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A multimedia analysis system utilizes a set of correlated media streams, each of which, we assume, has a confidence level and
a cost associated with it, and each of which partially helps in achieving the system goal. However, the fact that at any instant,
not all of the media streams contribute towards a system goal brings up the issue of finding the best subset from the available
set of media streams. For example, a subset of two video cameras and two microphones could be better than any other subset of
sensors at some time instance to achieve a surveillance goal (e.g. event detection). This article presents a novel framework that
finds the optimal subset of media streams so as to achieve the system goal under specified constraints. The proposed framework
uses a dynamic programming approach to find the optimal subset of media streams based on three different criteria: first, by
maximizing the probability of achieving the goal under the specified cost and confidence; second, by maximizing the confidence
in the achieved goal under the specified cost and probability with which the goal is achieved; and third, by minimizing the
cost to achieve the goal with a specified probability and confidence. Each of these problems is proven to be NP-Complete. From
an AI point of view, the solution we propose is heuristic-based, and for each criterion, utilizes a heuristic function which for a
given problem, combines optimal solutions of small-sized subproblems to yield a potential near-optimal solution to the original
problem. The proposed framework allows for a tradeoff among the aforementioned three criteria, and offers the flexibility to
compare whether any one set of media streams of low cost would be better than any other set of higher cost, or whether any one
set of media streams of high confidence would be better than any other of low confidence. To show the utility of our framework,
we provide the experimental results for event detection in a surveillance scenario.
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1. INTRODUCTION

Most media analysis tasks can be better performed by using multiple correlated media, as compared
to using only single medium. This is because a single type of media device can only partially help in
achieving a system goal (e.g. event detection in multimedia surveillance scenario) due to its ability to
sense only a part of the environment, and also due to the inaccuracies in capturing and processing
media data. Moreover, multiple media devices can capture different aspects of the environment to
provide complementary information which is not available from a single medium. On the other hand,
the system designer can have various confidence levels in different media for different system goals.
For instance, we can have more confidence in a video stream than an audio stream if the goal is ‘to
detect faces,’ and a better (or more accurate) face detector is available.

The fact that at any instant, all employed media streams do not necessarily contribute towards a
goal brings up the issue of finding the most informative subset of media streams with a high confidence
level. The most informative subset of streams dynamically changes over time. Once this subset is found,
we can continue using it for a certain period while ignoring the remaining streams. This eliminates
the cost of using a redundant and less informative stream. The cost of using a media stream usually
includes the cost of a media device, its installation and maintenance costs, and the cost of energy to
operate and process it.

The selection of the optimal subset of streams is an important research problem in application sce-
narios including, but not limited to, surveillance and monitoring, media search etc. In surveillance
systems, people employ multiple sensors, such as video cameras, microphones, and infra-red cameras,
and also use other nonsensory data. Such systems “on-the-fly” should be able to find whether a set of
two video cameras and two microphones would be better when compared to any other set of one video
camera and three microphones in achieving a specific surveillance goal of detecting a suspicious activ-
ity. In media search systems (which have gained fair attention within the research community [Jain
2004]), the system should be able to select the optimal subset from stored media streams on a server
for download and play.

In this article, we describe a proposed framework for determining a near-optimal1 media selection
scheme with a detailed heuristic explanation and the corresponding experimental results.2

The proposed framework essentially addresses the following research issues:

(1) What is the optimal number of media streams required to achieve the goal under the specified
constraints?

(2) Which subset of streams is the optimal?

(3) In case the most suitable subset is unavailable, can we use alternate media streams without much
loss of cost-effectiveness and confidence?

(4) How frequently should this optimal subset be computed so that the overall cost of the system is
minimized?

Given a set of media streams, which subset is the optimal? This question can be answered in many
ways. The optimal subset may be the one which:

(1) maximizes the probability of achieving the system goal under the specified maximum cost and with
a specified minimum confidence;

1We will show that the problem of obtaining the optimal solution is NP-Complete. Thus, while we seek the optimal solution, our
goal will be to attain one that is reasonably close to optimal.
2The earlier version of some of the results found here was published in Atrey and Kankanhalli [2005].
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(2) maximizes confidence in the media streams used, with a specified minimum probability of achieving
the system goal under a specified maximum cost; and

(3) minimizes the cost of using the media streams so as to attain a specified minimum probability of
achieving the system goal with a specified minimum confidence.

We thus study the problem of optimal stream selection from the three different aforementioned
angles.

We reduce the 0-1 KNAPSACK problem to that of optimal media selection and use a dynamic pro-
gramming approach to solve it. In our problem, for each stream, its probability of contributing towards
the goal and the system designer’s confidence level in it are analogous to the profit, while its cost is
analogous to the weight, of a KNAPSACK problem. The fundamental difference is that we fuse the
probabilities and confidence levels using a Bayesian approach [Atrey et al. 2005], while the profits are
added in the 0-1 KNAPSACK problem.

From a theoretical perspective, the problem is proven to be NP-Complete. Thereafter, the proposed
framework uses a dynamic programming approach that finds the optimal subset of streams based on
the preceding three criteria. From an AI point of view, the solution we propose is heuristic-based, and
for each criterion, utilizes a heuristic function which, for a given problem, combines optimal solutions of
small-sized subproblems to yield a potential near-optimal solution to the original problem. To achieve
the latter, we resort to a recent result proven in Oommen and Rueda [2005], where the authors showed
that the quality of a heuristic algorithm3 is determined by the accuracy of the heuristic function it uses.
The details of how this result is used in this context is also discussed.

The rest of this article is organized as follows. We highlight related work in Section 2. In Section 3,
we formulate the problem of determine the optimal subset. In Section 4, we present our framework in
detail. We provide the experimental results in Section 5. Finally, Section 6 concludes the article with
some discussions on future work.

2. RELATED WORK

In the past, the optimal sensor selection problem has been widely studied in various contexts. In the
context of discrete event systems and failure diagnosis Debouk et al. [2002] formulated the optimiza-
tion issue as a Markovian decision problem (MDP) with the objective of identifying instances where it
is possible to explicitly determine optimal strategies. The sequence of tests is applied to identify the
least costly sensor combination that satisfies a set of system properties (such as diagnosability) with
the minimum expected number of tests. The method works under specified assumptions which are
overconstrained. For instance, the authors assume an uniform cost for all sensors, which is impractical
in a multimedia environment where different types of media are employed. Their work also does not
integrate the confidence in sensors, as does our proposed framework. Jiang et al. [2003] presented a for-
mal method for optimal sensor selection for discrete event systems with partial observation. The sensor
subset (or observation mask) that qualifies for selection must follow desired formal properties, such
as (co-)observability, or normality (for control), state observability (for state estimation), diagnosability
(for failure diagnosis) under partial observation, etc. However, their method neither considers the cost
of obtaining a subset of sensors nor the system designer’s confidence in this subset while attempting to
determine the optimal observation mask.

A sensor selection method for the execution of continuous probabilistic queries [Lam et al. 2004]
has also been proposed. Their method meets the accuracy requirement by selecting the set of highly

3This conjecture, which was unproven earlier, has been the basis for designing numerous algorithms such as the A* algorithm
and its variants.
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correlated sensors. The correlation is computed assuming that all the sensors are of the same type.
Therefore, their method is not suitable for a set of heterogeneous sensors. Also, they do not explicitly
consider the cost of each sensor.

In the area of wireless sensor networks, [Pahalawatta et al. 2004] proposed to solve the problem of
optimal sensor selection by maximizing the information utility gained from a set of sensors subject to a
constraint on the average energy consumption in the network. However, their method does not consider
the confidence in sensors. Moreover, our framework also takes into account the processing cost of sensor
data.

Recently, Isler and Bajcsy [2005] proposed a generic sensor model, where the measurements can be
interpreted as polygonal, convex subsets of the plane. They used an approximation algorithm so as to
minimize the error in estimating the position of a target. However, their work also does not explicitly
have a notion of the cost of using streams nor the confidences in them.

In contrast to all the solutions previously described, our proposed work provides a tradeoff between
the extent to which the goal is achieved, the confidence in the streams, and the cost of using streams.
In addition, our method provides the system designer with the flexibility of choosing next best sensor
if the best sensor is not available.

Siegel and Wu [2004] have also pointed out the importance of considering confidence in sensor fusion
and have used Dempster-Shafer’s ‘theory of evidence’ to fuse the confidences. In contrast, we model con-
fidence fusion by using a Bayesian formulation because it is both simple and computationally efficient.

3. PROBLEM FORMULATION

We use the following model of computation.

M1. S is a multimedia analysis system designed for a goal G, and employs a set Mn(t) = {M1, M2,
. . . , Mn} of n media streams at time t.
M2. For 1 ≤ i ≤ n, let 0 < pi < 1 be the probability of achieving the system goal G using the

individual ith media stream. pi is also denoted as P (G|Mi). Also, let P� (also denoted as P (G|�)) be
the ‘fused probability’ of achieving the system goal G using a subset � ∈ P(Mn) of media streams. The
‘fused probability’ is the overall probability of achieving the system goal using a group of media streams
[Atrey et al. 2005].
M3. For 1 ≤ i ≤ n, ci, let be the cost per unit time of using stream i. Also, let Cn = ∑n

i=1 ci be the
total cost.
M4. For 1 ≤ i ≤ n, let 0 < fi < 1 be the system designer’s confidence in the ith stream.

We make the following assumptions:

A1. All media capture the same environment (but optionally, different aspects of the environment)
and provide correlated observations.
A2. The system designer’s confidence level in each of the media streams is at least 0.5 i.e. fi > 0.5.

This assumption is reasonable, since it is not useful to employ a media device which is found to be
inaccurate more than half of the time.
A3. The system goal G is to test a specified hypothesis H. Examples of a hypothesis could be : ‘There

is a person is knocking at the door in the corridor.’
A4. There are multiple system goals and each can be accomplished by using a subset of the total

number of streams. Hence, there is a need to select the best subset for a specific system goal.
A5. The fused probability of achieving the goal, as well as the overall confidence, increase monoton-

ically as more streams providing similar evidence are used.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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We formulate three different problems referred to as multimedia selection (MS) problems: MaxGoal,
MaxConf, and MinCost as follows.

Find the subset � ∈ P(Mn) that:

— Problem MaxGoal : maximizes P� subject to C� ≤ Cspec and F� ≥ Fspec.

— Problem MaxConf : maximizes F� subject to C� ≤ Cspec and P� ≥ Pspec.

— Problem MinCost : minimizes C� subject to F� ≥ Fspec and P� ≥ Pspec.

The preceding notations are:

P� is the fused probability of achieving the goal when the subset �

of media streams is used by system S;
C� is the cost of using the subset � of streams;
F� is the overall confidence when the subset � of streams is used;
Pspec is the specified minimum fused probability of achieving the goal;
Cspec is the specified maximum overall cost (note that C� ≤ Cn); and
Fspec is the specified minimum overall confidence.

3.1 Complexity of Computing Optimal Solutions to MS Problems

We endeavour to formulate a heuristic-based solution to the problem of obtaining the optimal subset of
multimedia streams. We discuss why such a solution is necessary in subsequent paragraphs.

Each of these three MS problems is structurally similar to the 0-1 KNAPSACK problem. We now
prove that the MS Problems are NP-Complete problems.

THEOREM 3.1. MS Problems are NP-Complete problems whenever the number of media streams
n ≥ 2.

PROOF. The three MS problems are optimization problems. They can be restated as decision problems
in the following manner

MaxGoal = {Does a subset � with P� ≥ Pspec exist : F� ≥ Fspec and C� ≤ Cspec}
MaxConf = {Does a subset � with F� ≥ Fspec exist : P� ≥ Pspec and C� ≤ Cspec}
MinCost = {Does a subset � with C� ≤ Cspec exist : P� ≥ Pspec and F� ≥ Fspec }

The proof for this theorem is similar for all three problems MaxGoal, MaxConf, and MinCost. We
consider the case of problem MaxGoal. To prove problem MaxGoal to be an NP-Complete problem, we
provide Lemmas 3.2, 3.3, and 3.4, which together prove Theorem 3.1.

LEMMA 3.2. The 0-1 KNAPSACK problem is reducible to problem MaxGoal in polynomial time, that
is, 0-1 KNAPSACK ≥Polynomial MaxGoal.

PROOF. We pick a known NP-Complete 0-1 KNAPSACK problem and define an instance of it as a
5-tuple 〈

Un, X, W, X spec, Wspec
〉

with a set Un = {ui}n
i=1 of n items, their profits X = {xi}n

i=1, weights W = {wi}n
i=1, specified minimum

profit X spec, knapsack capacity Wspec; and an objective of determining whether a subset � ⊆ Un of items
having overall profit X � ≥ X spec exists under the constraint W� ≤ Wspec, where W� is the total weight
of items of subset �.

The corresponding instance of MaxGoal is defined by a six-tuple〈
Mn, P, F, C, Pspec, Cspec, Fspec

〉
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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with a set Mn = {Mi}n
i=1 of n streams, the probabilities P = {pi}n

i=1 of individually helping in achieving
the goal, their confidences F = { fi}n

i=1, costs C = {ci}n
i=1, minimum specified fused probability Pspec,

maximum specified cost Cspec, and minimum specified confidence Fspec; and with an objective of deter-
mining whether a subset � ⊆ Mn of streams, based on which we obtain the fused probability P� ≥ Pspec
of achieving the goal, exists under the constraints C� ≤ Cspec and F� ≥ Fspec, where C� and F� are the
total cost of using and overall confidence in, respectively, subset �.

A transformation function Tr : K → Tr (K ) which maps an instance K of the 0-1 KNAPSACK problem
into the given instance Tr (K ) of the MaxGoal problem is defined as Tr (Un, X, W, X spec, Wspec){Mn =
Un, P = X, F = NULL, C = W, Pspec = X spec, Cspec = Wspec, Fspec = 0, � = �, P� = X �, C� = W�}.
Note that relaxing the constraint of confidence (i.e., making Fspec = 0) reduces the given instance of the
MaxGoal problem into an instance of the 0-1 KNAPSACK problem.

We now argue that K has a solution if and only if Tr (K ) has a solution. If a subset � of items,
with the overall profit X � (by adding the profits obtained from individual items) within the weight
W� ≤ Wspec, exists in an instance K of the 0-1 KNAPSACK problem; in the corresponding instance
Tr (K ) of the MaxGoal problem, there exists a subset � of media streams based on which an overall
probability P� ≥ Pspec of achieving the goal is estimated (by fusing with a Bayesian approach the
probabilities of achieving the goal based individual streams) within the total cost C� ≤ Cspec and with
the overall confidence F� ≥ Fspec. Note that although X � in the 0-1 KNAPSACK problem and P� in the
MaxGoal problem are computed using different methods, they are equivalent, as both are computable
in polynomial time and both increase monotonically (as stated in the assumption A5). We prove this
using Lemma 3.3.

It is obvious that the transformation Tr of instances of the two problems can be done in polynomial
time because there is a one-to-one correspondence, and K will have a solution iff Tr (K ) has a solution.
This proves that the 0-1 KNAPSACK problem is reducible to the MaxGoal problem in polynomial
time.

LEMMA 3.3. The functions to compute the overall profit X � in 0-1 KNAPSACK problem and the overall
probability P� in the MaxGoal problem are equivalent.

PROOF. As already known, in 0-1 KNAPSACK problem, the function to compute the overall profit is
additive, whereas in the MaxGoal problem, the overall probability of the occurrence/non-occurrence of
event is computed using a Bayesian formulation (Eq. (1) in Section 4.2), which is given as:

Pi = Pi−1.pi.eγ i

Pi−1.pi.eγ i + (1 − Pi−1)(1 − pi).e−γ i
.

By making the term γ i = 0, the preceding equation becomes

= ρ.σ

ρ.σ + (1 − ρ)(1 − σ )
,

where ρ = Pi−1, σ = pi, and 0 < Pi−1, pi < 1. This equation, which contains multiplication and division
steps, can easily be transformed into an additive function by replacing the multiplication and division
steps with successive additions and subtractions, respectively, as

= ρ.σ

2.ρ.σ + 1 − ρ − σ
=

σ−times︷ ︸︸ ︷
ρ.ρ . . .

2.

σ−times︷ ︸︸ ︷
ρ.ρ . . . +1 − ρ − σ

=
∑σ

1 ρ

2.
∑σ

1 ρ + 1 − ρ − σ
= ρ ′/σ ′,

where ρ ′ = ∑σ
1 ρ and σ ′ = 2.

∑σ
1 ρ + 1 − ρ − y . Note that ρ ′ and σ ′ can be computed in time of

polynomial order O(d ), where d is the degree of precision in considering the probability value σ .
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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Further transformation can be done as follows:

=
ρ ′∑
1

1 +
(

−
σ ′∑
1

1

)

which are simply additive steps.
The previous transformation will also hold for the case when γ i �= 0. The only difference would be

that the time complexity of computing the overall probability using the aforementioned equation will
be of polynomial order O(n × d ), since the computation of γ i (refer to Section 4.2) would also require
O(n) time.

The preceding arguments prove Lemma 3.3.

LEMMA 3.4. Problem MaxGoal is in NP.

PROOF. To prove that the problem MaxGoal is NP, we show that the solution to the decision version
of MaxGoal problem can be verified in polynomial time.

To verify if there exists a subset � of media streams based on which we obtain a fused probability
P� ≥ Pspec of achieving the goal within the total cost C� ≤ Cspec and with the overall confidence
F� ≥ Fspec; one can simply make the choices of streams in O(n) time, and can fuse the probabilities (of
achieving the goal based on individual streams) and their confidence levels. Their costs can simply be
added. We can then compare the overall confidence and the total cost of using streams with the specified
constraints. If C� ≤ Cspec and F� ≥ Fspec are true, then the solution is correct, else it is not. This proves
that problem MaxGoal does belong to the NP class.

Lemmas 3.2, 3.3, and 3.4 together prove that the problem MaxConf is NP-Complete.
In the case of problem MaxConf, the proof follows the same lines of reasoning for problem MaxGoal,

except that in this case, we would present the same arguments for F�, instead of P�. Similarly, in the
case of problem MinCost, the proof is similar with the arguments for C�, instead of P�. The details are
omitted due to space constraints.

In light of Theorem 3.1, we proceed with the major thrust of this article, namely, to develop techniques
for obtaining approximate solutions to the problems.

3.2 Developing Approximate Solutions to Problems MaxGoal, MaxConf, and MinCost

From a computational and practical perspective, Theorem 3.1 justifies the research for developing
heuristic-based solutions because the optimal solution can only be obtained by exhaustive search of the
entire solution space. The computation of the exact solution by a brute-force strategy would require a
combinatorially explosive number of operations, which is infeasible for typical values of n occurring in
any large-scale application. Finally, as mentioned before, there doesn’t seem to be any systematic way
by which any partial solution can be discarded, except by some type of branch-and-bound philosophy
in which a particular subset is discarded (after being initially investigated) when its current partial
solution is already more expensive that the total solution of another subset.

3.2.1 Rationale for the Heuristic. In an effort to develop good heuristic solutions to the various
problems MaxGoal, MaxConf, and MinCost, we resort to the recent results of Oommen and Rueda [2005].

To explain these results of Oommen and Rueda [2005], consider a heuristic algorithm A. Suppose
that A could invoke one of two possible heuristic functions. The question of determining which heuristic
function is superior has typically demanded a yes/no answer, often substantiated by empirical evidence.
In Oommen and Rueda [2005], the authors proposed a formal, rigorous theoretical model that provided
a stochastic answer to this problem. They proved that given a heuristic algorithm A that could utilize
either of two heuristic functionsH1 orH2 used to find the solution to a particular problem, if the accuracy
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of evaluating the cost of the optimal solution by usingH1 is greater than that of evaluating the cost using
H2, then H1 has a higher probability than H2 of leading to the optimal solution. Informally speaking,
this means that whenever we seek to find a heuristic solution for a problem, it is always advantageous to
utilize heuristic functions that use “clues”, which in turn lead to good solutions with high probability. In
this vein, the heuristic criterion we propose for each of these problems involves approximately optimal
solutions of lower-dimensional subspaces, which are then fused using well-established laws of fusion.
We emphasize, though, that since these individual solutions are not necessarily optimal, their fused
solution need not necessarily be the optimal. However, for the case when the dimension n is small, the
search could result in a solution which is very close to optimal. The question, then, is one of getting
a superior solution in a high-dimensional space, given a set of reasonably accurate solutions obtained
for lower-dimension subspaces, that is, for smaller values of m < n. We then advocate the concept
that if these solutions are fused, the accuracy of the heuristic solution in the higher-dimensional space
increases, implying (as a consequence of the results due to Oommen and Rueda [2005]) that the fused
result could lead to the optimal solution with a higher probability. Merging the fused result from the
lower-dimensional result is done, in our case, by dynamic programming.

The only question remaining is that of knowing which specific heuristics are to be used in each of the
problems MaxGoal, MaxConf, and MinCost.

H1. In the case of MaxGoal, the heuristic is the fused probability of n streams, which we quantify as
the result obtained from the fusion of n − 1 streams and the nth stream (and the corresponding method
of computation utilizing dynamic programming), as explained in Section 4.2.

H2. In the case of MaxConf, the heuristic is the fused confidence of n streams, again quantified as
the result obtained from the fusion of confidences of n − 1 streams and that of the nth stream. Again,
the corresponding dynamic programming determines how the latter is computed.

H3. In the case of MinCost, the heuristic for n streams is determined as follows. If we select the nth,
the best cost would be cn plus the cost of the approximated optimal solution for using the remaining
n − 1 streams so that the overall probability of achieving the goal is at least Pspec. However, if we don’t
select this, then the best cost would possibly be that of using the remaining n − 1 streams.

In each case, we utilize the quality of the solution for the low-dimensional subproblems as the quan-
tifying heuristic function.

The solution we propose is a heuristic-based method that operates in two stages. The first stage looks
for these particular lower-dimensional “optimal” solutions for small values of n. It then determines
whether these lead to subsets that (possibly) have to be included in the overall solution. As per the
results of Oommen and Rueda [2005], including more accurately estimated lower-dimensional solutions
in the higher-dimensional subset will (stochastically) tend to lead to a superior solution. Indeed, it
experimentally turns out that the contribution of these values with respect to the overall objective
function (for MaxGoal, MaxConf, and MinCost) is of fundamental and primal importance.

4. PROPOSED FRAMEWORK

4.1 Overview

Given a set of n media streams and the system goal (i.e., to test a hypothesis H) in hand, the solution
which approximates the optimal subset of media streams to test a hypothesis H is obtained as follows:

(1) For 1 ≤ i ≤ n, we first estimate the probability pi = P (H|Mi) that hypothesis H is true. For
example, for the hypothesis “a person is running in the corridor,” a standard Bayes classifier can be
first trained and then used to obtain these probabilities along a timeline.
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(2) We then experimentally learn the confidence level fi of each stream i, 1 ≤ i ≤ n by letting the
system use only the stream Mi. The confidence level is assigned to a stream based on how it has
helped in accurately testing a hypothesis.

(3) Using a voting strategy, we divide the n streams into two subsets S1 and S2 based on the fact
whether, at the current instant, they agree or disagree in support of the true hypothesis. Precisely,
those streams that support the hypothesis with more than 0.50 probability are put in set S1 and
the rest in set S2.

(4) For the two subsets S1 and S2, we compute fusion probabilities PS1 = P (H|S1) and PS2 = P (H̄|S2) of
achieving the goal using a Bayesian approach [Atrey et al. 2005], and also find the overall confidence
FS1 and FS2 for the subsets S1 and S2, respectively (as described in Section 4.2).

(5) We assign the weights to two subsets based on their respective overall confidence values and con-
clude that the hypothesis H is true if PS1 .FS1 ≥ PS2 .FS2 . The system then finds the optimal subsets
�1 and �2 from the sets S1 and S2, respectively, and continues to use them until the probability
of the hypothesis being true, based on both optimal subsets, becomes more than a user-specified
threshold (i.e., Pspec).

4.2 Preliminaries

4.2.1 Fusion of Correlated Probabilities. We combine the probabilities of achieving the system goal
based on two sources Mi−1 and Mi using a Bayesian approach, where Mi−1 is group of i − 1 streams
(i.e., Mi−1 = {M1, M2, . . . , Mi−1}) and Mi is an individual ith stream to be fused with Mi−1. The fusion
model (described in our previous work [Atrey et al. 2005]) is given as follows:

Pi = Pi−1.pi.eγ i

Pi−1.pi.eγ i + (1 − Pi−1)(1 − pi).e−γ i
, (1)

where Pi = P (H|Mi) and Pi−1 = P (H|Mi−1) are the probabilities of the hypothesis being declared true
by the system S based on fusion of a group of i and i − 1 streams, respectively. The quantity pi is the
probability of the hypothesis being true based on the ith stream individually. Note that one possible
way to compute pi = P (H|Mi) for 1 ≤ i ≤ n is by using a Bayes classifier. However, we could also use an
alternative method. The γ i is an agreement coefficient between two sources Mi−1 and Mi. We describe
this in more detail in Section 4.2.2.

4.2.2 Modeling the Agreement Coefficient. The correlation among streams refers to the measure of
their agreement or disagreement with each other [Atrey et al. 2005]. We call this measure of agreement
the Agreement coefficient among the streams. The agreement coefficient γi j (t) between the streams Mi
and M j at time instant t is computed by iteratively averaging past agreement coefficients with the
current observation. The γi j (t) is precisely computed as

γi j (t) = 1
2

[(1 − 2 × abs(pi(t) − pj (t)|)) + γi j (t − 1)], (2)

where pi(t) = P (H|Mi) and pj (t) = P (H|M j ) are the individual probabilities of the hypothesis H being
true based on media streams Mi and M j , respectively, at time t > 1. These probabilities represent de-
cisions about the hypothesis. Exactly the same decisions would imply full agreement (γi j = 1), whereas
totally dissimilar ones would mean that the two streams fully contradict each other (γi j = −1).

The agreement coefficient between two sources Mi−1 and Mi is fused as

γ i = 1
i − 1

i−1∑
k=1

γki, (3)
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where γki for 1 ≤ k ≤ i − 1, 1 ≤ i ≤ n are the agreement coefficients between the kth and ith streams.
The fused agreement coefficient γ i is used for combining Mi with Mi−1, as described in Section 4.2.1.

4.2.3 Confidence Fusion. In the context of media streams, we relate the confidence in a stream to
its accuracy. The higher the accuracy of a stream, the higher the confidence we would have in it. We
compute the accuracy of a stream by determining the number of times this stream correctly confirms
the hypothesis out of the total number of observations. Note that in our case, the accuracy of a media
stream includes measurement accuracy of the media device, as well as the accuracy of the algorithm
used for processing the media data.

Confidence fusion refers to the process of finding the overall confidence in a group of media streams,
where individual media streams have their own confidence level. Considering the confidence values as
probabilities, we propose a Bayesian method to fuse the confidence levels in individual streams, and
this constitutes one of the “heuristic functions” used by our strategy on which the results of Oommen
and Rueda [2005] rest. For n number of media streams, the overall confidence is iteratively computed.
Let Fi−1 be the overall confidence in a group of i − 1 streams. By fusing the confidence fi of ith stream
with Fi−1, the overall confidence Fi in a group of i streams is computed as

Fi = Fi−1 × fi

Fi−1 × fi + (1 − Fi−1) × (1 − fi)
. (4)

In the preceding formulation, although the media streams are correlated in content, we assume that
they are mutually independent in terms of their confidence levels.

4.3 Solution for MaxGoal

We first find all the subsets �i, 1 ≤ i ≤ n′ of streams whose cost C�i ≤ Cspec, for 1 ≤ i ≤ n′. Then, we
pick a subset � from the subsets �i, 1 ≤ i ≤ n′ for which the confidence F� is maximum.

The dynamic programming approach for approximating the optimal subset � works as follows. We
begin by considering the selection of the nth stream. If we select the nth stream, then the fused probability
would be the result obtained from fusion of the nth stream with the remaining n − 1 streams (with a
specified cost Cspec − cn, where cn < Cspec). However, if we do not select it, the fused probability would
possibly be the result obtained from fusion of the remaining n − 1 streams (with a specified cost Cspec).
The fused probability (of achieving the goal) will be the maximum of these two possible best options,
which is also an integral part of the heuristic function that the solution for MaxGoal utilizes.

We thus describe the structure of our solution, which converges to the optimal one by the following
recurrence relation:

Prob(i, m) =
{

Prob(i − 1, m) , ci > m
max[Prob(i − 1, m), PFusion(Prob(i − 1, m − ci), pi, �) , ci ≤ m ,

where Prob(i, m), 1 ≤ i ≤ n, 1 ≤ m ≤ Cspec, approximates the optimal fused probability (of achieving
the goal) based on streams 1 to i with the cost m. The initial conditions for the recursive relation are:

Prob(1, m) =
{

0 , c1 > m
p1 , c1 ≤ m .

The PFusion function combines the probabilities of the system S achieving the goal based on two
sources Mi−1 and Mi using the fusion model given in Eq. (1). Here, � is the set of agreement coefficients
among media streams.

We approximate the optimal fused probability by recursively computing Prob(n, m). As soon as the
Prob table is constructed, the proposed solution which approximates the optimal subset � is computed
by backtracking through the table.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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Algorithm MaxGoal. The algorithm MaxGoal outlines the idea described earlier

MaxGoal(n, p, �, c, f , Cspec, Fspec)
Inputs
n : Number of input media streams.
p[1 . . . n] : Probability of each stream achieving the goal.
f [1 . . . n] : Confidence in each media stream.
c[1 . . . n] : Cost of using each media stream.
�: Set of agreement coefficients among media streams.
Cspec : Specified maximum cost.
Fspec : Specified minimum confidence.
Steps

1. Initialize Prob, Conf and Select array to zero.
2. for i = 1 to n, m = 0 to Cspec
3. if (c[i] ≤ m)
4. Compute fused probability Pi using equation (1)
5. Compute overall confidence Fi using equation (4)
6. if (Pi > Prob[i − 1, m]) Prob[i, m] = Pi , Conf = Fi , Select[i, m] = 1
7. else Prob[i, m] = Prob[i − 1, m], Conf[i, m] = Conf [i − 1, m], Select[i, m] = 0
8. else Prob[i, m] = Prob[i − 1, m], Conf [i, m] = Conf [i − 1, m], Select[i, m] = 0
9. k = m − 1, P� = Prob[n, k], C� = 0

10. for i = n to 1 in steps -1
11. if (Select[k] = 1)
12. Output the stream i into �
13. C� = C� + c[i], k = k − c[i]
14. F� = maximum confidence at C�

Outputs
P�: An approximation to the optimal probability to achieve the goal.
�: The set of media streams used to obtain P�.
C�: The cost of using � to obtain P�.
F�: The confidence in subset �.

4.4 Solution for MaxConf

Similar to problem MaxGoal in Section 4.3, for problem MaxConf, we first find all the subsets �i,
1 ≤ i ≤ n′ of streams whose cost C�i ≤ Cspec, for 1 ≤ i ≤ n′. Then, we pick a subset � from those subsets
�i, 1 ≤ i ≤ n′ for which the overall probability P� of achieving the goal is maximum.

The dynamic programming solution for MaxConf works as follows. We approximate the optimal so-
lution by the following recurrence relation, given as

Conf (i, m) =
{

Conf (i − 1, m) , ci > m
max[Conf (i − 1, m), CFusion(Conf (i − 1, m − ci), fi) , ci ≤ m ,

where Conf (i, m), 1 ≤ i ≤ n, 1 ≤ m ≤ Cspec, approximates the optimal overall confidence in the streams
1 to i with the cost m, and is the “local” heuristic function that MaxConf resorts to. The initial conditions
for the recursive relation are

Conf (1, m) =
{

0 , c1 > m
f1 , c1 ≤ m.

CFusion combines the confidence levels in two sources Mi−1 and Mi using the fusion model given in
Eq. (4). We approximate optimal overall confidence by recursively computing Conf (n, m). Once the Conf
table is constructed, the reported solution (which is the approximation to the optimal subset �) is found
by backtracking through it. The algorithm MaxConf can be outlined similarly to MaxGoal. Details
are omitted in the interest of brevity.
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4.5 Solution for MinCost

The problem MinCost differs from MaxGoal and MaxConf in that the optimization functions in MaxGoal
and MaxConf are to maximize probability and confidence, respectively, while in MinCost, we minimize
the cost.

We first find all the subsets �i, 1 ≤ i ≤ n′ of streams whose fused probabilities P�i ≥ Pspec, for
1 ≤ i ≤ n′. Then, we pick a subset � from the subsets �i, 1 ≤ i ≤ n′ for which the confidence F� is
maximum.

To solve MinCost using a dynamic programming approach, we begin by considering the nth stream.
If we select it, the best cost would be cn plus the cost of the approximated optimal solution of using the
remaining n − 1 streams so that the overall probability of achieving the goal is at least Pspec. However,
if we don’t select it, then the best cost would possibly be that of using the remaining n− 1 streams. The
optimal cost of achieving the goal will be the minimum of these two “best” options, and this will be the
heuristic function that MinCost depends on so as to invoke the results of Oommen and Rueda [2005].

Let Cost(i, m) denote the cost of using media stream 1 . . . i for achieving the goal with probability m.
Assuming this probability takes one of the L discrete values, we characterize the recursive relation for
Cost(i, m) as follows:

Cost(i, m) =




min(Cost(i − 1, m), ci) , m ≤ min(pi, Pspec)
while(l [ss] �= 0){

min(Cost(i, m), fcost) , pi < m ≤ R and Cost(i, m) �= ∞
min(Cost(i − 1, m), fcost) , pi < m ≤ R and Cost(i, m) = ∞

}
Cost(i − 1, m) , m > R ′

,

where 1 ≤ i ≤ n, 1 ≤ m ≤ L. The initial conditions are

Cost(1, m) =
{

c1 , m ≤ min(p1, Pspec)
∞ , m > p1

.

In the recursive formulation previously described, fcost, R, and R ′ are computed as

fcost =



Cost(i − 1, l [ss]) , ss > 0 and l [ss] �= pi
ci , ss > 0 and l [ss] = pi
0 , ss = 0

R =



PFusion(l [ss], pi) , ss > 0 and l [ss] �= pi
pi , ss > 0 and l [ss] = pi
0 , ss = 0

.

R ′ =
{

max(R ′, R) , ss > 0
0 , ss = 0

The l [ss] is an array that contains the probabilities based on the individual streams, as well as the fusion
probabilities. After constructing the Cost table, the Select array is traced back to find the solution which
approximates the optimal subset �.

4.6 Complexity Analysis

Any brute-force approach to solve each of the three problems MaxGoal, MaxConf, and MinCost requires
O(2n) time, since all 2n combinations of streams need to be checked so as to find the optimal subset. We
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.



Goal-Oriented Optimal Subset Selection of Correlated Streams • 13

Algorithm Min Cost. The algorithm MinCost is given as follows.

MinCost(n, p, c, f , �, L, Pspec, Fspec, )
Input

n, p, c, f , � and Fspec: Similar to MaxGoal
L: Number of discrete levels of probability values
Pspec ≤ L: Specified minimum fused probability of achieving the goal

Steps
1. Initialize Cost to ∞, L to 100, and Prob, Conf and Select array to zero.
2. for i = 0 to n
3. for m = 0 to Min(pi , L)
4. Cost[i, m] = Min(Cost[i − 1, m], ci)
5. if (Cost[i, m] = Cost[i − 1, m])
6. Conf [i, m] = Conf [i − 1, m], Prob[i, m] = Prob[i − 1, m], Select[i, m] = 0
7. else Conf [i, m] = fi , Prob[i, m] = pi , Select[i, m] = 1
8. Initialize variables- R = R ′ = 0, ss = 0, f cost = 0, f conf = 0, f prob = 0
9. ss = Number of unique values in Cost array, copy them into l array

10. while (l [ss] �= 0)
11. if (l [ss] �= pi)
12. f prob =PFusion(l [ss], pi , �), f conf =CFusion(l [ss], fi), f cost = Cost[i − 1, l [ss]] + ci
13. else f prob = pi , f conf = fi , f cost = ci
14. R = f prob
15. for m = m′ to R
16. if (Cost[i, m] �= ∞) Cost[i, m] = min(Cost[i, m], f cost)
17. if (Cost[i, m] = f cost) Conf [i, m] = fi , Prob[i, m] = pi
18. else Cost[i, m] = min(Cost[i − 1, m], f cost)
19. if (Cost[i, m] = f cost) Conf [i, m] = fi , Prob[i, m] = pi
20. else Conf [i, m] = Conf [i − 1, m], Prob[i, m] = Prob[i − 1, m]
21. if (Cost[i, m] �= Cost[i − 1, m] and Cost[i, m] �= ∞) Select[i, m] = 1
22. else Select[i, m] = 0
23. m′ = R + 1, R ′ = max(R ′, R), ss = ss + 1
24. for m = R ′ + 1 to L
25. Cost[i, m] = Cost[i − 1, m], Conf [i, m] = Conf [i − 1, m], Prob[i, m] = Prob[i − 1, m]
26. Select[i, m] = 0
27. Opt Prob = Pspec
28. if (Opt Prob < L)
29. while (Cost[i, Opt Prob + 1] = Cost[i, Opt Prob]) Opt Prob = Opt Prob − 1
30. else
31. while (Cost[i, Opt Prob] = Cost[i, Opt Prob − 1]) Opt Prob = Opt Prob − 1
32. Opt Prob = Opt Prob − 1
33. P� = Opt Prob, C� = 0, i = i − 1, m = Opt Prob, C� = k = Cost[i, Opt Prob − 1]
34. while (k > 0)
35. while (Cost[i, m] �= k) m = m − 1
36. if (Select[i, m] = 1) Output i into �, k = k − ci
37. i = i − 1
38. F� = maximum confidence at P�

Outputs
�, C�, P�, F�: Same as MaxGoal

have also proven these three MS problems to be NP-Complete in Section 3.1. However, the pro-
posed dynamic programming-based approach solves them in polynomial time under the assumptions
that:

—the total cost of media streams is not exponential in terms of total number of media streams, that is,
Cn �= O(2n) (for problems MaxGoal and MaxConf); and
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Fig. 1. The layout of the environment under surveillance and monitoring.

—the total discrete levels L of probability values are not exponential in terms of total number of media
streams, that is, L �= O(2n) (for problem MinCost).
The time complexity of both MaxGoal and MaxConf algorithms is O(n2 × Cspec), where Cspec ≤ Cn.

This is, on average, lower than that of the brute-force approach. Note that O(n2 × Cspec) also includes
the time complexity of PFusion, which is O(n). The space complexity of the MaxGoal algorithm is
O(n × Cspec).

The algorithm MinCost has a time complexity of O(n2 × L) to approximate the optimal subset, which
is again better than the brute-force approach. Note that the higher the discrete levels L of probability
value, the higher the time complexity. In the algorithm MinCost, we have used L = 100. The space
complexity is O(n × Pspec), where Pspec ≤ L.

5. RESULTS

To demonstrate the utility of our proposed framework, we present experimental results in a surveillance
and monitoring scenario. The surveillance environment is the corridor of our school building and the
system goal is to detect events such as humans running, walking, standing, talking, shouting, and
door-knocking in the corridor. The environment layout is shown in Figure 1. We use two video sensors
(cameras M1 and M2) to record the video from two opposite sides of the corridor, and two audio sensors
(microphones M3 and M4) to capture ambient sound.

To describe the events, we have introduced the notions of compound event and atomic event [Atrey
et al. 2005]. This description of events is inspired by Nevatia et al. [2003], though the authors have
used it in a different context and have not considered the optimal selection of streams. An atomic-event
is an event in which exactly one object having one or more attributes is involved in exactly one activity
at a location over a period of time, whereas a compound event is the union of two or more atomic events.
For example, a compound event “a person is walking and shouting in the corridor” is composed of two
atomic events “a person is walking in the corridor” and “a person is shouting in the corridor.”

5.1 Preliminary Steps

5.1.1 Video Processing. The video is processed to detect human motion (running, walking, and
standing). Video processing involves two major steps: background modeling and blob detection. The
background is modeled using an adaptive Gaussian method [Stauffer and Grimson 1999]. Blob detec-
tion is performed by first segmenting the foreground from the background using simple ‘matching’ on
the three RGB color channels, and then using morphological operations (i.e., erode and dilation) to
obtain connected components (i.e., blobs). The matching is defined as a pixel value being within 2.5
standard deviations of the distribution. We assume that the blob of an area greater than a threshold
corresponds to a human. We extract for each detected blob its bounding rectangle and area, as shown
in Figure 2. Based on the presence of potential blobs in a sequence of video frames, we estimate human
motion using these two features. We map the blob’s bottom point (i.e., approximating corresponding
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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Fig. 2. Blob detection in camera 1 and camera 2.

Table I. The Feature Used for Video and Audio Streams
(a) Video

Classification Task Stream 1 Stream 2
Foreground/Background RGB channels RGB channels

Running/Walking/Standing Blob’s displacement Rate of change in Blob’s area
(b) Audio

Classification task Stream 1 Stream 2
Foreground/Background Zero Crossing Rate Root Mean Square

Excited/Normal Zero Crossing Rate Root Mean Square
Vocal/Nonvocal Zero Crossing Rate Linear Predictor Coefficients

to the human feet) in the image to a point in the 3D world (i.e., on the corridor’s floor). To achieve
this mapping, we calibrate the cameras and obtain a transformation matrix that maps image points to
points on the corridor’s floor. This provides the exact ground location of the human in the corridor at a
particular time instant. Another way of estimating the human motion which we used is to observe the
rate of change of a blob’s area. We exploit the fact that the blob area increases at a certain rate as the
person moves towards the camera, and vice versa. A summary of the video features used for various
classification tasks is provided in Table I(a).

The system identifies the start and end of an atomic event in video as follows. If a person moves
towards the camera, the start of an atomic event is marked when the blob’s area becomes greater than
a threshold and the atomic event ends when the blob intersects the image plane. However, if the person
walks away from the camera, the start and end of the atomic event are inverted. Once an atomic event
is detected, we divide the time duration for which the event occurred into time-windows of tw. Here, tw
is the minimum time period in which an atomic event can be detected. We do this timeline division to
determine key points for the purpose of assimilation. In our experiment, we set tw = 1 second. Using the
actual location of the person on the corridor’s floor at the end of each time-window tw, we compute the
average distance travelled by a person on the ground. Based on this average distance, a Bayes classifier
is first trained and then used to classify an atomic event as one of the classes standing, walking, and
running. Similarly, these events are detected based on the average rate of change in the blob’s area
over a period tw.

5.1.2 Audio Processing. The system detects events such footsteps, talking, shouting, and door-
knocking based on audio streams. Based on the number of footsteps in a fixed time-window, an event
is classified as either ‘running’ or ‘walking.’ The audio (of 44.1 MHz frequency) is divided into “audio
frames” of 50ms each. The frame size is chosen by experimentally observing that 50ms is the minimum
period during which an event such a footstep can be represented. Similar to the video, we model the
audio background using an adaptive Gaussian method [Stauffer and Grimson 1999] and segment the
foreground for each audio frame using a matching within 2.5 standard deviations of the distribution.
Once the foreground audio events are detected, the system classifies them into “excited” and “normal”
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Fig. 3. Audio event classification.

categories. These excited and normal events are further classified into “vocal” and “nonvocal” events, as
shown in Figure 3. Table I(b) summarizes audio features used for foreground/background segmentation
and for classification.

As shown in Table I(b), in stream 1 option, we used a zero crossing rate (ZCR) feature for all
three classification levels, while in the stream 2 option, we used a root mean square (RMS) for fore-
ground/background segmentation and distinguishing between excited and normal events. Linear pre-
dictor coefficients (LPC) are used for categorizing between vocal and nonvocal events. The zero crossing
rate measures the number of times in the given time interval (50ms, in our case) that the signal am-
plitude passes through a value of zero, moving from negative to positive and vice versa. The root mean
square is a two-norm of the vector containing the samples in one audio frame (of 50ms). Note that these
two features are sensitive to excited events and have been found to have a higher value for excited
events as compared to that for normal ones. Linear predictor coefficients have been widely used in the
speech processing community. LPCs are filter coefficients described in all pole models which approxi-
mate the characteristics of a speech production system. Therefore, LPCs are sensitive to vocal sounds.
This motivated us to use LPCs for the detection of vocal and nonvocal events. We used an LPC algo-
rithm from the MATLAB toolbox. A Bayesian classifier is first trained and then employed to classify the
atomic audio events at three different levels (level 0 to level 2, as shown in Figure 3) [Atrey et al. 2006].

To assimilate the information obtained from all eight streams (two streams each of two audio and
two video sensors), the probabilistic decisions about the audio events are obtained after every tw time
intervals (two seconds, in our experiments). Note that in two seconds, we have 20 audio frames of 50ms
each. The audio event classification for the audio data of tw time period is performed as follows. First,
the system learns via training the number of audio frames corresponding to an event in the audio data
of tw time period. Then, a Bayesian classifier is employed to estimate the probability of occurrence of
an audio event at a regular time interval tw.

To demonstrate how our framework works, we consider a compound event Ec, that is, “a person
walked in the corridor from side A, stood near the door and knocked it, and then walked to side B of the
corridor.” In order to detect the compound event Ec, we decompose it into its constituent atomic events
e1 = “a person walked/stood in the corridor” and e2 = “a person knocked the door in the corridor.” The
probabilistic decisions for these two atomic events obtained using four video and four audio streams
are aligned along a timeline, as shown in Figure 4. In the figure, the x-axis denotes key points along the
timeline and, y-axis shows the probability of occurrence of an atomic event based on a particular stream.
The legends used are: ‘◦’—standing, ‘�’—walking, ‘∇ ’—knocking, and ‘�’—no event. For example, the
legend ‘◦’ shown at key point ‘8’ for the stream V11 indicates the probability of occurrence of an event
“person is standing” based on the stream 1 (refer to Table I(a)) of video camera 1. We will shortly
describe in Section 5.2 how the optimal subset is selected from the set of these eight streams.
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Fig. 4. Timeline-based probabilistic decisions for events using all eight streams.

5.1.3 Cost Estimation. As described in the Introduction, the cost of streams is usually comprised of
two types: the one-time cost and the running cost. Note that the one-time cost (such as installation cost,
the cost of training classifiers, etc.) is optimized by the system designer during system design. Our focus
in this article is on the on-the-fly optimization of running cost by the system. The running cost consists
of the costs of processing and operating, as well as the wear and tear of the media stream. Note that
the operating and wear and tear cost can be computed based on the statistics of power consumption
and the diminishing cost of video sensors. For our experiments, we consider only the processing cost of
streams and describe how this can be estimated for various video and audio streams.

Processing a stream usually consists of two steps: feature extraction and event classification. We
compute the processing cost by estimating the time taken in feature extraction and in event classifi-
cation steps for all the streams. Table II(a) shows the same for a video stream. For an audio stream,
Table II(b) shows the cost of extracting different features (ZCR, RMS, and LPC) and that cost of event
classification at three different levels. Based on the data shown in Tables II(a) and II(b), we provide
the total estimated cost for all eight streams in Table II(c). Note that when two video streams obtained
from the same camera (e.g., V11,V12 from camera 1 or V21,V22 from camera 2) are selected together in
the optimal subset, the cost of only one stream is counted, since the major cost of blob detection remains
common to both.

5.1.4 Computing Confidences in Streams. We computed the confidences in all four video streams
used by running the experiments for 30 events of walking, standing, and door knocking. By comparing
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Table II. Processing Cost of Video and Audio Streams
(a) Video stream

Blob detection (BD) 0.66 frames (each of size 756 × 568 ) per second
Event classification (EC) 0.010 seconds

(Assuming that there are 8 frames per second in video, it takes
8/0.66 ≈ 12.12 seconds for processing of 1 second of video)

(b) Audio stream
Feature extraction ZCR RMS LPC

Cost 1.5642 seconds 0.8628 seconds 1.5072 seconds
Event classification Foreground/Background Excited/Normal Vocal/Nonvocal

(F/B) (E/N) (V/NV)
Cost 0.0082 seconds 0.0076 seconds 0.0100 seconds

(These processing costs are for 1 second of audio)

(c) The total estimated cost for all the streams
Estimated total cost

Stream Cost breakup (in Unit money)
V11, V12, V21, V22 (12.12 (BD) + 0.010 (EC)) × 10 ≈ 12.0

A11,A21 (1.5642 (ZCR) + 0.0082 (F/B) + 0.0076 (E/N) ≈ 1.5
+ 0.0100 (V/NV))× 10

A12, A22 (0.8628 (RMS) + 1.5072 (LPC) + 0.0082 (F/B) ≈ 2.5
+ 0.0076 (E/N) + 0.0100 (V/NV)) × 10

(These costs are for processing of streams of 1 second. In calculating the final cost,
we assume that the processing of every second of data costs 1 unit money)

Table III. Confidences in All the Streams
Stream V11 V12 V21 V22 A11 A12 A21 A22

Confidence 0.62 0.55 0.60 0.54 0.55 0.58 0.55 0.58

results with the ground-truth, we noticed that the event detection was found 60% correct using the
feature stream 1 (i.e., blob’s displacement) of both cameras; while it was found 55% and 54% with
feature stream 2 (i.e., blob’s area) for camera 1 and camera 2, respectively. The audio analysis was done
separately [Atrey et al. 2006] and it was found that the overall accuracy of event detection using audio
sensors was 55% based on ZCR and 58% based on (RMS+LPC). Based on this experimental evidence,
we assigned the confidence levels to different streams, as shown in Table III.

5.2 Optimal Subset Selection of Streams

Using the preliminary data obtained in Section 5.1, we now show how our framework selects the optimal
subset of streams for detecting the event Ec. Note that, due to the placement and coverage space of
sensors, not all of the sensors may detect the event at the same time instance. Therefore, environment
information is needed to determine the right set of streams out of which the optimal subset would be
selected. As shown in Figure 4, the event Ec is detected based on the set (V11, V12, A21, A22) of streams
at key point ‘2.’ We first show in Section 5.2.1 how the optimal subset is computed at a key point. Next,
in Section 5.2.2, we demonstrate how frequently the optimal subset is recomputed along the timeline
and also how much of the cost is saved by using only the optimal subset.

5.2.1 Finding an Optimal Subset at a Key Point. The system computes the optimal subset at key
point ‘2’ as follows. First, since the probabilistic decisions based on three (V11, A21, A22) of four streams
favor the “walking” event, they are kept in group S1 and the rest (V12) are kept in group S2 (refer to
Section 4.1, step 3). Next, we assimilate the probabilistic decisions obtained from streams within each
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.
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Fig. 5. (a) and (b) MaxGoal: A = (Nil), B = (A21), C = (A22), D = (A21, A22), E = (V11), F = (V11, A21), G = (V11, A22), H =
(V11, A21, A22) represent the subsets in favor of event “walking”; (c) and (d) MaxConf: A to D (just the same as MaxGoal) E =
(V11, A22), F = (V11, A21, A22) represent the subsets in favor of event “walking”; (e) and (f) MinCost: A to C (just the same as
MaxGoal) D = (V11), E = (V11, A21), F = (V11, A22), G = (V11, A21, A22) represent the subsets in favor of event “walking”; and
the symbols a = (Nil), b = (A12) represent the subsets in favor of event “standing” for all three MS problems.

of the two sets and obtain the fused probabilities P (Ec|S1) and P (Ēc|S2) using Eq. (1) by assuming a
uniform agreement coefficient γ = 0 among the streams. Note that we have described in our previous
works Atrey and Kankanhalli [2004, 2005] how the agreement or disagreement among the streams
affects fused probabilities. We also find the overall confidence FS1 and FS2 of the two sets S1 and S2,
respectively, using Eq. (4). We obtain P (Ec|S1) = 0.82, P (Ēc|S2) = 0.65, FS1 = 0.93, and FS2 = 0.60.
Since P (Ec|S1).FS1 = 0.7544) > (P (Ēc|S2).FS2 = 0.3900), we conclude that there is more evidence in
support of the “walking” event as compared to those evidence in favor of the “standing” event.

The optimal subset is then found from set S1 using the dynamic programming-based framework
described in Section 4.3 (MaxGoal: for maximizing probability), Section 4.4 (MaxConf: for maximizing
confidence), and Section 4.5 (MinCost: for minimizing cost). The optimal subset process at key point ‘2’ is
depicted in Figure 5. Figure 5(a) plots how probability is maximized under the given cost constraints, and
Figure 5(b) depicts how confidence varies with respect to cost, as a result of maximizing the probability,
using the subsets denoted by symbols A, B, etc. Similar explanations hold true for Figures 5(c)–5(f).

The overall observations from Figures 5(a)–5(f) are:

(1) The proposed framework allows for tradeoff among the extent to which the goal is achieved, the
confidence with which it is achieved, and the cost of achieving it. This offers the flexibility to compare
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whether any one set of streams of low cost would be better than any other set of streams of higher
cost, or any one set of media streams of high confidence would be better than any other set of streams
of low confidence. For instance, Figure 5(a) clearly shows that the subset indicated by symbol D
would be a better choice than the subset indicated by symbol E, since there is very small difference
in the goal achieved (and overall confidence) using the two subsets (D helps in detecting the event
with 0.03 less probability than E and with overall confidence of more than that in E), while there
is a significant difference (of ≈ 8) in cost.

(2) The framework also allows for a tradeoff, depending on whether we should opt for maximizing
probability, maximizing confidence, or minimizing cost. The plots in Figure 5 suggest how the
second factor (say, the probability of occurrence of an event) varies with the third (say, cost)
if we opt for maximizing the first factor (say, confidence). The same also holds true for other
combinations.

(3) The graphs (in Figure 5) show a pictorial representation of which subset of streams is most suitable
in terms of optimal probability, optimal confidence, or optimal cost. They also help in deciding which
is the next most suitable subset, in case the best subset is not available. For instance, in Figure
5(e), consider the subset denoted by G to be in use. If at some instant the stream A21 is unavailable,
we can find from the plot that the next best subset is that denoted by F.

5.2.2 Finding the Optimal Subset Along a Timeline. Once the optimal subset is computed at key
point ‘2,’ the system continues using this subset along the timeline, while ignoring the other streams
until the probability of occurrence of the event using this subset does not fall below a threshold (0.80,
in our experiment). If the probability value falls below the threshold, the optimal subset is recomputed
using all of the available streams. The processing cost of streams which are ignored is saved.

Timeline-based statistics of the subset used for detecting the event Ec, the loss in probability P� of
occurrence of event and in confidence F� in the subset used, and the savings in cost C� (of processing
the subset) using all three methods MaxGoal, MaxConf, and MinCost are provided in Tables IV,
V, and VI, respectively. Note that the cost of processing the full set (i.e., all eight streams) is 32, the
probability of occurrence of an event based on the full set is 0.99, and the overall confidence in the full
set is 0.90.

The key observations from Tables IV to VI are as follows:

(1) The proposed framework for optimal subset selection along a timeline provides significant savings
in processing cost at a marginal loss in the overall probability of achieved goals and in overall
confidence in the subset used. As can be seen from Tables IV–VI, the savings in cost C of 10.2 unit
(≈32% for MaxGoal), 7.4 unit (≈23% for MaxConf), and 16.8 unit (≈50% for MinCost) per key
point (which occur every two seconds) is achieved at the expense of less than 10% loss in probability
P� and confidence F�.

(2) The method MinCost, although providing better savings in cost, fails to detect a few atomic events
at some key points. For instance, the method (in an effort to minimize the cost) selects only those
audio streams in the optimal subset which could detect the “knock” atomic event; but in the absence
of video streams, fails to detect whether the person is standing, walking, or running.

(3) Since the processing cost of the optimal subset is significantly reduced compared to the cost of the
full set of streams, it helps in achieving real-time performance in event detection.

5.2.3 The Proposed Method versus the Brute-Force Approach. We have compared our dynamic
programming-based method for stream subset selection with the brute-force approach by recording the
computation time for varying numbers of streams, as shown in Figure 6. In MaxGoal and
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Table IV. Timeline-Based Optimal Subset Selection Using MaxGoal
Key Loss Loss Saving

point Description in P� in F� in C�

1 No event - - -
2 All streams used and the optimal subset is � computed 0 0 0

Walk: � = (V11, A21, A22), P� = 0.95, F� = 0.72, C� = 16
3 � used: (V11, A21, A22), Walk: P� = 0.95, F� = 0.72, C� = 16 0.04 0.18 16
4 � used: (V11, A21, A22), Walk: P� = 0.77, F� = 0.72, C� = 16 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk: � = (V11, A11, A12, A21, A22), P� = 0.89, F� = 0.81, C� = 20

5 � used: (V11, A11, A12, A21, A22), 0 0.09 12
Walk: P� = 0.99, F� = 0.81, C� = 20

6 � used: (V11, A11, A12, A21, A22), 0 0.16 12
Walk (V11, A12, A22): P� = 0.99, F� = 0.74, C� = 17

Stand (A11, A21): P� = 0.73, F� = 0.60, C� = 3
7 � used: (V11, A11, A12, A21, A22) 0.12 0.09 12

Walk: P� = 0.87, F� = 0.81, C� = 20
8 � used: (V11, A11, A12, A21, A22), 0.10 0.30 12

Stand (V11): P� = 0.89, F� = 0.60, C� = 12
Knock (A11, A12, A21, A22): P� = 0.99, F� = 0.74, C� = 8

9 � used: (V11, A11, A12, A21, A22), 0.07 0.30 12
Stand (V11): P� = 0.92, F� = 0.60, C� = 12

Knock (A11, A12, A21, A22): P� = 0.99, F� = 0.74, C� = 8
10 � used: (V11, A11, A12, A21, A22), 0.16 0.30 12

Stand (V11): P� = 0.83, F� = 0.60, C� = 12
Knock (A11, A12, A21, A22): P� = 0.98, F� = 0.74, C� = 8

11 � used: (V11, A11, A12, A21, A22), 0.13 0.30 12
Stand (V11): P� = 0.86, F� = 0.60, C� = 12

Knock (A11, A12, A21, A22): P� = 0.99, F� = 0.74, C� = 8
12 � used: (V11, A11, A12, A21, A22), 0.11 0.30 12

Stand (V11): P� = 0.88, F� = 0.60, C� = 12
Knock (A11, A12, A21, A22): P� = 0.96, F� = 0.74, C� = 8

13 � used: (V11, A11, A12, A21, A22), 0.07 0.30 12
Stand (V11): P� = 0.92, F� = 0.60, C� = 12

Knock (A11, A12, A21, A22): P� = 0.99, F� = 0.74, C� = 8
14 � used: (V11, A11, A12, A21, A22), Walk (V11): P� = 0.51, 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk: � = (V21, V22, A11), P� = 0.74, F� = 0.68, C� = 13.5

Stand (V11, V12): P� = 0.52, F� = 0.65, C� = 12
Knock (A12, A22): P� = 0.75, F� = 0.66, C� = 5

15 Since P� < Pspec at point 14 ⇒ Optimal subset � recomputed, 0 0 0
Walk: � = (V21, V22, A11, A12), P� = 0.99, F� = 0.75, C� = 16

16 � used: (V21, V22, A11, A12), Walk: P� = 0.99, F� = 0.75, C� = 16 0 0.15 16
17 Same as key point 16 0 0.15 16
18 � used: (V21, V22, A11, A12), 0.06 0.23 16

Walk: P� = 0.93, F� = 0.67, C� = 16, No event (V21)
19 � used: (V22, A11, A12), Walk: P� = 0.88, F� = 0.67, C� = 16 0.11 0.23 16
20 � used: (V22, A11, A12), No event, C� = 16 0 0 16

Average losses and savings per key point 0.049 0.154 10.2

MaxConf, the total cost is taken as 32; and in MinCost, the total number of discrete levels L of
probability values is taken as 100. The plots in Figure 6 show that the computation time taken by the
dynamic programming-based method is significantly less compared to the brute-force approach as the
number of streams increases.
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Table V. Timeline-Based Optimal Subset Selection Using MaxConf
Key Loss Loss Saving

point Description in P� in F� in C�

1–14 Same as Table IV
15 Since P� < Pspec at point 14 ⇒ Optimal subset � recomputed, 0 0 0

Walk: � = (V11, V21, A11, A12), P� = 0.99, F� = 0.79, C� = 28
16 Walk: � = (V11, V21, A11, A12), P� = 0.99, F� = 0.79, C� = 28 0 0.21 4
17 Same as key point 16 0 0.21 4
18 � used: (V11, V21, A11, A12), 0.21 0.27 4

Walk (A11, A12): P� = 0.78, F� = 0.63, C� = 4,
No event (V11, V21): C� = 24

19 Since P� < Pspec at point 18 ⇒ Optimal subset � recomputed, 0 0 0
Walk: � = (V21, A11, A12, A21, A22), P� = 0.95, F� = 0.81, C� = 20

20 � used: (V21, A11, A12, A21, A22), No event, C� = 20 0 0 12
Average losses and savings per key point 0.051 0.151 7.4

Table VI. Timeline-Based Optimal Subset Selection Using MinCost
Key Loss Loss Saving

point Description in P� in F� in C�

1 No event - - -
2 All streams used and the optimal subset is � computed 0 0 0

Walk: � = (V11, A21, A22), P� = 0.95, F� = 0.72, C� = 16
3 � used: (V11, A21, A22), Walk: P� = 0.95, F� = 0.72, C� = 16 0.04 0.18 16
4 � used: (V11, A21, A22), Walk: P� = 0.77, F� = 0.72, C� = 16 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk: � = (A11, A12, A22), P� = 0.81, F� = 0.70, C� = 6.5

5 � used: (A11, A12, A22), Walk: P� = 0.81, F� = 0.70, C� = 6.5 0.18 0.20 25.5
6 � used: (A11, A12, A22), Walk (A12, A22): P� = 0.85, 0.14 0.24 25.5

F� = 0.66, C� = 5, Stand (A11): P� = 0.69, F� = 0.55, C� = 1.5
7 � used: (A11, A12, A22), Walk: P� = 0.73, F� = 0.70, C� = 6.5 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk: � = (A11, A21, A22), P� = 0.81, F� = 0.67, C� = 5.5

8 � used: (A11, A21, A22), Knock: P� = 0.97, F� = 0.67, C� = 5.5 0.02 0.23 26.5
9 Same as key point 8 0.02 0.23 26.5

10 Same as key point 8 except P� = 0.96 0.03 0.23 26.5
11 Same as key point 8 except P� = 0.98 0.01 0.23 26.5
12 Same as key point 8 except P� = 0.90 0.09 0.23 26.5
13 Same as key point 8 except P� = 0.96 0.03 0.23 26.5
14 � used: (A11, A21, A22), Knock (A22): P� = 0.73, 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Knock (A11, A12): P� = 0.85, F� = 0.63, C� = 4

15 Knock (A11, A12): P� = 0.85, F� = 0.63, C� = 4 0.14 0.27 28
16 Same as key point 15 except P� = 0.92 0.07 0.27 28
17 Same as key point 15 except P� = 0.89 0.10 0.27 28
18 Same as key point 15 except P� = 0.78 0 0 0

Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk (A12, A21): P� = 0.80, F� = 0.63, C� = 4

19 � used: (A12, A21), Walk: P� = 0.75 0 0 0
Since P� < Pspec ⇒ Optimal subset � recomputed,
Walk (A12, A21, A22): P� = 0.83, F� = 0.70, C� = 6.5

20 � used: (A12, A21, A22), No event, C� = 6.5 0 0 25.5
Average losses and savings per key point 0.042 0.141 16.8
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Fig. 6. Comparison of (a) MaxGoal and MaxConf (with Cn = 32); (b) MinCost (with L = 100) with the brute-force approach.

6. CONCLUSIONS

In this article, we propose a framework that uses a dynamic programming approach to find the optimal
subset of media streams for three different objectives: maximizing the probability of achieving the
goal under specified cost and confidence constraints; maximizing confidence under specified cost and
probability constraints; and minimizing the cost of using the subset to achieve the goal with a specified
probability and with a specified confidence. Each of these problems is proven to be NP-Complete, after
which we have proposed a dynamic programming approach that finds the optimal subset of media
streams based on the aforementioned three criteria. The proposed framework allows for tradeoffs among
the three previously mentioned criteria, and offers the flexibility to compare different subsets in terms
achieved goal, confidence and the incurred cost. The dynamic programming solution offers the user the
flexibility to choose alternative subsets when the best subset is unavailable. The experimental results
show the utility of the framework for detecting events in a surveillance scenario. The results show that
the subset of a significantly lower cost can help in detecting events at the expense of only minor loss in
the probability confidence with which the goal is achieved.

In future work, it would be interesting to explore how the framework can be used in other scenarios,
such as selecting streams in media search systems. We will also focus on the formalization of how
frequently the approximately optimal subset should be recomputed. Although we have focused on
multimedia inputs, we also foresee a similar problem with respect to multimedia output, where we
would try to determine the minimal subset of multimedia streams to communicate an intent.

ACKNOWLEDGMENTS

We thank our colleagues Frank Stephan and Wei-Tsang Ooi for their help in developing the proof of
the theorem given in this article.

REFERENCES

ATREY, P. K. AND KANKANHALLI, M. S. 2005. Goal based optimal selection of media streams. In Proceedings of the IEEE
International Conference on Multimedia and Expo (Amsterdam, The Netherlands). 305–308.

ATREY, P. K., KANKANHALLI, M. S., AND JAIN, R. 2005. Timeline-Based information assimilation in multimedia surveillance and
monitoring systems. In Proceedings of the 3rd ACM International Workshop on Video Surveillance and Sensor Networks
(Singapore). 103–112.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.



24 • P. K. Atrey et al.

ATREY, P. K., MADDAGE, N. C., AND KANKANHALLI, M. S. 2006. Audio based event detection for multimedia surveillance. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. V813–816.

DEBOUK, R., LAFORTUNE, S., AND TENEKETZIS, D. 2002. On an optimal problem in sensor selection. J. Discrete Event Dynamic
Syst.: Theory Appl. 12, 417–445.

ISLER, V. AND BAJCSY, R. 2005. The sensor selection problem for bounded uncertainty sensing models. In Proceedings of the
International Symposium on Information Processing in Sensor Networks (Los Angeles, CA). 151–158.

JAIN, R. 2004. Refining the search engine. Ubiquity 5, 29 (Sept.).
JIANG, S., KUMAR, R., AND GARCIA, H. E. 2003. Optimal sensor selection for discrete event systems with partial observation.

IEEE Trans. Autom. Control 48, 369–381.
LAM, K.-Y., CHENG, R., LIANG, B., AND CHAU, J. 2004. Sensor node selection for execution of continuous probabilistic queries in

wireless sensor networks. In Proceedings of the ACM International Workshop on Video Surveillance and Sensor Networks (New
York). 63–71.

NEVATIA, R., ZHAO, T., AND HONGENG, S. 2003. Hierarchical language-based representation of events in video streams. In
Proceedings of the IEEE Workshop on Event Mining (Madison, WI).

OOMMEN, B. J. AND RUEDA, L. 2005. A formal analysis of why heuristic functions work. Artif. Intell. J. 164, 1–22.
PAHALAWATTA, P., PAPPAS, T. N., AND KATSAGGELOS, A. K. 2004. Optimal sensor selection for video-based target tracking in a

wireless sensor network. In IEEE International Conference on Image Processing. Singapore, V:3073–3076.
SIEGEL, M. AND WU, H. 2004. Confidence fusion. In Proceedings of the IEEE International Workshop on Robot Sensing. 96–99.
STAUFFER, C. AND GRIMSON, W. E. L. 1999. Adaptive background mixture models for real-time tracking. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (Ft. Collins, CO). 252–258.

Received June 2005; revised March 2006; accepted May 2006

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 3, No. 1, Article 2, Publication date: February 2007.


