to the

users to decide [40].

Other works, such as Neti et al. [87], Iyenger et al. [57],

Tatbul et al. [126], Hsu and Chang [53] and Atrey et al. [8]

have used pre-computed weights in the fusion process. The

weights of different streams have usually been determined

based on their past accuracy or any prior knowledge. The

computation of past accuracy requires a significant amount

of training and testing. However, since the process of

computing the accuracy has to be performed in advance, the

confidence value or the weight determined based on such

accuracy value is considered ‘‘static’’ during the fusion

process. It is obvious that a static value of confidence of a

modality does not reflect its true current value especially

under the changing context. On the other hand, determining

the confidence level for each stream, based on its past

accuracy, is difficult. This is because the system may pro-

vide dissimilar accuracies for various tasks under different

contexts. Pre-computation of accuracies of all the streams

for various detection tasks under varying contexts requires a

significant amount of training and testing, which is often

tedious and time consuming. Therefore, a mechanism that

can determine the confidence levels of different modalities

‘‘on the fly’’ without pre-computation, needs to be explored.

In contrast to the above methods that used the static

confidence, some efforts (e.g. Tavakoli et al. [127], Atrey

et al. [10] have also been performed towards the dynamic

computation of the confidence levels of different modali-

ties. Tavakoli et al. [127] have used spatial and temporal

information in clusters in order to determine a confidence

level of sensors. The spatial information indicated that

more sensors are covering a specific area; hence a higher

confidence is assigned to the observation obtained from

that area. The temporal information is obtained in the form

of the sensors detecting the target consecutively for a

number of time slots. If a target is consecutively detected,

it was assumed that the sensors are reporting correctly. This

method is more suited to the environment where the sen-

sors’ location changes over time. In a fixed sensor setting,

the confidence value will likely remain constant.

Recently, Atrey et al. [10] have also presented a method

to dynamically compute the confidence level of a media

stream based on its agreement coefficient with a trusted

stream. The trusted stream is the one that has the confidence

level above a certain threshold. The agreement coefficient
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between any two streams will be high when the similar

decisions are obtained based on them, and vice versa. In this

work, the authors have adopted the following idea. Let one

follow a trusted news bulletin. He/she also starts by fol-

lowing an arbitrary news bulletin and compares the news

content provided on both the news bulletins. Over a period

of time, his/her confidence in the arbitrary bulletin will also

grow if the news content of both the bulletins have been

found similar, and vice versa. The authors have demon-

strated that the confidence level of different media streams

computed using this method when used in the fusion pro-

cess provides the event detection results comparable to what

is obtained using pre-computed confidence. The drawback

with this method is that the assumption of having at least

one trusted stream might not always be realistic.

The above discussion shows that, although there have

been some attempts to address the issue of dynamic weight

adjustment, this is still an open research problem, which is

essential for the overall fusion process. A summarization of

the representative works related to the computation of

confidence provided in Table 6.

4.1.3 Contextual information

The context is accessory information that greatly influences

the performance of a fusion process. For example, time and

location information significantly improves the accuracy of

automatic photo classification [142]. Also, the light con-

ditions may help in selecting the right set of sensors for

detecting events in a surveillance environment.

Some of the earlier works, which have emphasized the

importance of using the contextual information in the

fusion process, include Brmond and Thonnat [21], Teriyan

and Puuronen [129], Teissier et al. [128] and Westerveld

[139]. Later, many other researchers such as Sridharan

et al. [122], Wang and Kankanhalli [135], Pfleger [100]

and Atrey et al. [8] have demonstrated the advantages of

using context in the fusion process.

Two research issues related to the context are (1) what

are the different forms of contextual information and how

the contextual information is determined? and (2) how it is

used in the fusion process? In the following, we discuss how

these two issues have been addressed by the researchers.

The context has been represented in different forms for

different multimedia analysis tasks. For example, for the

image classification task, the context could be time, loca-

tion and camera parameters [142], while for the multimedia

music selection task, the mood of the requester could be

considered as context. We identify two types of contextual

information that have been often considered. These are

environmental context and the situational context. The

environmental context consists of time, the sensor’s loca-

tion or geographical location, weather conditions, etc. For

example, if it is a dark environment, audio and IR sensor

information should preferably be fused to detect a person

[8]. The situational context could be in the form of identity,

mood, and capability of a person, etc. For example, if the

person’s mood is happy, a smart mirror should select and

play a romantic song when s/he enters into a smart house

[50].

The contextual information can be determined by explic-

itly processing the sensor data, e.g. a mood detection algo-

rithm can be applied on the video data to determine the mood

of a person. On the other hand, it can also be learned through

other mechanisms such as the time from a system clock,

location from a GPS device, and the sensors’ geometry and

location as a priori information from the system designer.

To integrate the contextual information in the fusion

process, most researchers such as Westerveld [139],

Jasinschi et al. [62], Wang and Kankanhalli [135], Pfleger

[100], Wu et al. [142], Atrey et al. [8] have adopted a rule-

based scheme. This scheme is very straight forward as it

follows the ‘‘if–then–else’’ strategy. For example, if it is

day time, then the video cameras would be assigned a

greater weight than the audio sensors in the fusion process

for detecting the event of a ‘‘human walking in the

Table 6 A list of the representative works related to the usage of confidence level in the fusion process

The mode of

computation

The works Multimedia analysis task The confidence is determined based on

Static Neti et al. [87] Speaker recognition and speech

event detection

The past accuracy

Iyenger et al. [57] Monologue detection

Tatbul et al. [126] Military smart uniform

Hsu and Chang [53] News video analysis

Atrey et al. [8] Event detection for surveillance

Dynamic Tavakoli et al. [127] Event detection in undersea sensor networks The spatial and the temporal information

of sensors’ observations

Atrey et al. [10] Event detection for surveillance The agreement/disagreement between

different streams
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garden’’, else otherwise. We describe some of these works

in the following. In [139], the author has integrated image

features (content) and the textual information that comes

with an image (context) at the semantic level. Similar to

this work, Jasinschi et al. [62] have presented a layered

probabilistic framework that integrates the multimedia

content and context information. Within each layer, the

representation of content and context is based on Bayesian

networks, and hierarchical priors that provide the connec-

tion between the two layers. The authors have applied the

framework for an end-to-end system called the video scout

that selects, indexes, and stores TV program segments

based on topic classification. In the context of dialog sys-

tems, Pfleger [100] has presented a multimedia fusion

scheme for detecting the user actions and events. While

detecting these input events, the user’s ‘local turn context’

has been considered. This local turn context comprises all

previously recognized input events and the dialog states

that both belong to the same user’s turn. Wu et al. [142]

have used the context information (in form of the time and

location) for photo annotation. They have adopted a

Bayesian network fusion approach in which the context has

been used to govern the transitions between nodes. Wang

and Kankanhalli [135] and Atrey et al. [8] have used the

context in the form of the environment and the sensor

information. The environment information consisted of the

geometry of the space under surveillance while the sensory

information was related to their location and orientation.

While the works described above have used the context in

a static manner, Sridharan et al. [122] have provided a

computational model of context evolution. The proposed

model represents the context using semantic-nets. The con-

text has been defined as the union of semantic-nets, each of

which can specify a fact about the environment. The inter-

relationships among the various aspects (e.g. the user, the

environment, the allowable interactions, etc.) of the system

are used to define the overall system context. The evolution

of context has been modeled using a leaky bucket algorithm

that has been widely used for traffic control in a network.

The representative works related to the use of contextual

information in the fusion process have been summarized in

Table 7. Although the rule-based strategy of integrating the

context in the fusion process is appealing, the number of

rules largely increases in varying context in a real world

scenario. Therefore, other strategies for context determi-

nation and its integration in multimodal fusion remain to be

explored in future.

4.2 Issue related to when to fuse

Different modalities are usually captured in different for-

mats and at different rates. Therefore, they need to be

synchronized before fusion takes place [95]. As the fusion

can be performed at the feature as well as the decision

level, the issue of synchronization is also considered at

these two levels. In the feature level synchronization, the

features obtained from different but closely coupled

modalities captured during the same time period are

combined together [28]. On the other hand, the decision

level synchronization needs to determine the designated

points along the timeline at which the decisions should be

fused. However, in both the levels of fusion, the problem of

synchronization arises in different forms. In the following,

we elaborate on these problems and also describe some

works which have addressed them.

The feature level synchronization has been illustrated in

Fig. 9a. Assuming that the raw data from the two different

types of modalities (modality 1 and modality 2, in the

figure) are obtained at the same time t = 1. The feature

extraction from these modalities can be from different time

periods (e.g. 2 and 1.5 time units for modality 1 and

modality 2, respectively in Fig. 9a). Due to the different

time periods of the data processing and feature extraction,

when these two features should be combined, remains an

issue. To resolve this issue, a simple strategy could be to

fuse the features at regular intervals [8]. Although this

strategy may not be the best, it is computationally less

expensive. An alternative strategy could be to combine all

Table 7 The representative works related to the use of contextual information in the fusion process

Contextual information The works Multimedia analysis task

Textual information with an image Westerveld [139] Image retrieval

Signature, pattern, or underlying structure

in audio, video and transcript

Jasinschi et al. [62] TV program segmentation

Environment and sensor information Wang and Kankanhalli [135],

Atrey et al. [8]

Event detection for surveillance

Word nets Sridharan et al. [122] Multimedia visualization and annotation

Past input events and the dialog state Pfleger [100] Detecting the user intention in multimodal

dialog systems

Time, location and camera parameters Wu et al. [142] Photo annotation
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the features at the time instant they are available (e.g. at

t = 3 in Fig. 9a).

An illustration of the synchronization at the decision

level is provided in Fig. 9b. In contrast to feature level

synchronization, where only the feature extraction time

impact asynchrony between the modalities, the additional

time of obtaining decisions based on the extracted features

further affect it. For example, as shown in Fig. 9b, the time

taken in obtaining the decisions could be 1.5 and 1.75 time

units for modality 1 and modality 2, respectively. However,

similar to feature level synchronization, in this case also,

the decisions are fused using various strategies discussed

earlier (e.g. at the time instant all the decisions are avail-

able, t = 4 in Fig. 9b). Exploring the best strategy is an

issue that can be considered in future.

Another important synchronization issue is to determine

the amount of raw data needed from different modalities

for accomplishing a task. To mark the start and end of a

task (e.g. event detection) over a timeline, there is a need to

obtain and process the data streams at certain time inter-

vals. For example, from a video stream of 24 frames/s, 2-s

data (48 frames) could be sufficient to determine a human

walking event (by computing the blob displacement in a

sequence of images); however, the same event (sound of

footsteps) could be detected using one second of audio data

of 44 kHz. This time period, which is basically the mini-

mum amount of time to accomplish a task, could be dif-

ferent for different tasks when accomplished using various

modalities. Ideally, it should be as small as possible since a

smaller value allows task accomplishment at a finer gran-

ularity in time. In other words, the minimum time period

for a specific task should be just large enough to capture the

data to accomplish it. Determining the minimum time

period to accomplish different tasks is a research issue that

needs to be explored in future.

In multimedia fusion literature, the issue of synchroni-

zation has not been widely addressed. This is because many

researchers focused on the accuracy aspect of the analysis

tasks and performed experiments in an offline manner. In the

offline mode, the synchorization has often been manually

performed by aligning the modalities along a timeline. The

researchers who performed analysis tasks in real time have

usually adopted simple strategies such as synchronization at

a regular interval. However, having a regular interval may

not be optimal and may not lead to the accomplishment of

the task with the highest accuracy. Therefore, the issue of

synchronization still remains to be explored.

In the following, we discuss some representative works

that have focused on synchronization issue in one way or

the other. In the area of audio-visual speech processing,

several researchers have computed the audio-visual syn-

chrony. These works include Hershey and Movellan [47],

Slaney and Covell [117], Iyengar et al. [57], Nock et al.

[91] and Bredin and Chollet [19]. In these works, the

audio-visual synchrony has been used as a measure of

correlation that can be perceived as synchronization at the

feature level.

The problem of synchronization at the decision level,

which is more difficult than the feature level synchroni-

zation, has been addressed by few researchers including

Holzapfel et al. [49], Atrey et al. [8], and [Xu and Chua

[149]. Holzapfel et al. [49] have aligned the decisions

obtained from the processing of gesture and speech

modalities. To identify the instances at which these two

decisions are to be along the timeline, the authors com-

puted temporal correlation between the two modalities.

Unlike Holzapfel et al. [49], Atrey et al. [8] adopted a

simple strategy to combine the decisions at regular inter-

vals. These decisions were obtained from audio and video

event detectors. The authors have empirically found that

the time interval of one second was optimal in improving

the overall accuracy of event detection.

The issue of time synchronization has also been widely

addressed in news and sports video analysis. Satoh et al.

[114] adopted a multimodal approach for face identifica-

tion and naming in news video by aligning the text, audio

and video modalities. The authors proposed to detect face

sequences from images and extract the name candidates

from the transcripts. The transcripts were obtained from the

audio tracks using speech recognition technique. Moreover,

video captions were also processed to extract the name

titles. Based on the audio-generated transcript and the

video captions, the corresponding faces in the video were

aligned.
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In the domain of sports event analysis, to determine the

time when the event occurred in the broadcasted sports

video, Babaguchi et al. [13] used the textual overlays that

usually appear in the sports video. Similar approach was

used by Xu and Chua [149]. In their work, the authors

have used text modality in addition to the audio and

video. The authors observed a significant asynchronism

that resulted from different time granularities of audio–

video and text analysis. While the audio–video frames

were available at a regular interval of seconds, the text

availability was very slow (approximately every minute).

This was because, the human operator usually enters texts

for live matches which takes a few minutes to become

available for automatic analysis. The authors have per-

formed synchronization between text and audio–video

modalities by using alignment. This alignment was per-

formed by maximizing the number of matches between

text events and audio–video events. The text and audio–

video events are considered matched when they are both

within a temporal range, occur in the same sequential

order, and the audio–video event adapts to the modeling

of the text event. For example, an offense followed by a

break conforms to goal’s event modeling. Although the

above mentioned synchronization method works well, it

cannot be generalized since it is domain-oriented and

highly specific to the user-defined rules. Note that, while

Babaguchi et al. [13] and Xu and Chua [149] attempted to

synchronize video based on the time extracted from the

time overlays in the video and web-casted text, respec-

tively; Xu et al. [147] and [148] adopted a different

approach. In their work, the authors extracted the timing

information from the broadcasted video by detecting the

video event boundaries. The authors observed that as the

webcasted text is usually not available in the broadcasted

text, the time recognition from the broadcast sports video

is a better choice to perform the alignment of the text and

video.

A summarization of the above described works has been

provided in Table 8.

4.3 Issue related to what to fuse

In the literature, the issue of what to fuse has been

addressed at two different levels: modality selection and

feature vector reduction. Modality selection refers to

choosing different types of modalities. For example, one

can select and fuse two video camera and one microphone

data to determine the presence of a person. On the other

hand, the fusion of features usually results into a large

feature vector, which becomes a bottleneck for a particular

analysis task. This is known as the curse of dimensionality.

To overcome this problem, different data reduction tech-

niques are applied to reduce the feature vector. In the

following, we discuss various works that addressed the

modality selection and feature vector reduction issues.

4.3.1 Modality selection

The modality selection problem is similar to the sensor

stream selection problem that has often been considered as

an optimization problem, in which, the best set of sensors is

obtained satisfying some cost constraints. Some of the

fundamental works on the sensor stream selection in the

context of discrete-event systems and failure diagnosis

include Oshman [94], Debouk et al. [37] and Jiang et al.

[64]. Similarly, in the context of wireless sensor networks,

the optimal media stream selection has been studied by

Pahalawatta et al. [98], Lam et al. [70], and Isler and Ba-

jcsy [56]. The details of these works are omitted in the

interest of brevity.

In the context of multimedia analysis, the problem of

optimal modality selection has been targeted by Wu et al.

[143], Kankanhalli et al. [68], and Atrey et al. [9]. In [143],

the authors proposed a two-step optimal fusion approach.

In the first step, they find statistically independent moda-

lities from raw features. Then, the second step involves

super-kernel fusion to determine the optimal combination

of individual modalities. The authors have provided a

tradeoff between modality independence and the curse of

Table 8 A list of representative works that have addressed synchronization problem

Level of fusion The work Multimedia analysis task

Feature Hershey and Movellan [47], Slaney and Covell [117],

Nock et al. [91]

Speech recognition and speaker localization

Iyengar et al. [57] Monologue detection

Bredin and Chollet [19] Biometric-based person identification

Decision Holzapfel et al. [49] Dialog understanding

Atrey et al. [8] Event detection for surveillance

Satoh et al. [114] News video analysis

Babaguchi et al. [13], Xu and Chua [149], Xu et al. [147, 148] Sports video analysis
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dimensionality. Their idea of selecting optimal modalities

is as follows. When the number of modalities is one, all the

feature components were treated as a one-vector repre-

sentation, suffering from the curse of dimensionality. On

the other hand, the large number of modalities reduces the

curse of dimensionality, but the inter modality correlation

is increased. An optimal value of modalities would tend to

balance between the curse of dimensionality and the inter

modality correlation. The authors have demonstrated the

utility of their scheme for image classification and video

concept detection. Kankanhalli et al. [68] have also pre-

sented an Experiential Sampling based method to find the

optimal subset of streams in multimedia systems. Their

method is the extension of the work by Debouk et al. [37],

in the context of multimedia. This method may have a high

cost of computing the optimal subset as it requires the

minimum expected number of tests to be performed in

order to determine the optimal subset.

Recently, Atrey et al. [9] have presented a dynamic

programming based method to select the optimal subset of

media streams. This method provides a threefold tradeoff

between the extent to which the multimedia analysis task is

accomplished by the selected subset of media streams, the

overall confidence in this subset, and the cost of using this

subset. In addition, their method also provides flexibility to

the system designer to choose the next best sensor if the

best sensor is not available. They have demonstrated the

utility of the proposed method for event detection in an

audio–video surveillance scenario.

From the above discussion, it can be observed that only

a few attempts (Wu et al. [143], Kankanhalli et al. [68],

and Atrey et al. [9]) have been made to select the best (or

optimal) subset of modalities for multimodal fusion.

However, these methods have their own limitations and

drawbacks. Moreover, they do not consider the different

contexts under which the modalities may be selected.

Therefore, a lot more can be done in this aspect of multi-

modal fusion. The methods for optimal subset modality

selection described above are summarized in Table 9.

4.3.2 Feature vector reduction

It is important to mention that, besides selecting the opti-

mal set of the modalities, the issue ‘‘what to fuse’’ for a

particular multimedia analysis task involves the reduction

of feature vector. The fusion of features that are obtained

from different modalities usually result into a large feature

vector, which becomes a bottleneck when processed to

accomplish any multimedia analysis task. To handle such

situations, researchers have used various data reduction

techniques. Most commonly used techniques are principle

component analysis (PCA), singular vector decomposition

(SVD) and linear discriminant analysis (LDA).

PCA is used to project higher dimensional data into

lower dimensional space while preserving as much infor-

mation as possible. The projection that minimizes the

squared error in reconstructing original data is chosen to

represent the reduced set of features. The PCA technique

often does not perform well when the dimensionality of the

feature set is very large. This limitation is overcome by

SVD technique, which is used to determine the eigen

vectors that most represent the input feature set. While

PCA and SVD are unsupervised techniques, LDA works in

supervised mode. LDA is used for determining the linear

combination of features, which is not only a reduced set of

features but it is also used for classification. The readers

may refer to [134] for further details about these feature

dimensionality reduction methods.

In multimodal fusion domain, many researchers have

used these methods for feature vector dimension reduction.

Some representative works are: Guironnet et al. [44] used

PCA for video classification, Chetty and Wagner [28] uti-

lized SVD for biometric person authentication, and Pota-

mianos et al. [105] adopted LDA for speech recognition.

4.3.3 Other considerations

There are other situations when the issue of ‘‘what to fuse’’

needs special consideration. For instance, dealing with

unlabeled data in fusion [130] and handling noisy positive

data for fusion [54].

There are three approaches used for learning with

unlabeled data: semi-supervised learning, transductive

learning and active learning [155]. Semi-supervised

learning methods automatically exploit unlabeled data to

help estimate the data distribution in order to improve

learning performance. Transductive learning is different

from semi-supervised learning in that it selects the

Table 9 A summary of approaches used for optimal modality subset selection

The work The optimality criteria Drawback

Wu et al. [143] Curse of dimensionality versus inter modality

correlation

The gain from a modality is overlooked

Kankanhalli et al. [68] Information gain versus cost (time) Cost of computing the optimal subset could be high

Atrey et al. [9] Gain versus Confidence level versus processing cost The issue of how frequently the optimal subset should

be recomputed needs a formalization
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unlabeled data from test data set. On the other hand, in

active learning methods, the learning algorithm selects the

unlabeled example and actively query the user/teacher for

labels. Here the learning algorithm is supposed to be good

enough to choose the least number of examples to learn a

concept, otherwise there is a risk of including the unim-

portant and irrelevant examples.

Another important issue that needs to be resolved is how

to reduce outliers or noise in the input data for fusion. In the

multimodal fusion process, noisy data usually results into

reduced classification accuracy and increased training time

and size of the classifier. There are various solutions to deal

with the noisy data. For instance, to employ some noise

filter mechanisms to smooth the noisy data or to apply an

appropriate sampling technique to differentiate the noisy

data from the input data before the fusion takes place [137].

5 Benchmark datasets and evaluation

5.1 Datasets

Many multimodal fusion applications use several publicly

available datasets. For example, the small 2k image datasets

in Corel Image CDs. It contains representative images of

fourteen categories that includes architecture, bears, clouds,

elephants, fabrics, fireworks, flowers, food, landscape,

people, textures, tigers, tools, and waves. Different features

such as color and texture can be extracted from this 2k

image dataset and be used for fusion as shown in [143].

Among the video-based fusion research, the most popu-

lar are the well-known TRECVID datasets [2] that are

available in different versions since 2001. A quick view of

the high-level feature extraction from these datasets can be

found in [118]. Depending on their release, these datasets

contain data files about broadcast news video, sound and

vision video, BBC rushes video, BBC rushes video, Lon-

don Gatwick surveillance video, and test dataset annota-

tions for surveillance event detection. Features from visual,

audio and caption tracks in TRACVID datasets are

extracted and used in fusion for various multimedia anal-

ysis tasks, such as video shot retrieval [83], semantic video

analysis [121], news video story segmentation [52], video

concept detection [58, 143] and so on.

The fusion literature related to biometric identification

and verification make ongoing efforts to build multimodal

biometric databases. For example, BANCA [14] that con-

tains face and speech modalities; XM2VTS [82] that con-

tains synchronized video and speech data; BIOMET [42]

that contains face, speech, fingerprint, hand and signature

modalities; MYCT [93] that contains 10-print fingerprint

and signature modalities and several others as mentioned in

[104].

Another popular dataset standardization effort has been

the agenda of performance evaluation of tracking and

surveillance (PETS) community [1]. Several researchers

have used PETS datasets for multimodal analysis tasks, for

example, object tracking [154].

Although there are several available datasets that can be

used for various analysis tasks, there lacks any standardi-

zation effort for a common dataset for multimodal fusion

research.

5.2 Evaluation measures

Several evaluation metrics are usually used to measure the

performance of the fusion-based multimedia analysis tasks.

For example, NIST average precision metric is used to

determine the accuracy of semantic concept detection at

the video shot level [58, 121, 143]. For news video story

segmentation, the precision and recall metrics are widely

used [52]. Precision and recall measure are also commonly

used for image retrieval [55]. Similarly, for the video shot

retrieval some researchers use mean average precision [83].

While performing image categorization, the accuracy of

the classification is measured in terms of image category

detection rate [156].

To measure the performance of tracking related analysis

tasks, the dominating evaluation metrics include mean

distance from track, detection rate, false positive rate,

recall and precision [131]. Similarly, for speaker position

estimation researchers have measured tracking error and

calculated average distance between true and estimated

position of speaker [125]. In [154], the authors calculated

variance of motion direction and variance of compactness

to calculate the accuracy of object tracking.

Recently, Hossain et al. [51] presented a multi-criteria

evaluation metric to determine the quality of information

obtained based on multimodal fusion. The evaluation

metric includes certainty, accuracy and timeliness. The

authors showed its applicability in the domain of multi-

media monitoring.

In human computer interaction, fusion is used mostly to

identify multimodal commands or input interactions of

human such as gestures, speech etc. Therefore, metrics

such as speech recognition accuracy and gesture recogni-

tion accuracy are used to measure the accuracy of these

tasks [49].

Furthermore, to evaluate the fusion result for biometric

verification, false acceptance rate (FAR) and false rejection

rate (FRR) are used to identify the types of errors [104].

The FAR and FRR are often used to present the half total

error rate (HTER), which is a measure to assess the quality

of a biometric verification system [17].

Overall, we observed that the researchers have used

different evaulation criteria for different analysis tasks.
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However a common evaluation framework for multimodal

fusion is yet to be achieved.

6 Conclusions and future research directions

We have surveyed the state-of-the-art research related to

multimodal fusion and commented on these works from the

perspective of the usage of different modalities, the levels

of fusion, and the methods of fusion. We have further

provided a discussion to summarize our observation based

on the reviewed literature, which can be useful for the

readers to have an understanding of the appropriate fusion

methodology and the level of fusion. Some distinctive

issues (e.g. correlation, confidence) that influence the

fusion process are also elaborated in greater detail.

Despite that a significant number of multimedia analysis

tasks have been successfully performed using a variety of

fusion methods, there are several areas of investigation that

may be explored in the future. We have identified some of

them as follows:

1. Multimedia researchers have mostly used the audio,

video and the text modalities for various multimedia

analysis tasks. However, the integration of some new

modalities such as RFID for person identification,

haptics for dialog systems, etc. can be explored

further.

2. The appropriate synchronization of the different

modalities is still a big research problem for multi-

modal fusion researchers. Specifically, when and how

much data should be processed from different modal-

ities to accomplish a multimedia analysis task, is an

issue that has not yet been explored exhaustively.

3. The problem of the optimal weight assignment to the

different modalities under a varying context is an open

problem. Since we usually have different confidence

levels in the different modalities for accomplishing

various analysis tasks, the problem of dynamic com-

putation of the confidence information for the different

streams for various tasks, becomes challenging and

worth researching in future.

4. How to integrate context in the fusion process? This

question can be answered by thinking beyond the ‘‘if–

then–else’’ strategy. There is a need to formalize the

concept of context. How may the changing context

influence the fusion process? What model would be

most suitable to simulate the varying nature of

context? These questions require greater attention

from multimedia researchers.

5. The feature level correlation among different modal-

ities has been utilized in an effective way. However, it

has been observed that correlation at the semantic level

(decision level) has not been fully explored, although

some initial attempts have been reported.

6. The optimal modality selection for fusion is emerging

as an important research issue. From the available set,

which modalities should be fused to accomplish a task

at a particular time instant? The utility of these

modalities could be changed with the varying context.

Moreover, the optimality of modality selection can be

determined based on various constraints such as the

extent to which the task is accomplished, the confi-

dence with which the task is accomplished, and the

cost of using the modalities for performing the task. As

the optimal subset changes over time, how frequently

it should be computed so that the cost of re-compu-

tation can be reduced to meet the timeliness, is an open

problem for multimedia researchers to consider.

7. Last but not least, there are various evaluation metrics

that are used to measure the performance of different

multimedia analysis tasks. However, it would be

interesting to work on a common evaluation frame-

work that can be used by multimodal fusion

community.

Multimodal fusion for multimedia analysis is a pro-

mising research area. This survey has covered the existing

works in this domain and identified several relevant issues

that deserve further investigation.

Acknowledgments The authors would like to thank the editor and

the anonymous reviewers for their valuable comments in improving

the content of this paper. This work is partially supported by the

Natural Sciences and Engineering Research Council (NSERC) of

Canada.

References

1. PETS: Performance evaluation of tracking and surveillance

(Last access date 31 August 2009). http://www.cvg.rdg.ac.uk/

slides/pets.html

2. TRECVID data availability (Last access date 02 September

2009). http://www-nlpir.nist.gov/projects/trecvid/trecvid.data.

html

3. Adams, W., Iyengar, G., Lin, C., Naphade, M., Neti, C., Nock,

H., Smith, J.: Semantic indexing of multimedia content using

visual, audio, and text cues. EURASIP J. Appl. Signal Process.

2003(2), 170–185 (2003)

4. Aguilar, J.F., Garcia, J.O., Romero, D.G., Rodriguez, J.G.: A

comparative evaluation of fusion strategies for multimodal

biometric verification. In: International Conference on Video-

Based Biometrie Person Authentication, pp. 830–837. Guildford

(2003)

5. Aleksic, P.S., Katsaggelos, A.K.: Audio-visual biometrics. Proc.

IEEE 94(11), 2025–2044 (2006)

6. Andrieu, C., Doucet, A., Singh, S., Tadic, V.: Particle methods

for change detection, system identification, and control. Proc.

IEEE 92(3), 423–438 (2004)

7. Argillander, J., Iyengar, G., Nock, H.: Semantic annotation of

multimedia using maximum entropy models. In: International

Multimodal fusion for multimedia analysis 375

123

http://www.cvg.rdg.ac.uk/slides/pets.html
http://www.cvg.rdg.ac.uk/slides/pets.html
http://www-nlpir.nist.gov/projects/trecvid/trecvid.data.html
http://www-nlpir.nist.gov/projects/trecvid/trecvid.data.html


Conference on Accoustic, Speech and Signal Processing,

pp. II–153–156. Philadelphia (2005)

8. Atrey, P.K., Kankanhalli, M.S., Jain, R.: Information assimila-

tion framework for event detection in multimedia surveillance

systems. Springer/ACM Multimed. Syst. J. 12(3), 239–253

(2006)

9. Atrey, P.K., Kankanhalli, M.S., Oommen, J.B.: Goal-oriented

optimal subset selection of correlated multimedia streams. ACM

Trans. Multimedia Comput. Commun. Appl. 3(1), 2 (2007)

10. Atrey, P.K., Kankanhalli, M.S., El Saddik, A.: Confidence

building among correlated streams in multimedia surveillance

systems. In: International Conference on Multimedia Modeling,

pp. 155–164. Singapore (2007)
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