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ABSTRACT
The fusion of multiple correlated observations of a multi-
media system is a research problem arising in many mul-
timedia applications. In this paper, we propose a novel
framework for the probabilistic fusion of correlated multime-
dia observations. Assuming that each of the media stream
has a priori probability of achieving the goal and their un-
derlying correlations are known, our framework fuses the
individual probabilities using the quantitative correlation
based on a Bayesian approach. The simulation results show
that fewer highly-positively-correlated observations better
achieve a specified goal when compared to the use of a larger
number of observations with low correlation.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Methodology

General Terms
Algorithms, Theory

Keywords
Correlated probability, Experiential sampling, Information
fusion

1. INTRODUCTION
The need for utilization of the multiplicity as well as the

correlation of multimedia streams is increasingly being felt
since the real strength of multimedia systems lies in making
of the appropriate use of its diverse information sources that
are usually correlated [4, 5]. Any multimedia information
processing system usually deals with multiple types of data
such as video, audio, and text etc, each of which is spatio-
temporal in nature and inherently correlated. Also, the each
type of data stream possesses a tremendous volume with lot
of redundancy. This gives rise to many interesting research
issues such as:
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1. How do we find the relevant data from the huge volume
of multimedia data to achieve a specified goal 1?

2. Given that the each media stream is capable of par-

tially achieving the goal, how do we best fuse the cor-
related information from the various media sources to
attain the better probability of achieving the goal?

In this paper, we essentially focus on the issues listed above.
We resolve (1) by using the experiential sampling approach
[5] to find the region of attention. The experiential sampling
technique provides an efficient way to derive the attention
samples from the media (sensor) samples. Once we have the
attention samples, the media processing is performed only
on the attention samples instead of the entire media data.

To address the issue (2), we propose a Bayesian framework
for the fusion of correlated probabilities. The correlated
data fusion problem has been widely studied and applied
in many decision fusion scenarios [1, 2]. With the assump-
tion of sources being independent, it is trivial to perform
probability-level fusion by using well established methods
such as renormalized multiplication [3].

However, in multimedia information fusion applications,
where the observations obtained from the multimedia sources
are often correlated, this assumption usually does not hold.
Therefore, it is necessary to use a more sophisticated ap-
proach that incorporates the correlation among the data
streams.

Unlike the conventional meaning where the correlation im-
plies a statistic representing how closely two variables co-
vary, the correlation between the multimedia streams here
refers to a measure of agreement between the streams. In
a multimedia system, where observations obtained from the
media streams usually contain some noise, the index of agree-
ment between two media streams can be determined by
knowing the evidence that each stream provides. The obser-
vations could either concur or disagree to different extents.
The media streams having negative correlation provide con-
tradictory observations, and the streams having positive cor-
relation provide supportive observations. For example, con-
sider a multimedia system (having two different media types
- video and audio) that observes the state of an environment.
Let the goal be to detect a person in a room by face detec-
tion in video and speech/footstep detection in audio. If both
the video stream and audio stream detect the existence of a

1In the context of multimedia systems, the goal is the pur-
pose of the current multimedia system’s task [5]. For ex-
ample, the goal of a multimedia system can be object/face
detection, activity monitoring or event analysis



person, the two media streams will have positive correlation
(or index of agreement). However, if only the video camera
detects the existence of a face and audio sensor detects no
sound; it suggests that the observations are contradictory,
hence the media streams have negative correlation. In this
example, we assume that a person is always associated with
some sound.

The current methods for correlated probability fusion do
not use the quantitative measure of correlation among the
data [2]. Our proposed method is based on the quantitative
correlation which refers to the degree of agreement among
the observed data. Assuming that the probabilities of each
media stream achieving the goal along with their correla-
tions are known, our framework fuses the individual prob-
abilities to output the combined probability (we call it the
‘fusion probability’) of achieving the goal. The positive cor-
relation among the streams enhances their fusion probabil-
ity. We also show that the fewer highly-positively-correlated
observations contribute more in achieving the goal than a
larger number of lesser correlated observations.

The paper is organized as follows. We begin the paper
with the problem formulation in section 2. In section 3, we
present our framework for the fusion of correlated probabili-
ties. We present the simulation results in section 4. Finally,
section 5 concludes the paper with a discussion on the future
work.

2. PROBLEM FORMULATION
Let Mn(t) = {M1, M2, . . . , Mn} be a set of n multimedia

streams at time instant t.
We make the following assumptions:

A1 Let each media stream Mi, 1 ≤ i ≤ n, based on its
observation, has a priori probability pi = P (G|Mi) of
achieving the goal G.

A2 For 1 ≤ i, j ≤ n, the streams Mi and Mj provide cor-

related observations. Let the correlation at time t be
represented by a set Γ(t) of correlation coefficients.
The Γ(t) is expressed as -

Γ(t) = {γij(t)} (1)

where, the term −1 ≤ γij(t) ≤ 1 connotes the cor-
relation coefficient between the observations obtained
from the media streams Mi and Mj at time instant t.
Also, the correlation can evolve with the time. The
cardinality of the set Γ is given by

(

n

2

)

.

A3 Probability of achieving the goal G with any i number
of streams is greater than or equal to the probabil-
ity of achieving the goal with any i − 1 streams. i.e.
P (G|Mi) ≥ P (G|Mi−1).

The objective is to find the fusion probability P (G|Φ) of
achieving the goal when a subset Φ ∈ (The power set of Mn)
of correlated media streams is used.

3. PROPOSED FRAMEWORK
Given the set Mn = {M1, M2, . . . , Mn} of n media streams2

in a multimedia system, using Bayes’ theorem we obtain -

P (G|Mn) =
P (Mn|G)P (G)

P (Mn)
(2)

2In this paper we use the term ‘media stream’ and the ‘ob-
servations from the media stream’ interchangeably

where,
P (G|Mn) is the posterior probability of successfully achiev-
ing the goal G given that observations Mn have been ob-
tained from media sources.
P (Mn|G) is the probability of the particular set of obser-
vations Mn being taken given that the goal is successfully
achieved. This is also called the likelihood pool.
P (G) is the prior probability of the goal G being success-
fully achieved.
P (Mn) serves as a normalization function, ensuring the pos-
terior probabilities sum to one over the observation set Mn.

The media stream model is based on P (Mn|G) by first
fixing the G and then computing the probability density
function for Mn i.e. in other words, we derive the likeli-
hood of G. Then this stream model can be used to find the
probability density function for the goal G.

Similar to [3], we assume that the observations obtained
from different media sources are independent given the true
underlying state of the world. The effectiveness of fusion
relies on this assumption. In our case, the goal is intuitively
analogous to the state and once the goal has been specified
it is correspondingly reasonable to assume that the observa-
tions made are conditionally independent given the goal. For
example, if the goal is to detect a human face, the observa-
tions made through various media streams can be considered
independent given that the human face exists.

The assumption described above leads to the following -

P (M1, M2, . . . , Mn|G) =
n

∏

i=1

P (Mi|G) (3)

The P (Mi|G), 1 ≤ i ≤ n is the independent likelihood pool
which is constructed for each media stream separately. One
way of computing the likelihood pool is by using experiential
sampling approach [5] as described in section 3.1.

We further expand (2) as -

P (G|Mn) = [P (Mn)]−1
P (G)

n
∏

i=1

P (Mi|G) (4)

Since we assume the prior P (G) to be non-informative (i.e.
P (G) = 0.5) and P (Mn) to be a constant relative to the
likelihood pool [3], equation (3) can further be rewritten as-

P (G|Mn) = α

n
∏

i=1

P (Mi|G) (5)

where α is normalizing constant which can be given as -

α =
1

∏n

i=1 P (Mi|G) +
∏n

i=1 P (Mi|G)
(6)

where, P (Mi|G) = 1 − P (Mi|G), be the likelihood that the
observation M i does not achieve the goal G.

3.1 Experiential sampling based likelihood pool
computation

Using the experiential sampling technique [5], we compute
the attention saturation ASati for each media stream Mi.
ASati provides the measure of generalized attention in a
given time slice and its value can range from 0 (lowest, no
attention) to 1 (highest, full attention). The key idea is
based on the assumption that the likelihood of achieving a
goal is high when the attention is high, and vice versa. This



leads to -

P (Mi|G) ≈ ASati (7)

For example, let the goal be to detect a face. Using experi-
ential sampling technique, the attention saturation value is
higher in the region where the face is likely to be detected.

Note that the experiential sampling based approach is one
possible way of computing the likelihood pool. However, one
could also use any alternative method.

3.2 Recursive Bayesian updating
The Bayesian framework allows for incremental and recur-

sive addition of new information. Let P (G|Mi−1) denote the
probability of the streams M1, M2 . . . Mi−1 together achiev-
ing the goal G. The updated probability P (G|Mi) (i.e. the
fusion probability after fusing the new observation obtained
from the stream Mi) can be recursively computed as -

P (G|Mi) =
P (Mi|G)P (G|Mi−1)

P (Mi|M
i−1)

P (G|Mi) = αiP (G|Mi−1)P (G|Mi) (8)

where, αi is again a normalizing constant which is given by-

αi =
1

P (G|Mi−1)P (G|Mi) + (P (G|Mi−1)(P (G|Mi)
(9)

3.3 Fusion of correlation
The correlation among the streams improves the fusion

probability. In correlation fusion, we show how the corre-
lation between a group of streams and a new observation
stream is computed. We denote the correlation coefficient
between the sources Mi−1 and Mi as γi. To include the
stream Mi, we first compute the γi as follows. As it is as-
sumed (in section 2) that we know the correlation coefficients
γki for 1 ≤ k ≤ i − 1, γi is approximated by heuristically
choosing the maximum of the correlation coefficients of ith

stream with the previously selected streams for fusion. This
is computed as -

γi = max(γki) (10)

where, 1 ≤ k ≤ i − 1. The fused correlation coefficient γi is
used for combining Mi with Mi−1.

3.4 Correlated probabilities fusion model
Using the assumption of conditional independence (equa-

tion 3), we propose a model for the fusion of correlated prob-
abilities. The fusion of the correlated observations obtained
from the two media sources Mi−1 and Mi is modelled as -

P (G|Mi−1
, Mi) = f(P (G|Mi−1), P (G|Mi), γi) (11)

where,
P (G|Mi−1, Mi) is the fusion probability.
P (G|Mi−1) is the probability of the i−1 number of streams
together achieving the goal G.
P (G|Mi) is the probability of ith media stream individually
achieving the goal G.
γi is the correlation between P (G|Mi−1) and P (G|Mi).
f is a heuristic function that increases monotonically with
respect to the correlation coefficient γi.

The function f is defined in simpler notation as -

f(g, h, c) =
g.h.em.c

g.h.em.c + (1 − g).(1 − h)e−m.c
(12)
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Figure 1: Behavior of the heuristic function (formu-
lation (12)) used for probability fusion model

where, g = 0 < P (G|Mi−1) ≤ 1, h = 0 < P (G|Mi) ≤ 1,
c = γi, e is the exponential function and m ∈ (0, 1] is a
model coefficient that denotes the weight of the correlation
coefficient.

Note that the function f is one possible function that sat-
isfies these boundary conditions and the monotonicity prop-
erty, however any other function fulfilling these criteria can
also be used.

If either of the media sources have the individual probabil-
ity as zero, we prefer the conservative approach and choose
the non-zero probability of successfully achieving the goal G.
This approach suits to many real world applications includ-
ing surveillance and monitoring. For example, if one media
stream provides zero probability of detecting a vehicle going
to into a no-entry area and other stream provides a proba-
bility greater than zero, the proposed algorithm chooses the
second one to be on the safer side. Also, if the fusion prob-
ability is lesser than the individual probabilities of both the
sources, we choose the maximum of individual probabilities
(using the assumption A3 given in section 2).

Figure 1 plots the behavior of the heuristic function f

(equation (12)) used for the probability fusion model. The
inputs are probabilities g and h on x and y axes, respec-
tively, and output is the fusion probability f(g, h, c) shown
on the z-axis (vertical axis). Figures 1a, 1b and 1c show the
plots with the correlation coefficients -1.0, 0.0 and +1.0, re-
spectively, and with m = 1. It is clearly observable that the
fusion probability sooner attains a value close to maximum
with higher positive correlation (figure 1c) than with higher
negative correlation (figure 1a). Also, as shown in figure
1c, the fusion probability f(g, h, c) attains a value close to
1 even if g and h are well below 1 but have a high positive
correlation (c = +1.0). It shows that the highly-positively-
correlated streams with partial observations can achieve the
goal with higher probability when used together.

3.5 Algorithm
In this section, we outline the algorithm for fusing the n

observations obtained from the multimedia streams Mn.
Inputs

pi, 1 ≤ i ≤ n : Individual streams’ probabilities.
Γ : The set of correlation coefficients.
m : Model coefficient.

Steps

1. P = 0, P ′= 0
2. For i = 1 to n

3. if (P = 0) or (pi = 0)
4. P = max(P, pi)
5. else
6. γi = 0
7. For k = 1 to i − 1



8. if γi < γki

9. γi = γki

10. P ′ = (P.pi.em.γi )

(P.pi.em.γi )+(1−P )(1−pi).e
−m.γi

11. if P ′ < max(P, pi)
12. P ′ = max(P, pi)
13. P = P ′

14. return P

Output

P : Fusion probability

4. SIMULATION RESULTS
We have simulated the fusion of observations of 100 media

streams to study the behavior of the fusion framework. In
figure 2, we show only up to 15 streams since after the fusion
of 15 streams the fusion probability is close to the maximum
in all cases (figure 2a-2d). To show how correlation affects
the fusion, we assume that all the media streams are equi-
probable of achieving the goal, and also there is uniform
correlation coefficient among all the streams. The simula-
tion is performed for four types of stream sets. The streams
within each set have uniform probabilities which are 0.20,
0.40, 0.60, and 0.80 (figure 2a to 2d, respectively). For each
set of streams, the stream probabilities are fused sequen-
tially using the correlation coefficients -1.0, -0.5, 0.0, +0.5,
+1.0. The value of model coefficient m is taken as 1.

Our observations from the graphs (in figure 2) are:

• The streams having lower probabilities (e.g. 0.20 or
0.40) can also achieve the goal if their correlation is
high. The figures 2a & 2b show that 12 streams with
correlation coefficient +1.0 (figure 2a), and 5 and 12
streams with correlation coefficients +1.0 and +0.5
(figure 2b), respectively, are sufficient to achieve the
goal.

• Figure 2c shows that the negative correlation coeffi-
cients (-1.0 and -0.5) does not contribute in achieving
the goal even if all the streams having moderate indi-
vidual probabilities (i.e. 0.60) are used. However, a
few streams (lesser than 5) with high correlation coef-
ficients (+0.5 and +1.0) can attain the fusion proba-
bility close to maximum. It is also observed that, with
zero correlation, around 15 streams having moderate
probabilities can still achieve the goal.

• As shown in figure 2d, if the streams having high in-
dividual probabilities and high correlation coefficient
are fused, even very few streams can achieve the goal.
E.g. two streams with probabilities 0.80 and correla-
tion coefficient +1.0 are adequate to achieve the goal.

These results suggest that streams having higher individual
probabilities is better, but correlation also plays an impor-
tant role in improving the overall fusion probability. This
indicates that a few but highly correlated streams are better
for achieving the goal. But this needs to be studied in detail
under varying conditions and analytically proved rigorously.
Due to space constraints, we have considered sequential fu-
sion without worrying about any optimality criteria such as
the cost of media sensors. Moreover, we have not consid-
ered the notion of redundancy which might be wasteful in
terms of cost but important for the sake of reliability. We
therefore intend to develop a formal notion of optimality in
the selection of streams in our future work.
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Figure 2: Fusion probability vs. Number of me-
dia streams (with uniform probabilities p for all
streams) (a) p = 0.20 (b) p = 0.40 (c) p = 0.60 (d)
p = 0.80

5. CONCLUSION
In this paper, we propose a framework for the probability

fusion of correlated multimedia streams. Our method in-
tegrates the correlated observations based on the Bayesian
approach and a heuristic function. The simulation results
show that the correlated observations are advantageous in
achieving the goal in a multimedia system environment. It
also points out that fewer streams with higher correlations
are better. But this needs to be studied in detail. We plan
to use the framework in some real scenarios. We also plan
to resolve the theoretical issues related to finding the op-
timal subset of streams for maximizing the probability of
achieving the goal under various cost constraints.
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