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This article addresses the problem of how to select the optimal combination of sensors and how to determine their optimal
placement in a surveillance region in order to meet the given performance requirements at a minimal cost for a multimedia
surveillance system. We propose to solve this problem by obtaining a performance vector, with its elements representing the
performances of subtasks, for a given input combination of sensors and their placement. Then we show that the optimal sensor
selection problem can be converted into the form of Integer Linear Programming problem (ILP) by using a linear model for
computing the optimal performance vector corresponding to a sensor combination. Optimal performance vector corresponding
to a sensor combination refers to the performance vector corresponding to the optimal placement of a sensor combination. To
demonstrate the utility of our technique, we design and build a surveillance system consisting of PTZ (Pan-Tilt-Zoom) cameras
and active motion sensors for capturing faces. Finally, we show experimentally that optimal placement of sensors based on the
design maximizes the system performance.
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1. INTRODUCTION

Most multimedia surveillance systems nowadays utilize multiple types of sensors which have differ-
ent capabilities and which are of different costs for accomplishing a surveillance task. In general, a
surveillance task constitutes of a set of subtasks. For example, if the surveillance task is to capture
the face of a person who is shouting in a room then the associated subtasks are: (1) determine whether
somebody is shouting or not based on the acoustics of the room; (2) localize the person; (3) capture the
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Fig. 1. Block diagram of the performance vector computation, ni : number of ith type of sensors, and Pj : performance of the j th
subtask.

Fig. 2. Cascade form, E : performance matrix.

image at the specified location. We analyzed the performance of each subtask in this work and it is
clearly a function of the combination of sensors and their placement in a surveyed region. Note that the
performance of the main surveillance task depends on the performances of the subtasks. However, we
restrict our attention to ensuring a desired performance for each one of the subtasks at minimal cost
in this article.

The following design problem has been addressed in this work. Given a set of m types of sensors that
can be deployed in a surveyed region and also given a set of l subtasks along with the minimum required
(desired) performance for each one of the subtasks, the problem is to find the combination of sensors
along with their placement that minimizes the overall surveillance system cost. The motivation for
considering this problem is that, to the best of our knowledge, there is no quantitative design technique
for designing a surveillance system consisting of multiple types of sensors. Also, our interactions with
the industry indicate that an ad hoc methodology is usually employed for designing such systems.

Imagine a model that takes the combination of sensors and their placement in a surveyed region as
input and gives the performance vector as output, as shown in Figure 1. The elements of the performance
vector represent the performances (quantified in the range [0, 1]) of subtasks. Our problem is to
determine the optimal combination of sensors and their placement (input to the model) for a given
desired performance vector (output of the model). To solve this problem, we simplify the model that
determines the effect of each sensor type independently at a time and subsequently fuses all such effects
to obtain the performance vector, as shown in Figure 2. Optimal performance vector corresponding to a
sensor combination refers to the performance vector corresponding to the optimal placement of a sensor
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 23, Publication date: August 2009.
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combination. Later we show that the optimal sensor selection problem can be converted into a form
of the Integer Linear Programming problem (ILP) by using a linear model for computing this optimal
performance vector. In fact, ILP is a common technique used in the field of sensor placement. Also we
describe a special case of this wherein the optimal combination of sensors is obtained by solving each
of the l inequalities independently at a time for its minimum integer argument. Note that we are not
separating the tasks of finding the optimal set of sensors and their placement in this analysis. Instead,
we are using a simple linear model for computing the optimal performance vector (corresponding to
a sensor combination) in the formulation of the optimal sensor selection problem. This approach will
ensure that we pick the optimal performance vector corresponding to the solution of the optimal sensor
selection problem while designing a surveillance system.

To demonstrate how our technique can be used for designing a surveillance system, we consider a
surveillance task of capturing the frontal face of an intruder in a surveyed region. This task has two
subtasks: object (intruder) localization and image capture. Two types of sensors are considered for de-
ployment, namely PTZ (Pan-Tilt-Zoom) infrared cameras and active motion sensors. Now the problem
is to determine the optimal number of cameras and motion sensors along with their placement in a
surveyed region such that a minimum specified performance is guaranteed for each subtask. Later in
this article, we derive the effect of cameras and the 2D motion sensor grid on the performance of each
subtask in order to obtain a solution based on the proposed technique. We also build a surveillance
system using the optimal combination of sensors and their placement information obtained after fol-
lowing the previously mentioned design technique. Experimental results confirm that optimal sensor
placement based on the design maximizes system performance.

A preliminary version of this work was published in VSSN 2006 wherein Sivaram et al. [2006] pro-
posed a design methodology for optimal selection and placement of sensors in multimedia surveillance
systems. Our idea is to derive a performance metric for the surveillance task as a function of the set of
sensors and their placement and then to determine the optimal sensor combination based on the per-
formance metric. However, deriving such a performance metric for any particular interaction strategy
is not straightforward with an increasing number of sensor types. Therefore, in this article, we divide
the surveillance task into subtasks and then consider the effect of each sensor type independently on
each of the subtasks. To the best of our knowledge, this is the first time that such a design problem
has been addressed for building a surveillance system consisting of multiple types of sensors and that
performs multiple subtasks.

The remainder of this article is organized as follows. Section 2 presents the related work. In Sec-
tion 3, we describe the proposed method for obtaining the optimal combination of sensors and their
placement. In Section 4, we discuss a specific surveillance system design and then present the experi-
mentation results in Section 5. Finally, in Section 6, we conclude the article with a discussion on future
work.

2. RELATED WORK

Use of multisensors in different applications including surveillance is a rapidly evolving research area
[Luo et al. 2002]. Luo et al. [2002] provide an overview of current sensor technologies and describe the
paradigm of multisensor fusion and integration for various applications. Luo and Kay [1989] reviewed
the sensor selection strategies, namely preselection during design and real-time selection in response
to system conditions, for multisensor integration and fusion. However, their sensor selection strategy is
based on the processing time and operating speed of the sensors, whereas the proposed sensor selection
technique minimizes the overall system cost and guarantees the required performance for each of the
subtasks.
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Recently, efforts [Bodor et al. 2007] were made to tackle the problem of task-specific camera place-
ment, in which the authors optimized camera placement to maximize observability of the set of actions
performed in a defined area. Horster and Lienhart [2006] have proposed an algorithm to minimize the
cost of a visual sensor array while ensuring a proper coverage. For tracking applications, Chen and
Davis [2000] have developed a resolution metric for camera placement considering occlusions. Note
that the aforesaid works deal with visual sensors (cameras) alone. Erdem and Sclaroff [2004] have
described an approach for placement of multiple cameras in a polygonal space using “reasonable” as-
sumptions for real-life cameras. Mittal and Davis [2004] have also described a method for determining
the optimal number of cameras and their placement to monitor any given premises. However, both the
aforementioned works do not consider direction of image captured as part of their suitability metrics.
This is important, as it is often necessary to obtain images in one direction (e.g., frontal direction for
face/object recognition, etc.) and not the other. Also, they consider only cameras while we address the
problem for multiple types of sensors. And we demonstrate our technique by considering only two types
of sensors: PTZ cameras and active motion sensors.

On the other hand, motion sensor is extensively used for space surveillance [Zierhut] and is a key
component in burglar alarm systems. Howard et al. [2002] have proposed a method for localizing the
members of a mobile robot team where a motion sensor is assumed to estimate changes in the pose of
each robot. In other work, Wren et al. [2005] utilize a swarm of low-cost motion sensors for automatically
calibrating PTZ cameras that are undertaking surveillance tasks. Their work, however, does not deal
with finding the optimal number and position, etc., for the sensors.

Vision sensor planning has been studied extensively in the field of robotics. There are several surveys
available in the literature [Scott et al. 2003; Tarabanis et al. 1995] regarding this same issue. Chen
and Li [2004] propose automatic sensor placement by a genetic algorithm for model-based robot vision.
In the context of wireless sensor networks, Pahalawatta et al. [2004] propose to solve the problem of
optimal sensor selection by maximizing the information utility gained from a set of sensors subject
to a constraint on the average energy consumption in the network. A sensor placement algorithm for
optimizing the coverage area has been reported in Dhillon and Chakrabarty [2003]. They assume that
the probability of detecting a target by using a sensor varies exponentially with the distance between
target and sensor. However, the aforementioned works have not addressed the selection and placement
of multiple types of sensors.

On the whole we realize that while optimal sensor selection and placement has generated reasonable
research interest, the currently available methods fail to handle multiple types of sensors. To the best
of our knowledge, this article is the first to address this issue.

3. PROPOSED TECHNIQUE

In general, a surveillance system performs multiple numbers of tasks in a surveyed region. In order
to accomplish a particular task, we may be required to perform some smaller subtasks in series or in
parallel. Usually, different sensor types are capable of accomplishing a particular subtask with varying
performance and cost. Also sometimes a particular sensor type can accomplish more than one subtask.
Given this scenario, it is important to find the optimal combination of sensors along with their place-
ment to minimize the overall system cost. We address this problem in this section.

Notation.
Number of sensor types: m
Cost of one quantity of j th type sensor : c j

Cost vector: �C = [
c1 c2 · · · cm

]T

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 23, Publication date: August 2009.



Design of Multimedia Surveillance Systems • 23:5

Number of j th type sensors : n j
Sensor combination: �n = [n1 n2 · · · nm]T

Sensor placement: �Z�n = [�Zn1
�Zn2 · · · �Znm]T

Number of subtasks: l
Required performance for the ith subtask : ri ∈ [0, 1]
Required performance vector: �b = [r1 r2 · · · rl ]T

Problem Definition. Find the combination of sensors �n along with their placement �Z�n in a given
surveyed region in order to minimize the overall cost �C.�n such that the following constraints are
satisfied.

(1) Performance constraints :
performance of the ith subtask ≥ ri, ∀ i = 1, 2, . . . , l

(2) Integer constraints :
n j must be a nonnegative integer, ∀ j = 1, 2, . . . , m.

To solve this problem, we need to identify whether a particular combination of sensors along with
their placement is feasible. The idea is to obtain a computation model that takes a sensor combination �n
along with its placement information as input and computes the performance vector �P = [P1 P2 . . . Pl ]T

as shown in Figure 1. We denote the sensor placement information (corresponding to �n) using the sensor
placement vector �Z�n and the components of it can be written as �Z�n = [�Zn1

�Zn2 . . . �Znm]T. (This is where �Znj

is a row vector, and represents the placement information of nj number of j type sensors in a surveyed
region. If the j th type of sensor can be placed at a point (for example, camera) then we can think of
elements of �Znj as some collection of nj points in 3D space). The ith component of the performance
vector, namely Pi, indicates the performance (quantified in the range

[
0, 1

]
) with which a surveillance

system built using the input information (�n and �Z�n) accomplishes the ith subtask. Furthermore, for
a given input combination �n, Pi varies as some function of �Z�n. The following equation represents the
functional dependence of Pi on �Z�n for a given �n.

Pi = Fi �n
(�Z�n

) ∈ [
0, 1

]
, ∀ i = 1, 2, . . . , l . (1)

Hence the performance constraints become

�P ≥ �b ⇒ Fi �n
(�Z�n

)
≥ ri, ∀ i = 1, 2, . . . , l .

The preceding inequalities are mathematically not tractable, as the functional dependence (Fi �n (.) for all
�n) is not apparent. Therefore, we simplify the model for computing the performance vector as described
next.

Since we know what each sensor type is capable of doing, we determine the effect of each sensor type
independently and then combine all such effects to obtain the performance vector. Hence we divide
the performance vector computation block in Figure 1 into two blocks, namely the performance matrix
computation block and performance fusion block, in cascade form as shown in Figure 2. The idea is to first
determine the performance matrix (let us denote it with E), whose columns represent the performance
vectors obtained by considering each sensor type independently at a time, and then fuse all of its
columns to obtain the performance vector for the given �n and �Z�n. The performance matrix computation
block in Figure 2 takes �n and �Z�n as input and gives performance matrix E as output. The dimension
of the matrix E is l × m as its j th column represents the performance vector obtained due to nj the
number of j type sensors placed at location �Znj (∀ j = 1, 2, . . . , m). Therefore, Ei, j , (i, j )th element of
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the matrix E, represents the performance with which nj number of j type sensors placed at location �Znj

accomplish the ith subtask. We quantified and normalized Ei, j in our analysis and its range is
[
0, 1

]
,

where 0 indicates “not capable of accomplishing the subtask” and 1 indicates “capable of accomplishing
the subtask perfectly.” Furthermore, Ei, j varies as some function of �Znj for a given nj . Thus,

Ei, j = f j
in j

(�Znj

)
∈ [

0, 1
]

, (2)

where:

(1) j indicates the sensor type.
(2) nj indicates the total number of sensors (of the previous type).
(3) i indicates the subtask number.

Therefore, the performance matrix can be written as

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 1
1n1

(�Zn1

)
f 2

1n2

(�Zn2

)
. . . f m

1nm

(�Znm

)
f 1

2n1

(�Zn1

)
f 2

2n2

(�Zn2

)
. . . f m

2nm

(�Znm

)
. . . . . .

. . . . . .

f 1
ln1

(�Zn1

)
f 2

ln2

(�Zn2

)
. . . f m

lnm

(�Znm

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

l×m

. (3)

The ith row elements of the matrix E denote the performances with which different sensor types
accomplish the ith subtask. But the final performance with which the surveillance system accomplishes
the ith subtask depends not only on the ith row elements of E but also on the following:

(1) the interaction strategy among the sensor types; and
(2) the percentage of overlap in the information that different sensor types sense for accomplishing the

ith subtask.

Thus, the performance fusion model (refer to Figure 2) should take into consideration all the preceding
factors while fusing the ith row elements of E to obtain the overall performance of the ith subtask. Let
the function Gi(.) represent the fusion model for the ith subtask. Therefore Pi can be written as

Pi = Gi

(
f 1

in1

(�Zn1

)
, f 2

in2

(�Zn2

)
, . . . , f m

inm

(�Znm

))
,

∀ i = 1, 2, . . . , l . (4)

Note from Eq. (4) that for a given sensor combination �n, performance vector elements vary as some
function of �Z�n. This fact is also obvious from Eq. (1). The following section discusses how to determine
the optimal sensor placement �Z∗

�n for a given sensor combination �n. This information can be used to
compute the optimal performance vector corresponding to a sensor combination �n, and Section 3.2
describes the linear model for computing this optimal performance vector.

3.1 Optimal Sensor Placement

Imagine a l-dimensional space Rl with its coordinate axes representing the performances of the sub-
tasks. Hence we can represent any performance vector as a point in the l-dimensional space Rl . From
Eq. (1), we note that each element of the performance vector varies as some function of �Z�n for a given
sensor combination �n. So, for a given �n, a set of performance vectors can be obtained by varying �Z�n over
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 23, Publication date: August 2009.
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Fig. 3. Optimality condition for any given sensor combination �n.

all its possible values. Imagine this set of performance vectors forming a region L in the l-dimensional
space as shown in Figure 3. We know that any vector in the feasible region must satisfy the constraints
Pi ≥ ri, ∀ i = 1, 2, . . . , l . We can think of the inequality Pi ≥ ri as a region to the right of the (l − 1)-
dimensional hyperplane Pi = ri in the l-dimensional space. Thus a feasible region is a l-dimensional
hypercube, obtained by taking the intersection of l spaces Pi ≥ ri, ∀ i = 1, 2, . . . , l . Out of all vectors
in the feasible region, the vector �b is nearest (Euclidean distance) to the origin (see Figure 3).

For any vector �P ∈ L, we can find the corresponding (unique) vector �e such that (refer to Figure 3)

�b + �e = �P ⇒ �e = �P − �b. (5)

For a given sensor combination �n, we determine the optimal sensor placement �Z∗
�n and the corresponding

optimal performance vector �P∗
by maximizing the dot product �e.�b over the region L. In other words,

we define �Z∗
�n as the placement that maximizes the component of �e in the direction of �b. Furthermore, it

is sometimes possible that the optimal placement �Z∗
�n is not unique according to our definition, as any

vector which is orthogonal to �b can be added to �e without changing the dot product value. However,
in this case, we have to choose the placement that minimizes the Euclidean distance between the
performance vector and its component in the direction of �b, and that maximizes the dot product �e.�b.
From Eq. (5),

�e.�b ⇒ ( �P − �b).�b.

Since �b.�b is a constant, we can find �Z∗
�n for a given �n by maximizing �P.�b with respect to �P over the

region L. In other words, for a given �n, we can find the optimal sensor placement �Z∗
�n by maximizing

�P.�b with respect to �Z�n. The dot product �P.�b can be expanded using Eq. (4) as follows.

�P.�b =
l∑

i=1

ri × Gi

(
f 1

in1

(�Zn1

)
, f 2

in2

(�Zn2

)
, . . . , f m

inm

(�Znm

))
(6)

We can simplify this expression further by using the linear fusion model. The linear fusion model for
the ith subtask is given by

Pi = Gi

(
f 1

in1

(�Zn1

)
, f 2

in2

(�Zn2

)
, . . . , f m

inm

(�Znm

))
=

m∑
j=1

f j
in j

(�Znj

)
, ∀ i = 1, 2, . . . , l . (7)
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The aforesaid fusion model computes the performance of each subtask by adding the individual per-
formances of different sensor types. This model is applicable only when different sensor types sense
complementary information about each subtask. Otherwise, the value computed according to this model
represents the upper bound on the performance of each subtask. However, we use this model in Eq. (6)
to make the problem mathematically tractable and also to gain some insights. Thus we have

�P.�b =
l∑

i=1

ri ×
m∑

j=1

f j
in j

(�Znj

)

=
l∑

i=1

m∑
j=1

ri × f j
in j

(�Znj

)
.

We can interchange the order of summation as the number of elements involved in the summation is
finite. Hence, we have the following.

�P.�b =
m∑

j=1

l∑
i=1

ri × f j
in j

(�Znj

)

=
m∑

j=1

(
l∑

i=1

ri × f j
in j

(�Znj

))

=
m∑

j=1

T j

(�Znj

)
(8)

(
where T j

(�Znj

)
=

l∑
i=1

ri × f j
in j

(�Znj

))

Using Eq. (2), we can write T j (�Znj ) as

T j

(�Znj

)
=

l∑
i=1

ri × Ei, j = �b. �E j , (9)

where �E j represents the j th column of the performance matrix E.
Note from the previous equation that T j (�Znj ) represents the weighted combination of the j th column

elements of the performance matrix E. So if we determine the performance matrix E for a given �n and
�Z�n then it is possible to determine the value of T j (�Znj ) (∀ j = 1, 2, . . . , m).

In order to determine the performance matrix E, we need to model the effect of each sensor type on
the performance of each subtask. Depending on the the sensor type and the subtask at hand, we may
get either a closed-form expression or some algorithmic procedure as a result of modeling. Therefore
such a model takes nj and �Znj as input and gives f j

in j
(�Znj ) as output.

Furthermore, for a given �n, maximizing �P.�b with respect to �Z�n is same as maximizing the summation∑m
j=1 T j (�Znj ) with respect to �Z�n (using Eq. (8)). Note that no two functions Ti (.) and T j (.), for different

values of i and j , have common independent variables. Hence for a given �n, we can maximize the
summation

∑m
j=1 T j (�Znj ) with respect to �Z�n by maximizing the individual functions T j (�Znj ) with respect

to �Znj (∀ j = 1, 2, . . . , m) and then accumulating the maximum values. We summarize the procedure
for obtaining the optimal sensor placement �Z∗

�n for a given sensor combination �n next.
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(1) Determine the optimal value of �Znj (let us denote it as �Z∗
nj

) which maximizes the function T j (�Znj )
for a given nj (∀ j = 1, 2, . . . , m).

(2) Optimal sensor placement is given by

�Z∗
�n =

[
�Z∗

n1
�Z∗

n2
. . . �Z∗

nm

]T
.

(Note that we haven’t discussed the problem of how to determine the optimal value �Z∗
nj

of a function
T j (�Znj ), as it depends on the form of the function. It could be a brute-force search in the entire placement
space in the worst case. Also in some specific cases [Leskovec et al. 2007], it is possible to devise efficient
algorithms for determining the optimal placement of sensors.)

In the next section, we describe a linear model for the computation of the optimal performance vector
�P∗

corresponding to the sensor combination �n.

3.2 Linear Model for the Optimal Performance Vector

Let us represent the performance matrix corresponding to the optimal sensor placement �Z∗
�n as E∗. Thus

from Eq. (3) we have

E∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f 1
1n1

(�Z∗
n1

)
f 2

1n2

(�Z∗
n2

)
. . . f m

1nm

(�Z∗
nm

)
f 1

2n1

(�Z∗
n1

)
f 2

2n2

(�Z∗
n2

)
. . . f m

2nm

(�Z∗
nm

)
. . . . . .

. . . . . .

f 1
ln1

(�Z∗
n1

)
f 2

ln2

(�Z∗
n2

)
. . . f m

lnm

(�Z∗
nm

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The preceding matrix E∗ is fixed for a given sensor combination �n. Thus we note that E∗ varies as some
function of the sensor combination �n. Also, the j th column elements of the matrix E∗ vary only with
respect to nj (number of j type sensors), ∀ j = 1, 2, . . . , m. We rewrite all the entries of the matrix
E∗ to explicitly show the previously mentioned dependencies given next, namely

E∗
i, j = f j

in j

(�Z∗
nj

)
= fij

(
nj

)
.

Therefore,

E∗ =

⎡
⎢⎢⎢⎢⎢⎣

f11 (n1) f12 (n2) . . . f1m (nm)
f21 (n1) f22 (n2) . . . f2m (nm)

. . . . . .

. . . . . .

fl1 (n1) fl2 (n2) . . . flm (nm)

⎤
⎥⎥⎥⎥⎥⎦

l×m

. (10)

The optimal performance vector �P∗
corresponding to the sensor combination �n can be obtained by

substituting �Z∗
�n in Eq. (7) (linear fusion model).

P∗
i =

m∑
j=1

f j
in j

(�Z∗
nj

)
=

m∑
j=1

fij
(
nj

)
∀ i = 1, 2, . . . , l(

where P∗
i is the ith component of �P∗)
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Fig. 4. Linear approximation of the data.

By using the matrix notation,

�P∗ = E∗ ×

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
.

.

.

1

⎤
⎥⎥⎥⎥⎥⎥⎦

m×1

. (11)

For any given input sensor combination �n, we can determine the optimal performance vector �P∗
using

Eq. (11). Additionally, the transformation from �n to �P∗
is nonlinear because of the nonlinear dependence

of the matrix E∗ on �n ( from Eq. (10)). Therefore we can make the transformation from �n to �P∗
linear

by approximating the dependence of E∗ on �n using a linear model.
The ith row and j th column entry fij

(
nj

)
of the matrix E∗ is a function of the discrete integer

(positive) variable nj as represented in Figure 4. Let the maximum number of j type sensors that we
can deploy be N j , ∀ j = 1, 2, . . . , m. We approximate this function fij

(
nj

)
with a straight line, passing

though origin and having slope mij, as shown in Figure 4. This is because the performance must be zero
when nj equals to zero. We determined the slope mij using the least squares technique and its value is

mij =
∑N j

k=1 k × fij (k)∑N j

k=1 k × k
, ∀ i = 1, 2, . . . , l ,

∀ j = 1, 2, . . . , m. (12)

Therefore, fij
(
nj

) ≈ mij × nj . Note that in order to compute mij for all i ∈ 1, 2, . . . , l and a particular
j , we must know the values of �Z∗

nj
for all nj ∈ 1, 2, . . . , N j .

By substituting the preceding approximate value of fij
(
nj

)
in Eqs. (10) and (11), we have

�P∗ =

⎡
⎢⎢⎢⎢⎣

m11 × n1 m12 × n2 . . . m1m × nm
m21 × n1 m22 × n2 . . . m2m × nm

. . . . . .

. . . . . .

ml1 × n1 ml2 × n2 . . . mlm × nm

⎤
⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
.

.

.

1

⎤
⎥⎥⎥⎥⎥⎥⎦

m×1

.
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The preceding equation can be written as

�P∗ =

⎡
⎢⎢⎢⎢⎣

m11 m12 . . . m1m
m21 m22 . . . m2m

. . . . . .

. . . . . .

ml1 ml2 . . . mlm

⎤
⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎣

n1
n2
.
.
.

nm

⎤
⎥⎥⎥⎥⎥⎦ .

Let us define the matrix A as

A =

⎡
⎢⎢⎢⎢⎣

m11 m12 . . . m1m
m21 m22 . . . m2m

. . . . . .

. . . . . .

ml1 ml2 . . . mlm

⎤
⎥⎥⎥⎥⎦ .

Therefore the optimal performance vector corresponding to the sensor combination �n is given by

�P∗ = A × �n. (13)

3.3 Integer Programming Problem

While building a surveillance system, we have to choose the optimal combination of sensors and their
placement in order to minimize the cost. But we do not know a priori such information. In this section,
we formulate the optimal sensor selection problem by incorporating the linear model (Eq. (13)) for
computing the optimal performance vector to ensure the optimal placement for the sensors. Therefore,
the performance constraints can be written as follows from Eq. (13).

A × �n ≥ �b
Hence the problem considered in the beginning of Section 3 can be stated as follows.
Problem definition. Minimize the cost �C.�n with respect to �n such that A × �n ≥ �b and 0 ≤ ni ≤

Ni and ni ∈ integer, ∀i = 1, 2, . . . , m.
The previous problem is in the form of an Integer Linear Programming problem (ILP) (or) Integer

Programming (IP) problem [Schrijver 1986]. An optimal solution for this problem can be found using
the following steps. (1) Solve the LP relaxation of the problem (2) Find the feasible solution around
the solution found in step1 which minimizes the cost. One of the heuristic approaches to handle larger
instances of the problem is to divide the surveillance region into independent (nonoverlapping or with
some small overlap) regions and then independently handle each region. But the solution obtained with
this approach may not be optimal.

The following algorithm summarizes the steps involved in finding the optimal combination of sensors
and their placement in a surveyed region.

3.3.1 Advantages of the Proposed Technique. In this section, we show the advantages of our tech-
nique in terms of computation and modeling requirements by comparing it with a simple brute-force
approach.

—Modeling requirements:
In case of brute-force approach, the designer has to model the effect of any particular sensor combi-
nation on the performance of each subtask. By contrast, in the proposed technique, the designer has
to model the effect of each sensor type on the performance of each subtask.

—Computation:
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Algorithm.

step1: Find the effect of j th type of sensor on the ith subtask (∀i = 1, 2, . . . , l and ∀ j = 1, 2, . . . , m). This
model should take nj and �Zn j as input and give f j

in j
(�Zn j ) as output.

step2: Determine the optimal placement information (�Z∗
n j

) of the nj number of j type sensors by maximizing
the measure T j (�Zn j ) (see Eq. (9)), ∀ j = 1, 2, . . . , m and by varying nj from 1 to N j . (Hence the total number of
optimization problems in this step is

∑m
j=1 N j .)

step3: Determine the elements of the matrix A using Eq. (12).

step4: Find the optimal sensor combination by solving the integer programming problem stated in the Section
3.3 and then obtain the corresponding optimal placement from step2.

Brute-force approach:

(1) Total number of optimal placement problems :
∏m

j=1 N j (the same as the total number of possible
sensor combinations).

(2) Dimension of the search space for any particular problem: cardinality of �Z�n.

(3) The designer can pick straightaway the optimal combination and placement of sensors from the
solutions of the preceding optimal placement problems.

Proposed technique :

(1) Total number of optimal placement problems:
∑m

j=1 N j .

(2) Dimension of the search space for any particular problem: cardinality of �Zni . (ni number of ith type
of sensors)

(3) Solve the previous ILP problem to obtain the optimal combination of sensors, and the corresponding
placement can be obtained from the solutions of the optimal placement problems.

3.3.2 Special Case. Suppose that there are l sensor types and l subtasks and no two sensor types
can accomplish the same subtask. In this case, by properly numbering the sensor types, the matrix
E∗ (Eq. (10)) becomes diagonal. Thus the optimal performance vector can be written as follows from
Eq. (11).

�P∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f11 (n1)
f22 (n2)

.

.

.

fll (nl )

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence the performance constraints become fii (ni) ≥ ri, ∀i = 1, 2, . . . , l . Therefore, the optimal combi-
nation of sensors can be found by solving each one of the inequalities independently for its minimum
integer argument. Specifically, the ith component of the optimal sensor combination is given by

arg
min fii (ni) ≥ ri. (14)

4. SURVEILLANCE SYSTEM DESIGN

In this section, we consider the design of a specific surveillance system consisting of two types of sensors
which are PTZ (Pan-Tilt-Zoom) infrared cameras and active motion sensors (m = 2). The surveillance
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Table I. Elements of the Performance Matrix
cameras motion sensors

image capture f 1
1n1

(�Zn1

)
0

localization 0 f 2
2n2

(�Zn2

)

Fig. 5. A typical surveillance setup: C1 and C2 represent PTZ cameras.

task is to capture the frontal face of an intruder in a surveyed region. This task has two subtasks:
intruder localization and image capture (l = 2). We know that the localization subtask can be performed
by both types of sensors while the image capture subtask can be performed by the camera alone. This can
be simplified to the special case (l = 2) described in Section 3.3.2 by neglecting the effect of the cameras
on the object localization subtask. The performance matrix becomes diagonal with this simplification
as there is one different sensor type for each different subtask. Thus we need to determine the elements
of the performance matrix as indicated in Table I.

4.1 Modeling the Effect of Cameras on the Image Capture Subtask

In this section, we determine f 1
1n1

(�Zn1 ), that is, the performance with which n1 number of PTZ infrared

cameras arranged in a particular configuration (�Zn1 ) accomplish the image capture subtask. The average
probability of capturing the frontal part of a face at a particular time instant [Sivaram et al. 2006]
could be used as a measure of performance ( f 1

1n1
(�Zn1 )) as we are interested in capturing the frontal face.

Initially, we derive the preceding performance measure for a convex surveyed region and then extend
the same to the nonconvex region.

We make the following assumptions while deriving the performance measure for n1 cameras.

(1) The face can be captured if its centroid lies within the conical FOV (Field Of View) of cameras.
(2) If half or more than half of the frontal part of the face is captured by any one of the cameras, then

due to the symmetry, the frontal face can be obtained.

The first assumption allows us to do the analysis on a plane by considering face centroid positions,
while the second assumption allows us to reconstruct the frontal face for all poses (0 degree = frontal
face in camera) between −90 and +90 degrees with respect to a camera axis and further to compute
probability of capturing a frontal face at a particular point due to multiple cameras.

Consider a plane which is parallel to the floor and at the same vertical height as that of the cameras,
as shown in Figure 5. The top view of this plane is as shown in Figure 6. Though the actual centroid of
a face may not lie on the considered plane due to the variability in pose, etc., most of the time the Field
Of View (FOV) of the cameras is enough to capture the face. In this case, the cameras capture a slightly
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Fig. 6. Top view of the convex surveyed region (2D plane) and parameters of the ith camera.

distorted face due to the angle of projection of an object onto the camera plane. We neglect this effect
and assume that the centroid of a face lies on the considered plane for analysis. Also, in practice the
FOV gets affected by changes in the zoom parameter of the camera, but we neglect this consideration
as of now for ease of modeling.

Consider a convex surveyed region. Let us denote its top view, a convex 2D region, as R (shaded
region in Figure 6). We now derive an expression for the probability of capturing a frontal face if its
centroid is at a location, say (x, y) ∈ R, as in Figure 6. This analysis will not impose any restric-
tion on the orientation of the face. We represent the orientation of a face using a random variable
which is distributed uniformly in the range [0, 2π ) . This is intuitively satisfying because any ori-
entation angle for the face is equally likely. The idea is to find a set of orientation angles of a face
having centroid at (x, y) ∈ R for which the frontal face can be captured by at least one of the n1
cameras and then determine the probability of realizing this set. By assumption 2, if we capture half
or more than half of the frontal face it implies that, due to symmetry, the total frontal face can be
obtained.

The parameters associated with the ith camera (1 ≤ i ≤ n1) are as follows.

—Location : (xi, yi) (on the boundary only)
—Zoom : di

—Reference direction :θri = arg ( �θri), 0 ≤ θri < 2π , where ar g ( �θri) is the angle that is measured coun-
terclockwise from the positive x-axis to the vector �θri.

—Maximum pan angle : θpi radians, (> 0)

(hence �Zn1 = [
x1 y1 θr1 . . xn1 yn1 θrn1

]T).
The zoom parameter indicates the maximum distance that the ith camera can focus, and the maxi-

mum pan angle indicates the maximum pan allowed in either the positive or negative direction about the
reference direction, as shown in Figure 6. In this analysis, it is assumed that the parameter maximum
pan angle includes the effect of field of view of the camera, namely θpi = θpi,orig + (FOV in radians)/2,
where θpi,orig is the actual maximum pan angle of the camera.
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Fig. 7. Directions of various vectors. A: position of the ith camera; B: face centroid position (x, y); O: origin of the 2D plane; θpi
& �θri : maximum pan angle and reference direction of the ith camera; �Vi(x, y): vector from the ith camera to the point (x, y), and
�θi(x, y): angle between �Vi(x, y) and �θri .

We define the characteristic function Ii(x, y) for the ith camera for all points (x, y) ∈ R as

Ii(x, y) =
{

1, if ith camera can focus on (x, y)
0, otherwise

and it can be written as Ii(x, y) = Ii1(x, y)× Ii2(x, y), where Ii1(x, y) = U (d2
i −[(x −xi)2 +( y − yi)2]) and

Ii2(x, y) = U (θpi −�θi(x, y)), U (.) is the unit step function. �θi(x, y) is the angle difference between the
reference direction vector ( �θri) of the ith camera and the vector �Vi(x, y) (from ith camera to the point
(x, y)) as shown in Figure 7.

The characteristic function Ii(x, y) essentially describes whether the object’s image can be captured
by camera i at point (x, y) or not. The function Ii1(x, y) indicates the distance constraint imposed by
the zoom of the camera and Ii2(x, y) indicates the pan angle constraint. The vector from ith camera to
the object centroid at (x, y) is represented using �Vi(x, y) and can be found from the triangle OAB (refer
to Figure 7).

(xi, yi) + �Vi(x, y) = (x, y) ⇒ �Vi(x, y) = (x − xi, y − yi).

Let us define θi(x, y) = arg( �Vi(x, y)), 0 ≤ θi(x, y) < 2π , as indicated in Figure 8 for some (x, y). As
stated earlier, the orientation of a face is represented using a random variable θ which is distributed
uniformly in the range [0, 2π ). According to assumption 2, the ith camera can capture the frontal face
having centroid at (x, y) whenever the orientation angle of a face θ ∈ Si(x, y). Figure 8 shows a specific
case. Si(x, y) is expressed as

Si(x, y) = {θi : θi(x, y) + π/2 ≤ θi < θi(x, y) + 3π/2} mod 2π,

which represents the set of all orientation angles for a face having centroid at (x, y) for which ith camera
can capture the frontal face. If the object is such that the frontal part of it can be obtained from any of its
captured images (independent of its orientation) then the analysis becomes simple and we have merely
to maximize the coverage area. This is not true for objects like human and animal faces, as shown in
Figure 8. Therefore, we need to do the following analysis. Let us define Pi(x, y) = Prob

{
θ ∈ Si(x, y)

}
.

Hence the probability of capturing the frontal face having centroid at (x, y) using the ith camera is given
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Fig. 8. Set of orientations for which ith camera can capture the frontal face, �Vi(x, y): vector from the ith camera to the face
centroid at (x, y).

by Pi(x, y) × Ii(x, y). Let Pn1 (x, y) denote the probability of capturing a frontal face having centroid at
(x, y) and with n1 number of cameras arranged in any fixed configuration.

4.1.1 Single Camera Case (n1 = 1). Recall that I1(x, y) indicates whether camera 1 can focus on
(x, y) or not. Hence, in this case, P1(x, y) = I1(x, y) × P1(x, y).

4.1.2 Dual Camera Case (n1 = 2). We know that P (X
⋃

Y ) = P (X ) + P (Y ) − P (X
⋂

Y ), where X
and Y are any two events.

Case 1. When both the cameras are able to focus on (x, y)

P2(x, y) = Prob
{
θ ∈

[
S1(x, y)

⋃
S2(x, y)

]}

= Prob
{
θ ∈ S1(x, y)

} + Prob
{
θ ∈ S2(x, y)

}
−Prob

{
θ ∈

[
S1(x, y)

⋂
S2(x, y)

]}
= P1(x, y) + P2(x, y) − P12(x, y)(

P12(x, y) = Prob
{
θ ∈

[
S1(x, y)

⋂
S2(x, y)

]})
where P12(x, y) denotes the probability of capturing the frontal face having centroid at (x, y) by both
the cameras.

Case 2. When only one of the cameras is able to focus on (x, y)

P2(x, y) = Prob
{
θ ∈ Si(x, y)

} = Pi(x, y)

where only camera i can focus on (x, y), i = 1 or 2.

Case 3. Either of the cameras can’t focus on (x, y)

P2(x, y) = 0.
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All three previous cases can be compactly written as

P2(x, y) = I1(x, y) × P1(x, y) + I2(x, y) × P2(x, y)

−I1(x, y) × I2(x, y) × P12(x, y).

Since the random variable θ is uniformly distributed in the range [0, 2π ), the preceding expression
reduces to

P2(x, y) = (1/2) × [I1(x, y) + I2(x, y)]
−I1(x, y) × I2(x, y) × P12(x, y). (15)

The point (x, y) can be anywhere on the plane and belongs to the convex set R and the characteristic
function of a particular camera describes whether that camera can focus on this point. The average
probability of capturing the frontal face at any particular time instant (performance measure) can be
found if we know the probability density function f (x, y) for a face centroid position over the convex
region R. Thus, the average probability in this case represents the performance measure f 1

1n1
(�Zn1 ) for

n1 = 2, as discussed earlier.

f 1
12

(�Z2

)
=

∫ ∫
R

P2(x, y) f (x, y) dx dy

Let the area of the convex region R be AR and further assume that the position (x, y) is a random
variable with a uniform density (in this case, f (x, y) = 1

AR
). Uniform density for the position means

the face can be found with an equal probability in any region of fixed total area.

f 1
12

(�Z2

)
= 1

AR

∫ ∫
R

P2(x, y) dx dy

Substituting for P2(x, y) from Eq. (15), we have

= 1
AR

∫ ∫
R

(1/2) × [I1(x, y) + I2(x, y)] dx dy

− 1
AR

∫ ∫
R

I1(x, y) × I2(x, y) × P12(x, y) dx dy

f 1
12

(�Z2

)
= 0.5

AR

{
Volume underI1(x, y) + Volume underI2(x, y)

}
− 1

AR

∫ ∫
A

P12(x, y) dx dy (16)

where A : area where both the cameras can focus ( i.e., set of all (x, y) under Case 1 ).

4.1.3 More Than Two Cameras. In this section we extend the performance metric to the n1 camera
case. As mentioned earlier, Pn1 (x, y) denotes the probability of capturing the frontal face having centroid
at (x, y) and with n1 number of PTZ cameras in a fixed layout (�Zcam). If (x, y) is such that all cameras
are able to focus on this point then expression for Pn1 (x, y) is given by

Pn1 (x, y) = Prob
{
θ ∈

[
S1(x, y)

⋃
S2(x, y) . . .

⋃
Sn1 (x, y)]

]}
.

Since we know how to deal with two cameras, initially we start with two cameras. After determining
the effect of first two cameras, we add one more camera to find its effect. Note that the order in which
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we add cameras to the existing configuration has no effect on the final performance metric, as the union
operator is associative. This process of adding a new camera to the existing system is repeated until we
include all the cameras. The algorithmic approach is described next.

Once we know {Pn1 (x, y), ∀(x, y) ∈ R}, the average probability f 1
1n1

(�Zn1 ) can be found by inte-
grating and averaging over the entire convex region, as discussed in Section 4.1.2. The optimal camera
placement �Z∗

n1
is obtained by maximizing f 1

1n1
(�Zn1 ) (brute-force search) with respect to the camera place-

ment �Zn1 . Let us denote the optimal performance of n1 number of cameras as f11 (n1). Therefore
f11 (n1) = f 1

1n1
(�Z∗

n1
).

4.1.4 Extension to Nonconvex Region. To account for the nonconvexity of the region, we use the
modified characteristic function Ic

i (x, y) instead of Ii(x, y) in the algorithm of Section 4.1.3. The modified
characteristic function for the ith camera is given by Ic

i (x, y) = Ii(x, y) × Ci(x, y), where Ci(x, y)
indicates the visibility function of the ith camera and is defined for all points (x, y) ∈ R as

Ci(x, y) =
{

1, if �Vi(x, y) does not cross boundaries of R,
0, otherwise

where �Vi(x, y) is a vector from the ith camera to the point (x, y) as shown in Figure 7.

Algorithm. To determine Pn1 (x, y)

Inputs:
Sets: Si(x, y), i = 1, 2, ...n1

Probabilities: Pi(x, y), i = 1, 2, ...n1

Charcteristic functions: Ii(x, y), i = 1, 2, ...n1

Initialize:
A ← S1(x, y) and B ← S2(x, y)
p1 ← P1(x, y) and p2 ← P2(x, y)
i1 ← I1(x, y) and i2 ← I2(x, y)
for j = 3 to n1

Compute:
p = i1 × p1 + i2 × p2 − i1 × i2 × p12

where p12 = Prob
{
θ ∈ A

⋃
B

}
Update sets:

if i1 = 1 and i2 = 1
then A ← A

⋃
B

if i1 = 0 and i2 = 1
then A ← B
if i1 = 0 and i2 = 0
then A ← φ

Update probabilities:
p1 ← p and p2 ← Pj (x, y)

Update characteristic functions:
i1 ← max (i1, i2) and i2 ← I j (x, y)

end for
Pn1 (x, y) = i1 × p1 + i2 × p2 − i1 × i2 × p12

Output Pn1 (x, y)
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Fig. 9. Uncertainty introduced by a 2D motion sensor grid in performing a localization subtask.

4.2 Modeling the Effect of Motion Sensors on the Localization Subtask

One kind of active motion sensor consists of a transmitter and a receiver pair and has two states,
namely where the beam is continuous and the beam is discontinuous. In this section, we determine the
performance f 2

2n2
(�Zn2 ) with which n2 number of motion sensors arranged in the form of a 2D grid (�Zn2 )

accomplish the localization subtask.

4.2.1 Localization by Motion Sensor Grid. Consider a motion sensor grid formed by arranging the
motion sensors into rows and columns as shown in Figure 9. Let us call the motion sensors along the row
as “row motion sensors” and along the column as “column motion sensors”. The grid points correspond to
the locations where beams from the row motion sensors and column motion sensors meet. In localizing
an object (or intruder) using the sensor grid, we assume that the object cannot cross the beam of any
motion sensor in less than �t seconds, where �t is the polling time for the sensor grid. Using the past
localization information and the current sensor grid status, the new localization information can be
found. But in most of the cases, there is some uncertainty associated with the localization information
obtained from the sensor grid. We explain different cases next.

Case 1. At time instant t, the row motion sensor with number r and the column motion sensor with
number c are discontinuous. In this case there is no uncertainty in localizing an object and it is exactly
there on the grid/intersection point (r, c). This is because (see Figure 9, right) the object can be anywhere
obstructing the row motion sensor r and column motion sensor c, and this is possible only if the object
is at the intersection point (r, c).

Case 2. At time instant t, only one of the motion sensors is discontinuous (row or column). Let
the current discontinuous motion sensor be a column motion sensor with number c (refer Figure 9,
left). Let the previous latest discontinuous row motion sensor number be r. As per the assumption in
Section 4.2.1, the object cannot cross either row r − 1 or r + 1 and yet obstruct column motion sensor
c. Because of the assumption, the uncertainty in localizing an object in this case is reduced from the
line segment AB to the line segment CD (thick) excluding the intersection/grid point, as shown in
Figure 9 (left).
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Case 3. At time t, no motion sensor is discontinuous. Let the latest previous discontinuous row and
column motion sensors be r and c, respectively. In this case an object cannot cross the row motion
sensors r − 1 and r + 1 and similarly the column motion sensors c − 1 and c + 1. Hence the uncertainty
region in this case is the dark region, as shown in Figure 9, right (note that the row motion sensor r
and column motion sensor c are continuous).

So we can think of the uncertainty region associated with each grid point as a rectangle formed
by the adjacent motion sensors’ (both rows and columns) beam. The shape of the uncertainty region
depends on the placement of the motion sensors. The performance of the localization subtask increases
as the maximum distance between the grid point and the points in the corresponding uncertainty
region decreases. Let us represent this maximum distance corresponding to the ith grid point as Di,
∀i = 1, 2, . . . , Ng (where Ng represents the total number of grid points). Note that the performance of
the localization subtask increases as the average of the maximum distances associated with the grid
points decreases. Hence we can write the performance measure as

f 2
2n2

(�Zn2

)
= 1 −

1
Ng

× ∑Ng

k=1 Dk

Dmax
(17)

(where Dmax represents the maximum distance between any two points in the surveyed region)

4.2.2 Optimal Motion Sensor Grid. The optimal placement of the motion sensor grid is obtained by
maximizing the performance measure f 2

2n2
(�Zn2 ) in Eq. (17). Let us denote the corresponding optimal

performance with f22 (n2). Therefore,

f22 (n2) = f 2
2n2

(�Z∗
n2

)
= 1 −

min
(

1
Ng

× ∑Ng

k=1 Dk

)
Dmax

. (18)

5. RESULTS

We present in this section the simulation results describing the optimal selection of sensors and their
placement. We also show the experimental results for tracking and capturing the face of an intruder.

5.1 Optimal Combination of Sensors and Their Placement

The design problem considered in the beginning of Section 4 can be reduced to the form of the special
case described in Section 3.3.2 by neglecting the effect of the cameras on the intruder localization
subtask. Hence the optimal performance becomes

�P∗ =
[

f11 (n1)
f22 (n2)

]
.

We considered a rectangular surveillance region of size 6m×2.5m and the required performance vector
has been chosen to be �b = [

0.78 0.81
]T.

5.1.1 Optimal Selection and Placement of Cameras. The parameters maximum pan angle (θpi) and
zoom (di) of the PTZ camera are chosen to be 45 degrees and 5.5m, respectively. To reduce the dimen-
sion of the search space, the reference direction (suboptimal θri) for each camera is chosen such that
maximum volume is included under the corresponding characteristic function. Figure 11 shows the
performance measure of the image capture subtask with two cameras ( f 1

12(�Z2)) as a function of cam-
eras’ position along the perimeter (total 68 equally spaced points are considered along the perimeter
and are numbered starting from corner 1 as shown in Figure 9, left). Note that this function is two-way
symmetric, as camera positions can be swapped without changing the performance of the image capture
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Fig. 10. Optimal placement of cameras and motion sensors in a rectangular surveyed region (convex).

Fig. 11. Performance vs. camera placement for the rectangular surveyed region.

subtask and also due to the symmetric surveyed region. The performance measure is maximum when
the cameras are placed in diagonally opposite corners and thus it corresponds to optimal performance.
We found this optimal performance with two cameras ( f11

(
2
)
) to be 0.782. When both the cameras are

placed at the same point then the performance measure is same as that of the single camera placed at
this point. The performance measure values along the line CAM1 position − CAM2 position = 0 (in
Figure 11) represent the single camera case. The maximum value ( f11

(
1
)
) along the line is 0.43.

From Eq. (14), the optimal number of cameras (n∗
1) is given by

n∗
1 = arg

min

(
f11 (n1) ≥ 0.78

)
.

Therefore, the optimal number of cameras n∗
1 is two and their placement is in diagonally opposite

corners, as shown in Figure 10.
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Fig. 12. Nonconvex surveyed region.

Fig. 13. Performance as a function of camera placement for the nonconvex surveyed region.

5.1.2 Nonconvex Region. Simulation results for the two camera placement problem in a nonconvex
region are discussed in this section. The perimeter of a nonconvex region shown in Figure 12 is divided
into 40 equal parts. The maximum pan angle (θpi) and zoom are chosen to be 47 degrees and 20m,
respectively, for both the cameras. The reference direction for each camera is chosen such that the
maximum volume is included under the corresponding characteristic function. Performance of the image
capture subtask f 1

12(�Z2) as a function of the cameras’ position is shown in Figure 13. The combination
of 2 and 26 gave the maximum performance of 0.72.
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Table II. Optimal Localization
Performance

n2 optimal placement fmot (n2)
n21 × n22

1 1 × 0 0.0
2 2 × 0 0.637
3 3 × 0 0.699
4 4 × 0 0.733
5 5 × 0 0.754
6 4 × 2 0.775
7 5 × 2 0.799
8 5 × 3 0.818

Fig. 14. Testbed for our experiments.

5.1.3 Optimal Selection and Placement of Motion Sensors. We determined the optimal motion sensor
grid for a given number of motion sensors by using Eq. (18). Table II lists the optimal performance of
the localization subtask as a function of the number of motion sensors in a rectangular surveillance
region of size 6m × 2.5m. The optimal placement n21 × n22 (refer to Table II) denotes n21 number of
sensors along the length (6m) and n22 number along the width(2.5m) respectively (sensors are equally
spaced). The optimal number of motion sensors (n∗

2) can be determined using the following (from Eq.
(14)) equation.

n∗
2 = arg

min

(
f22 (n2) ≥ 0.81

)
.

Therefore, from Table II, the optimal number of motion sensors n∗
2 is 8 and the corresponding optimal

placement is 5 × 3 grid, as shown in Figure 10.

5.2 Tracking Results

In this section, we present face tracking results of the surveillance system built using the optimal
combination of sensors found in Section 5.1. Figure 14 shows our testbed for the tracking experiment.
To track and further capture the frontal face of an intruder, cameras parameters like pan, tilt, and
zoom need to be adjusted based on the localization information obtained from motion sensors. Such an
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Fig. 15. Tracking results: (a)–(h) Camera 1 images; (a’)–(h’) Camera 2 images.

Table III. Effect of Camera Placement
Camera placement Face capturing ratio (%)
Cam1-Middle1, Cam2-Middle2 42
Cam1-Middle1, Cam2-Corner3 51
Cam1-Corner1, Cam2-Corner3 69
Cam1-Corner1, Cam2-Corner4 38
Cam1-Corner1, Cam2-Corner1 27
Cam1-Middle1, Cam2-Middle1 17

interaction strategy between sensors allows the system to react and track an intruder efficiently. For
example, consider Figure 15, where a few images captured by both the cameras of a surveillance system
for a particular camera placement are shown (images in any column of Figure 15 (i.e., (a),(a’), etc.) are
captured at a particular time instant). Since localization is done by the motion sensor grid, cameras
are able to react and track an intruder even if no face is being detected in the captured frames. This
can be observed from images (g), (g’), (h), and (h’) of Figure 15. Surveillance systems consisting of only
cameras cannot track in this case.

Table III summarizes the effect of camera placements on the “successful face capturing” ratio. We
define the “successful face capturing” ratio of the number of frames captured with frontal facial data
to the total number of frames captured for each camera. In our experiments, we considered a fixed
motion trajectory that passes through all the grid points and obtained 100 frame images per camera
for each camera placement. A total of 6 points were chosen (i.e.,Corner1–4 and Middle1–2) along the
perimeter for the camera position, as shown in the left image of Figure 9. The experimental results show
that a maximum accuracy of 69% is obtained when cameras are placed in diagonally opposite corners.
Note that we found the same placement by maximizing the performance measure of the image capture
subtask ( f 1

12(�Z2)) in Section 5.1.1. Thus, we verified experimentally for the image capture subtask that
optimal placement based on the performance measure maximizes the performance of the subtask.

6. CONCLUSIONS

In this article, we addressed the problem of how to determine the optimal combination of sensors
along with their placement in order to meet the given performance requirements at minimal cost for
multimedia surveillance systems. First, we approximated, optimal performance vector corresponding
to a sensor combination, with the output of a linear model with sensor combination being an input.
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Then we used this linear model in the formulation of the optimal sensor selection problem (to ensure
performance corresponding to the optimal placement) and showed that it can be reduced to the form
of the Integer Linear Programming problem (ILP). To demonstrate how our technique can be used
for designing a surveillance system, we considered a face capturing system consisting of PTZ cameras
and motion sensors. We also build a real-time surveillance system using the optimal combination of
cameras and motion sensors and their placement information obtained after following the proposed
design technique. Experimental results have confirmed the effectiveness of the proposed technique.
Future work includes designing of surveillance systems that use different sensors like acoustic sensors,
pressure sensors, infrared sensors, etc., and perform different subtasks.
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