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ABSTRACT

A multimedia system utilizes a set of correlated media streams
each of which partially help in achieving the system goal.
However, since not all of the streams always contribute to-
wards the goal, there is a need for determining the most
informative subset from the available set of media streams
at any instant. For example, a subset of two video cam-
eras and two microphones could be better than any other
subset of multimedia sensors at some time instance. This
paper presents a novel framework to find the optimal subset
of media streams that achieves the system goal under spec-
ified constraints. The proposed framework uses a dynamic
programming approach to find the optimal subset of media
streams based on two criteria; first, by maximizing the prob-
ability of achieving the goal under the specified maximum
cost, and second by minimizing the cost of using the streams
so that the goal is achieved with a specified minimum prob-
ability. To show the utility of our framework, we provide
the simulation results for hypothesis testing.

1. INTRODUCTION

In recent times, it is being increasingly accepted that most
media analysis tasks can be better performed by usingmul-
tiple correlated media as compared to using onlymonome-
dia. Examples include surveillance systems, media search
systems and media mining systems. In surveillance sys-
tems, people employ multiple media such as video cameras,
microphones and infra-red cameras, and also use other non-
sensory data to achieve the system goals. The goal of a
surveillance system could be ‘to monitor how many people
have passed through the corridor between 4 pm to 5 pm on
March 30, 2005’ or it could even be ‘to display the face of a
person who shouted near the room number 101 in the corri-
dor’. Using multiple media is advantageous because a sin-
gle stream can only partially help in achieving a system goal
due to its ability to sense only a part of the environment.
Hence multiple media are used to capture different aspects
of the environment to provide complementary information
which is not available from only one single medium.

On the other hand, the fact that all of the employed
streams do not always contribute towards a goal brings up
the issue of finding best (or most informative) subset of
streams. The system on the fly should be able to determine
whether a particular subset of streams would be better than
any other subset of streams. The best subset of media dy-
namically changes over time. Once this subset is found, the
system can continue using it while ignoring the remaining
streams for a certain period. This eliminates the cost of us-
ing redundant and less-informative media. The cost of using
a media stream usually includes- processing cost of stream,
energy to operate the media device, and its wear and tear.
Therefore, media must be used optimally so that a system
goal can be maximally achieved under a specified cost.

In this paper, we essentially address the following re-
search issues: 1) What is the optimal number of streams
required to achieve the goal under the specified constraints?
2) Which subset of the streams is the optimal one? 3) Can
one use alternate media streams without much loss of cost-
effectiveness in case the most suitable subset is unavailable?
4) How frequently should this optimal subset be computed
so that the cost of computing it can be minimized?

We study the problem of optimal media selection in two
different ways - finding the optimal subset that maximizes
the goal under a specified cost, and finding the optimal sub-
set that minimizes the cost subject to goal being achieved
to a certain given extent. We reduce the problem of optimal
media selection to the 0-1 Knapsack problem [1] and use
a dynamic programming approach to solve it. In our prob-
lem, for each media, the probability of it helping achieve the
goal and its cost are analogous toprofit andweight, respec-
tively, of a knapsack problem. The fundamental difference
is that we fuse the probabilities using a Bayesian approach
[2], while the profits are added in 0-1 Knapsack problem.

In the past, optimal sensor selection problem has been
widely studied in the context of discrete-event systems and
failure diagnosis. The proposed approaches include optimal
measurement subsystem strategy [3], Markovian decision
strategy [4] and a formal method [5]. [3] and [5] do not con-
sider the cost of using sensors. [4] assumes the uniform cost
for all sensors which is impractical in a multimedia environ-



ment where different types of media are employed. A re-
cently proposed method [6] selects the set of sensors based
on a certain accuracy requirement. Our proposed work is
different from all the above discussed solutions in that, our
framework provide a tradeoff between the extent to which
the system goal is achieved and the cost of using streams.

2. PROBLEM FORMULATION

Let, a multimedia systemS designed for a goalG employ a
setMn(t) = {M1, M2, . . . ,Mn} of n media streams at time
t. For1 ≤ i ≤ n, 0 ≤ pi ≤ 1 be theprobabilityof achieving
the system goalG using individualith media stream.pi is
also denoted asP (G|Mi). Also, let PΦ (also denoted as
P (G|Φ)) be the ‘fusion probability’ of achieving the system
goalG using a subsetΦ ∈ (The power set ofMn) of media
streams. The ‘fusion probability’ is the overall probability
of achieving the system goal using a group of media streams
[2]. For 1 ≤ i ≤ n, ci be thecostper unit time of using the
streami. Also,Cn =

∑n

i=1
ci be thetotal cost.

We assume that - 1) All media capture the same envi-
ronment (but optionally the different aspects) and provide
correlated observations, 2) The system goalG is to test a
specified hypothesisH. Examples of a hypothesis could be
‘there is a person shouting near the meeting room’ or ‘there
is currently a running person in a corridor’ etc, and 3) The
number of streams is more than necessary to achieve the
goal, hence there is a need to select the best subset.

The objective is to find a subsetΦ ∈ P(Mn) that -
Problem MaxGoal: maximizesPΦ subject toCΦ ≤ Cspec

Problem MinCost: minimizesCΦ subject toPΦ ≥ Pspec

wherePΦ is the fusion probability of achieving the goal
when the subsetΦ of media streams is used by systemS,
CΦ is the overall cost of using the subsetΦ of streams,Pspec

is the specified minimum fusion probability of achieving the
goal, andCspec is the specified maximum overall cost.

3. PROPOSED FRAMEWORK

Given the set ofn media streams, the optimal subset of me-
dia streams to test a hypothesisH is obtained as follows:
1. For1 ≤ i ≤ n, we first compute the probabilityP (H|Mi)
of hypothesisH being true using a Bayesian classifier [7].
2. Using a voting strategy, we divide then streams into two
subsetsS1 andS2 based on whether at the current instant
they support or do not support the true hypothesis.
3. For the two subsetsS1 andS2, compute fusion probabil-
ities P (H|S1) andP (H|S2) of achieving the goal using a
Bayesian approach [2].
4. If P (H|S1) ≥ P (H|S2), we conclude that the hypothe-
sisH is true and find the optimal subset fromS1 using a dy-
namic programming approach, else the hypothesis is treated
as null and the optimal subset is found fromS2.

3.1. Solution for MaxGoal

The dynamic programming approach for solvingMaxGoal
works as follows. We begin by considering the selection
of nth stream. If we select thenth stream, then the fusion
probability would be the result obtained from the fusion of
nth stream with the remainingn − 1 streams (with a max-
imum costCspec − cn, wherecn < Cspec). However, if
we do not select it, the fusion probability would possibly be
the result obtained from the fusion of the remainingn − 1
streams (with a maximum costCspec). The optimal fusion
probability (of achieving the goal) will be the maximum of
these two possible ‘best’ options. We describe the structure
of an optimal solution by the following recurrence relation:

Prob(i, m) =















Prob(i − 1, m) , ci > m

max[Prob(i − 1, m), , ci ≤ m

PFusion(Prob(i − 1,

m − ci), pi, γi)

whereProb(i,m), 1 ≤ i ≤ n, 1 ≤ m ≤ Cspec, is the
optimal fusion probability (of achieving the goal) based on
streams1, 2, . . . , i with the costm. The initial conditions
for the recursive relation are:

Prob(1, m) =

{

0 , c1 > m

p1 , c1 ≤ m

ThePFusion function combines the probabilities of achiev-
ing the goal based on two sourcesMi−1 (i.e. a group of
i − 1 streams) andMi (i.e. an individualith stream) using
the following fusion model (described in [2]):

Pi =
Pi−1.pi.e

γi

Pi−1.pi.eγi + (1 − Pi−1)(1 − pi).e−γi

(1)

where,Pi = Prob(i,m) andPi−1 = Prob(i − 1,m) are
the probabilities of achieving the goal usingMi andMi−1,
respectively.pi is the probability ofith stream individually
helping achieve the goal, andγi ∈ [−1, 1] is the agreement
coefficient between two sourcesMi−1 andMi. The lim-
its -1 and 1 represent full disagreement and full agreement,
respectively, between the two sources. The agreement coef-
ficient between two sources is computed based on the cum-
mulative past history of their agreement/disagreement, the
detailed description of which is out of scope of this paper.

The algorithmMaxGoal outlines the idea described above.
MaxGoal(n, p, c, Cspec, Γ)
Inputs
n: Number of input media streams.
p[1 . . . n]: Probabilities of streams helping achieve the goal.
c[1 . . . n]: Costs of using the streams.
Cspec: Specified maximum overall cost.
Γ: Set of agreement coefficients among the streams.
Steps
1. InitializeProb andSelect array to zero.
2. for i = 1 ton, m = 0 toCspec

3. if c[i] ≤ m



4. Compute fusion probabilityPi using equation (1)
5. if Pi > Prob[i − 1,m]
6. Prob[i,m] = Pi, Select[i,m] = 1
7. else
8. Prob[i,m] = Prob[i− 1,m], Select[i,m] = 0
9. elseProb[i,m] = Prob[i − 1,m], Select[i,m] = 0
10. K = m − 1, PΦ = Prob[n,K], CΦ = 0
11. for i = n to 1 in steps -1
12. if Select[K] = 1
13. Output the streami into Φ
14. CΦ = CΦ + c[i], K = K − c[i]
Outputs: Φ, PΦ andCΦ.

3.2. Solution for MinCost

To solveMinCost using a dynamic programming approach,
we begin by considering thenth stream. If we select it, the
best cost would becn plus the optimal cost of using remain-
ing n−1 streams so that the overall probability of achieving
the goal is at leastPspec. However, if we don’t select it, then
the best cost would possibly be the cost of using the remain-
ing n − 1 streams. The optimal cost of achieving the goal
will be the minimum of these two potentially ‘best’ options.

Let Cost(i,m) denote the cost of using media streams
1 . . . i for achieving the goal with probabilitym. Assuming
that probability takes one of theL discrete values, we char-
acterize the recursive relation forCost(i,m) as follows:

Cost(i, m) =







































min(Cost(i − 1, m), ci) , m ≤ min(pi, Pspec)
while(l[s] 6= 0){

min(Cost(i, m), , pi < m ≤ R and
fcost) Cost(i, m) 6= ∞

min(Cost(i − 1, m), , pi < m ≤ R and
fcost)} Cost(i, m) = ∞

Cost(i − 1, m) , m > R′

where1 ≤ i ≤ n, 1 ≤ m ≤ L. The initial conditions are,

Cost(1, m) =

{

c1 , m ≤ min(p1, Pspec)
∞ , m > p1

In the recursive formulation described above,fcost, R and
R′ are computed as follows,

fcost =







Cost(i − 1, l[s]) , s > 0 and l[s] 6= pi

ci , s > 0 and l[s] = pi

0 , s = 0

R =







PFusion(l[s], pi) , s > 0 and l[s] 6= pi

pi , s > 0 and l[s] = pi

0 , s = 0

R
′ =

{

max(R′, R) , s > 0
0 , s = 0

l[s] is a temporary array that contains the individual streams’
probabilities as well as their fusion probabilities.

We have also developed the correspondingMinCost al-
gorithm, which is structurally similar toMaxGoal. Its de-
scription has been omitted due to space constraints.

3.3. Complexity analysis

Any brute-force approach to solveMaxGoal takesO(2n)
time since all the2n subsets of streams are checked to find
the optimal subset. However, the time complexity ofMax-
Goal algorithm isO(n2×Cspec) which is on average lower
than of the brute-force approach. Note thatO(n2 × Cspec)
also includes the time complexity ofPFusion, which isO(n).
The space complexity of theMaxGoal is O(n × Cspec).

The algorithmMinCost has a time complexity ofO(n2×
L) to find the optimal subset which is again better than the
brute-force approach. Note that higher the discrete levelsL

of probability value, higher would the time complexity be.
The space complexity isO(n × L).

Note that these time and space complexities are of poly-
nomial time under the condition thatCspec 6= O(2n) (for
MaxGoal) andL 6= O(2n) (for MinCost).

4. SIMULATION RESULTS

We provide the simulation results for a set of 10 media
streams with individual probabilities of hypothesis being
true and the cost given by arraysp = (0.70, 0.45, 0.65, 0.40,

0.75, 0.45, 0.85, 0.30, 0.55, 0.60) and c = (9, 9, 4, 2, 8, 2,

8, 5, 2, 3), respectively. First, the streams are divided into
two setsS1 andS2 based on whether or not they support
the true hypothesis. Precisely, the streams that support the
hypothesis with more than 0.50 probability are put in setS1

and rest in setS2. So, we getS1 = (0.70, 0.65, 0.75, 0.85,
0.55, 0.60) andS2 = (0.55, 0.60, 0.55, 0.70). Note that, af-
ter this division, the setsS1 andS2 support true hypothesis
and null hypothesis, respectively. Next, we fuse the streams
from two sets individually and obtain the fusion probabili-
tiesP (H|S1) andP (H|S2) (Refer to Table 1). For sake of
simplicity, we have assumed uniform agreement coefficient
among all the media streams. However, we analyze how
the system behaves by having different values (0.00, 0.50
and 1.00) of this uniform agreement coefficient. As shown
in Table 1,P (H|S1) is higher thanP (H|S2); this suggests
that the hypothesis is true. So, we find the optimal subset
from S1 usingMaxGoal and ignore the setS2.

We study the behavior ofMaxGoal and MinCost by
varying the specified maximum costCspec and the specified
minimum probabilityPspec of achieving the goal, respec-
tively. The simulation results ofMaxGoal and MinCost
are shown in figure 1a-1b and figure 1c-1d, respectively. In
figure 1a-1d, symbolsA, B, and so on, represent the op-
timal subsets. For instance, in figure 1b, symbolB (i.e.
Φ = (2, 3)) represents a subset of2nd and3rd stream of
S2 set. Thex-axis value corresponding toΦ = (2, 3) shows
the costCΦ = 4 of using the subsetΦ andy-axis shows the
optimal probabilityPΦ = 0.9313 achieved by using this
subset. Note that the symbolB indicates the optimal sub-
set obtained by having the uniform agreement coefficient as



Table 1. Fusion probabilities ofS1 andS2

Agreement coefficient 0 0.50 1.00
P (H|S1) 0.9927 1.0000 1.0000
P (H|S2) 0.8394 0.9906 0.9995
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Fig. 1. Simulation results: (a)MaxGoal on S1, (b) Max-
Goal onS2, (c) MinCost onS1 and (d)MinCost onS2

1.00. Also note that the same subsetΦ with the same cost
CΦ achieves a lower probability when the agreement coef-
ficient between the streams is low (the symbolsC andD).

The overall observations from simulation (figure 1) are:
1. The proposed framework offers a flexibility to compare
whether any one set of media streams of low cost would be
better than any other set of media streams of higher cost.
For instance, figure 1a clearly shows that the subset indi-
cated by symbolE would be a better choice over the subset
indicated by symbolsH onwards since there is a very small
difference in the goal achieved using the two subsets while
there is a significant difference in the cost.
2. The graphs (figure 1) show a pictorial representation of
which subset of streams is most suitable in terms of opti-
mal probability or the optimal cost. It also helps in deciding
which is next best subset of streams in case the best subset
is not available. For instance, in figure 1c, if the subset de-
noted byO is not available then next best subset (in terms
of cost) denoted byP can be considered for use.
3. The absolute difference of fusion probabilitiesP (H|S1)
andP (H|S2) of two setsS1 andS2 suggests how sure are
we about the correct testing of hypothesisH (Table 1). If
this difference is significant, it is reasonable to continue
with the current optimal subset for a certain period. How-
ever, if it is low, then the optimal subset should be recom-
puted more frequently since it could be more likely that one
or two streams may switch to the other set. This gives us

some idea on how frequently the optimal subset should be
computed. However this need to be formally proven.
4. Fewer streams with high agreement among them are
more advantageous (in terms of cost and fusion probability)
compared to using more streams with lower agreement.

5. CONCLUSIONS

In this paper, we propose a framework that uses a dynamic
programming approach to find the optimal subset of media
streams for two different objectives - maximizing the prob-
ability of achieving the goal under the specified cost, and
minimizing the cost of using the subset to obtain a speci-
fied probability of achieving the goal. The simulation re-
sults show that the dynamic programming based approach
provides the best subset under specified constraints and it
also offers the user a flexibility to choose alternative (or next
best) subset when the best subset is unavailable. For future
work, it would be interesting to see how the accuracies of
media streams can be incorporated into our framework.
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