
A Robust Music Retrieval Method for Query-
by-Humming 

Mohan S Kankanhalli 
School of Computing 

National University of Singapore 
Singapore 

mohan@comp.nus.edu.sg 

Yongwei Zhu 
Institute for Inforcomm Research 

Singapore 
ywzhu@i2r.a-star.edu.sg 

  In this paper, we present a novel melody representation 
and matching method, which is both robust against pitch 
errors and invariant to liner or non-linear tempo variation. The 
melody of a music item or a query is represented by a point 
sequence, which is derived from the pitch contour of the 
melody. This point sequence is invariant to the time or speed 
in the original melody contour. Important anchor points in the 
sequence, called melody skeleton, are used for melody 
searching and alignment. A specialized dynamic programming 
algorithm is proposed for robust melody skeleton matching 
and alignment. The melody similarity measurement of the 
whole point sequences is then computed based on the precise 
alignment. We achieve (1) tempo invariance by using the 
novel melody representation, (2) robustness to pitch error by 
using melody skeleton matching, and (3) high retrieval 
accuracy by using melody alignment. Furthermore, the 
melody skeleton matching can serve as a filter that rejects the 
large portion of the wrong candidate, which promote the 
retrieval efficiency.  

Abstract The increasing availability of digital music has 
created a need for effective music retrieval methods. In this 
paper, we present a novel content-based music retrieval method 
that is robust against pitch errors and tempo variations in the 
queries, which is especially advantageous for query-by-humming. 
The melody of a music item and that of a hummed query are 
represented by point sequences, and the skeletons of the melody 
are used to do melody searching and alignment. A novel point 
skipping dynamic programming algorithm is proposed for robust 
and efficient melody skeleton matching. The melody similarity 
measure is then computed based on the alignment of the point 
sequences. Our experiment, including a comparison to our 
previous methods, has demonstrated the performance of the 
method. 
 

Index Terms—  Music retrieval, Query-by-Humming 
 

I. INTRODUCTION 
Due to the increasing availability of digital music content, 

effective retrieval of such data is becoming very important. 
Music information retrieval has therefore become an area of 
active research in the recent years. Several music retrieval 
techniques for query-by-humming have been proposed, since 
for most people humming is the easiest way of producing a 
music query. 

This paper is organized as follows: section 2 briefly 
describes melody representation using point sequence derived 
from melody contour; section 3 describes a specialized 
dynamic programming method for melody skeleton search and 
a melody similarity metric; section 4 discusses experimental 
results and the last section presents the conclusions. 

 The inevitable note articulation error, pitch inaccuracy and 
tempo variation in the humming, however, pose great 
challenges for effective music retrieval. Previous string 
matching approach [1-4] has much limitation for query-by-
humming, since it relies on accurate note segmentation, 
although it is not much affected by tempo variation. A beat-
based approach in [5] requires the user to hum by following a 
metronome, which is rather restrictive. A time series matching 
approach proposed in [6-8] has shown effectiveness for query-
by-humming in terms of robustness against note errors, since 
accurate note segmentation is not needed. However, the time-
warping distance computing used in [6,7] is time consuming 
and cannot handle well when there are both pitch error and 
tempo variation. And [8] requires the tempo variation to be 
linear. 

II. MELODY REPRESENTATION 
Proper melody representation is very important for melody 

based music retrieval. It forms the basis for melody similarity 
measure and the search procedure.  

Melody contour or pitch contour used in [6,7], which is a 
time series of pitch values, represents melody content without 
using explicit music notes. We proposed a greedy algorithm 
[9] to approximate the melody contour using a sequence of 
line segment (Fig.1.(a)). The algorithm guarantees that 
approximation error is within a certain range, for instance, less 
than half semitone. The line segment sequence is a more 
compact melody representation than the time series melody 
contour. Furthermore, we map the line segment sequence into 
a sequence of data points (Fig.1.(b)), where each line segment 
is mapped to a point (xi,yi). The vertical coordinate yi is the 
pitch value, which is the same as the pitch value of the 
corresponding line segment. The horizontal coordinate xi is 

 
 

0-7803-7724-9/03/$17.00 © 2003 IEEE                                                500 



 

the so-called value run, which is derived using following 
equation: 

11 −− −+= iiii yyxx , where            (1) 01 =x

We call the points that are local maximum and minimum 
in pitch values the extreme points, and the other points the 
non-extreme points. It can be easily proved that non-extreme 
points, such as point B in Fig.1, reside on the straight lines 
that connecting the extreme points, such as A and C, as shown 
in Fig.1(c). As a result, pitch value inaccuracy of the non-
extreme points do not affect the structure established by the 
extreme points (local maximum/minimum). We call the 
extreme points in the sequence the melody skeleton.  

Our melody retrieval method is based on the point 
sequence representation. The point sequence for a hummed 
query is matched with the point sequences in the database, and 
the most similar melody is returned as retrieval result. This 
melody representation has the property of tempo invariance, 
since the time information is eliminated. And the melody 
skeleton structure is robust to pitch errors in the query. Due to 
space constraint, readers please refer to [9] for the details of 
this melody representation. 

 

 
Fig.1. Melody representation using point sequence 

III. MELODY MATCHING 
Our melody matching method has 2 steps: (1) melody 

localization and alignment using melody skeleton; (2) melody 
similarity measurement based on the alignment. 

3.1. Melody Skeleton Matching 
The melody skeleton matching serves two roles: (1) 

locates only the likely candidates who have a skeleton similar 
to that of the query melody; (2) provides a proper alignment 
between the query data sequence and the candidate data 
subsequence.  

In melody skeleton matching, only the extreme points are 
utilized, and it is assumed that for a valid matching the 
maximum point matches only maximum point and minimum 
point only matches minimum point. The assumption is based 
on the robustness and invariance property of the melody 
skeleton. However, to accommodate errors in melody 

skeleton, we allow some points to be skipped, i.e. not matched 
to any points. Note that, under the above assumption, points 
are skipped in pairs (2, 4, …). 

We propose a specialized dynamic programming algorithm 
for melody skeleton matching. A query data sequence is 
denoted as q[i], where mi ≤≤1 , i is the index of the 
sequence, m is the number of points in the sequence. The pitch 
value and value run of q[i] are denoted as qv[i] and qr[i].  

A target data sequence is denoted as t[i], where 
ni ≤≤1 , i is the index of the sequence, n is the number of 

points in the sequence. The pitch value and value run of t[i] 
are denoted as tv[i] and tr[i].  

For the simplicity of presentation, we assume n > m, and 
q[1] and t[1] are both peak (maximum) points or both valley 
(minimum) points. 

A table for calculating the distance between two sequences 
starting from q[1] and t[1] is illustrated in Fig.2. 

A value of a cell in the table Di,j stands for the minimum 
accumulated distance of (q[1],…,q[i]) to (t[1],…,t[j]). Since a 
peak point does not match with a valley point, the distance 
values of the shaded cells in the table are not computed. 

In this dynamic programming formulation, there are two 
issues of concern: (1) computing the distance value in a cell; 
(2) tracing the path of an alignment that has the minimum 
distance. 

In our method, we use accumulated distance for each cell 
(i,j), which means Di,j equals a local distance added by the 
distance value Dx,y of a “previous” cell (x,y). Depending on the 
possible cases of point skipping, the possible “previous” cells 
of (i,j) are illustrated in Fig.3. 

 

t1 t6t5t4t3t2 t8t7

q1

q6

q5

q4

q3

q2

D6,8

D2,8

D4,8

D1,7

D5,7

D3,7

D6,6

D2,6

D4,6

D1,5

D5,5

D3,5

D6,4

D2,4

D4,4

D1,3

D5,3

D3,3

D6,2

D2,2

D4,2

D1,1

D5,1

D3,1

 
Fig.2. The table for computing the distance of t[i] and 

q[i] 
If the cell (i-1,j-1) is the previous cell, then it means there 

is no point skipping for Di,j. If (i-1,j-3) or (i-3,j-1) is the 
previous cell, then there is a 2-point-skipping in either point 
sequence. If (i-1,j-5) or (i-5,j-1) is the previous cell, then there 
is a 4-point-skipping in either point sequence. If (i-3,j-3) is the 
previous cell, then there is a 2-point-skipping in both of the 
two point sequences. Other possibilities of previous point for 
(i,j) are not considered in our algorithm, since they are very 
unlikely to be present.  

 501



 

D1,j = ∞ ; for j > 1  

Di,1 = ∞ ; for i > 1 

(i,j)

(i-1,j-1)

(i-3,j-1)

(i-1,j-3)

(i-3,j-3)

(i-5,j-1)

(i-1,j-5)

 

since the alignment starts with q[1] and t[1]. 

The order of computation of distance values for other cells 
is from top to bottom and from left to right. Since the possible 
previous cells and the border initialization are known, not all 
the cells in the table need to be computed. This is because 
distance values of some cells are determined to be ∞ . 
Furthermore, the value-run qr and tr can also be used to 
constrain the number of cells to be computed. Because for an 
valid alignment, the mapped points from query sequence and 
target sequence should not have large difference in their value 
run after shifting the run difference between q[1] and t[1]. 

Fig.3. The possible previous cells for (i,j) 

With the possible previous cells for (i,j) given, the distance 
value for Di,j can then be computed as follows: After the computation of distance value of the cells, the 

best alignment is obtained by locating the 
jmjxm DD ,, min= , 

which means (q[1],…,q[m]) has the minimum accumulated 
distance with (t[1],…,t[x]), and Dm,x is the distance value. 

 

( )

( )

( )

( )

( )

( )

















−−+

−−+

−−+

−−+

−−+

+=

−−

−−

−−

−−

−−

−−

3,,3,

1,,5,

5,,1,

1,,3,

3,,1,

min,

3,3

1,5

5,1

1,3

3,1

1,1

,

jiPD

jiPD

jiPD

jiPD

jiPD

D

jidD

ji

ji

ji

ji

ji

ji

baseji

 (2) 

The mapped path is obtained by tracing back from the cell 
(m,x) in the path table. The tracing is stopped when the pointer 
points to cell (1,1). 

The above mentioned dynamic programming technique 
will find the best subsequence of target sequence starting from 
t[1], which can be aligned with the query sequence 
(q[1],…,q[m]). For the other subsequence in the targeting 
sequence starting from t[1+2x] (x>0), the dynamic 
programming computation can be done in a same way by 
replacing t[1] by t[1+2x].  

where i>3 or i>5 or j>3 or j>5 are required for the 
respective case to be considered.  

( ) ( ) ( ) λ−−= jtviqvjidbase ,                                             (3) 

( ) ( )11 tvqv −=λ                                           (4) 
Thus finally, for each starting position (2x-1) (0 <x < 

n/2+1) in the target sequence, the best alignment with the 
query sequence is found and the corresponding accumulated 
distance Dm(x) is obtained. In these n/2 alignments, the 
alignments at the following position are selected as matches 
with the query sequence based on Dm(x): 

( ) ( ) ),(,,,, ljPkiPljkiP TQ +=−−                              (5) 

( ) 0, =kiPQ
, if k = 1                                                 (6) 

( ) ( ) ( )
( )

∑
−

=

−−+−=
2/1

1

212,
k

x
Q xiqvxiqvkiP η

                            (7) 

Dm(x) is a local minimum; ( ) 0, =ljPT
, if l = 1                                                   (8) 

Dm(x) < Dthres. 
( ) ( ) ( )

( )

∑
−

=

−−+−=
2/1

1

212,
l

x
T xjtvxjtvljP η

                             (9) 
The local minimum of Dm(x) is selected, because the best 

alignment should always have a smaller distance than the 
alignment at adjacent positions. Dthres is a threshold, which is 
to ensure that the aligned target subsequence is close enough 
to the query sequence. In our algorithm, we use Dthres = m-1, 
which means 1 semitone error tolerance is given to every 
(excepting the first) extreme point in the query. The selected 
target subsequences are the likely candidates, on which an 
accurate final melody similarity will be computed. 

dbase(i,j) is the local distance between q[i] and t[j], and 
λ is the shifting between q[1] and t[1]. P(i,-k,j,-l) is the 
penalty imposed for point skipping, in which PQ(i,k) is the 
penalty for skipping points in query, and PT is the penalty for 
skipping points in target. The penalty is based on the sum of 
the value differences of the pairs of points that are skipped. η  
is a weight for the penalties, which takes a value of 1 in our 
algorithm. 

This melody skeleton matching method requires the first 
extreme point in the query data to be reliable. The experiments 
show that extreme points are robust against variations in the 
humming, and are reliable for the alignment. To make it even 
more reliable, an extreme point that has the largest value 
differences with its predecessor and successor extreme points 
can be used.  

The previous cell, which gives (i,j) the minimum distance 
value, is chosen and recorded using a path table, which stores 
the pointers to (or the index of) the respective chosen previous 
cells.  

The border cells are initialized as: 

D1,1 = 0; 

 502



 

 

 

3.2. Melody Similarity Measure 
The melody similarity measure is based on the final point 

alignment, which consists of two steps: (1) aligning all the 
data points of the two sequences, including the non-extreme 
points; (2) computing the similarity of the two sequences.  

Since the alignment of the extreme points of the two 
sequences is already done, we only need to align the non-
extreme points and skipped extreme points (empty point in 
Fig.4.) between two not skipped extreme points (solid point in 
Fig.4.) in a sequence with the corresponding points in the 
other sequence. This can be easily done using traditional 
dynamic programming algorithm.  

 

query sequence

targeting sequence

Mapped Extreme Point
Skipped Extreme Point

Non-Extreme Point

 

Fig.6. Six hummed queries of a same tune 
 
4.1. Melody Skeleton Matching 
To evaluation the performance of melody skeleton 

matching, we examine the correct hit rate and candidate 
elimination rate. The correct hit rate is the number of queries 
that have matches with the correct target divided by the total 
number of queries. The candidate elimination rate is average 
number of eliminated candidates divided by the total number 
of possible candidates. 

Fig.4. Alignment of the whole points sequences 

The final similarity between 2 points sequence is 
computed based on the cumulated distance of the final 
alignment of the 2 sequences.  

The 2000 MIDI files in our database have a total of 
185604 extreme points in the melody skeletons. Considering 
that the matching starts from only a peak point or a valley 
point, there are totally 185604/2=92802 possible matching 
candidates. 

IV. EXPERIMENTS 
In our experiments we choose 10 tunes including English 

and Chinese songs as the query melodies. 5 human subjects 
including 3 males and 2 females hummed each of the tune 
four times, once in a normal tempo, once in a faster tempo, 
once in a slower tempo, and once in combination of faster & 
slower tempo. So there are totally 200 hummed queries. The 
hummed part is at the beginning of the query melodies, 
however we search anywhere in the middle of all the target 
melodies in the database. We use 2000 MIDI files in our 
database. 

94.5% (correct hit rate) of the queries can match with the 
correct target melodies. And on an average, 5130 candidates 
are returned for each query. So the candidate elimination rate 
is 1-5130/92802=94.47%. 

 
4.2. Melody Retrieval 

Robustness of the melody skeleton against (linear and non-
linear) tempo and pitch variations is the main feature of our 
method. Fig.6 shows 6 hummed queries of the tune “Happy 
Birthday To You” using different tempos by different 
subjects. Fig.6(d) shows the query hummed in normal speed. 
Fig.6(a) shows a faster tempo. Fig.6(e) and (f) shows slower 
tempos. Fig.6(b) and (c) shows inconsistent tempos. 

For the performance of melody retrieval, we conducted 
two types of evaluation: one for matching anywhere in the 
middle of songs and one for matching only at the beginning of 
songs. 

It has achieved 43% for top 1, 64% for top 2, 76% for top 
5, 80% for top 10, and 88% for top 20. 

The average time for each query is about 4 seconds for the 
anywhere matching, which is faster than [9] which takes 7.6 
seconds for only matching the beginning of 2000 songs. 

Each subfigure in Fig.6 shows the original query time 
series, line segments approximation and the value-run domain 
data points. It can be seen that the melody skeleton structure 
formed by extreme points is very robust, as it is almost 
identical for all the 6 queries. 

To examine the retrieval performance of matching the 
beginning of songs, we simply discard the retrieved entries 
that are not at the beginning of the tune. The retrieval rate is 
higher than that for matching in the middle of songs. It has 
achieved 55% for top 1, 71% for top 2, 86% for top 5, 90% 
for top 10, and 92% for top 20. In general it has a better 

 

 503



 

 504

performance than [9], which achieved 56% for top 1, 68% for 
top 3, and 85% for top 20. 

V. CONCLUSION 
We have presented a method for content-based music 

retrieval which uses a novel tempo invariant melody 
representation. The representation is obtained by converting 
melody contour (in form of line segments) to a sequence of 
points. The extreme points in the sequence are called melody 
skeleton. There are two steps in doing melody matching. The 
first step is a matching based on melody skeleton, which 
filters out unlikely candidates and aligns 2 melody skeletons 
properly. A point skipping dynamic programming matching 
algorithm is proposed for melody skeleton matching. The 
second step is the matching of the whole point sequence, 
which is based on the alignment achieved in the first step. The 
final melody similarity is computed based on the pitch 
distance between the corresponding matched points.  

The advantages of the method are: 1) it is tempo invariant; 
2) it is robust by using the melody skeleton representation and 
matching; 3) it is efficient since melody skeleton matching can 
filter out large proportion of the candidates; 4) it is effective 
since the skeleton alignment improves the final similarity 
measurement. Our experiment for query-by-humming has 
demonstrated the performance of the method. 

REFERENCES 
[1] A. Ghias, J. Logan, and D. Chamberlin. “Query By 

Humming”. Proceedings of ACM Multimedia 95, 
November 1995, pages 231-236. 

[2] R.J. McNab, L.A. Smith, I.H. Witten, C.L. Henderson 
and S.J. Cunningham. “Towards the digital music library: 
tune retrieval from acoustic input”. Proceedings of ACM 
Digital Libraries’96, 1996, pages 11-18. 

[3] S. Blackburn and D. DeRoure. “A Tool for Content 
Based Navigation of Music”. Proceedings of ACM 
Multimedia 98, 1998, pages 361-368. 

[4] A. Uitdenbogerd and J. Zobel. “Melodic Matching 
Techniques for Large Music Database”. Proceedings of 
ACM Multimedia 99, November 1999, pages 57-66. 

[5] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamanuro, and K. 
Kushima. “A Practical Query-By-Humming System for a 
Large Music Database”. Proceedings of ACM Multimedia 
2000, Los Angeles USA, 2000, pages 333-342. 

[6] J.S. R. Jang, H.R. Lee, “Hierarchical Filtering Method for 
Content-based Music Retrieval via Acoustic Input”, Proc. 
ACM Multimedia 2001. 

[7] T. Nishimura, H. Hashiguchi, J. Takita, J. X. Zhang, M. 
Goto, and R. Oka, “Music Signal Spotting Retrieval by a 
Humming Query Using Start Frame Feature Dependent 
Continuous Dynamic Programming”, Proc. 3rd 
International Symposium on Music Information Retrieval, 
Indiana, USA, October 15-17, 2001. 

[8] Y.W. Zhu, M.S Kankanhalli and C.S. Xu, “Pitch 
Tracking and Melody Slope Matching for Song 
Retrieval", Proc. Second IEEE Pacific-Rim Conference 
on Multimedia PCM2001, Beijing, October 2001.  

[9] Y.W. Zhu, M.S Kankanhalli, “Value-Run Domain 
Representation for Content-Based Music Retrieval”, LIT 
Technical Report, 2002.  

 


	Introduction
	Melody Representation
	Melody Matching
	Experiments
	Conclusion

